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Mean-square-displacement distribution in crystals and glasses:
An analysis of the intrabasin dynamics
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In the energy landscape picture, the dynamics of glasses and crystals is usually decomposed into two separate
contributions: interbasin and intrabasin dynamics. The intrabasin dynamics depends partially on the quadratic
displacement distribution on a given metabasin. Here we show that such a distribution can be approximated by
a Gamma function, with a mean that depends linearly on the temperature and on the inverse second moment
of the density of vibrational states. The width of the distribution also depends on this last quantity, and thus
the contribution of the boson peak in glasses is evident on the tail of the distribution function. It causes the
distribution of the mean-square displacement to decay slower in glasses than in crystals. When a statistical
analysis is performed under many energy basins, we obtain a Gaussian in which the width is regulated by the
mean inverse second moment of the density of states. Simulations performed in binary glasses are in agreement
with such a result.
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I. INTRODUCTION

Humanity began making amorphous solids hundreds of
years ago [1,2]. Window glass is the best known example
of an amorphous solid, but there are many others used in
devices such as silicon photovoltage cells, optical fibers, and
so on [2]. In spite of such widespread use of glasses, their
formation process is still controversial [2–4]. To understand
the formation of glasses and crystals, as well as the dynamics
of supercooled liquids [5], it is common to use the energy
landscape picture [6]. This landscape is a multidimensional
surface generated by the system potential energy as a function
of the molecular coordinates [1,2,7,8]. In an N -body system,
it is determined by the potential energy function, given by
φ(r1, . . . ,rN ), where ri comprise all configuration coordinates.
Once a glass is formed, it shares a basic attribute with a crystal
at low temperature: both represent a minimum [1,8] in φ.
Perfect crystals correspond to an absolute minimum in φ, while
amorphous crystals are in relatively higher metastable states.
These minima are called inherent structures (ISs) [1]. Most of
the works concerning glass formation analyze the dynamics of
the glass-forming liquid in the supercooled region [1,8–11].
Commonly, such dynamics is separated into two contributions:
transitions between ISs and vibrational motion into each
energy basin of a given IS [1,7,8]. In other words, the dynamics
is separated into short times (vibrations and transitions to
minima separated by very low energy barriers) and long times
[2,12–14] (relaxation due to transitions into ISs), as was tested
by Schroder et al. [10] and Broderix et al. [15]. Furthermore,
the long-time dynamics in low-temperature model supercooled
liquids has been found to be related with a hierarchy in the ISs,
since it is possible to cluster them in metabasins (MB) [16–20],
a feature that is reminiscent of the funnel structure of the
energy landscape in proteins. In fact, the glassy landscape can
be decomposed into an exponential number of local funnels,
resulting in a highly frustrated structure. Thus the dynamics
can be represented by a random walk between traps with
a certain waiting time distribution [17,19,20]. In such an
approach, called the trap model [20], one needs to separate the

vibrational dynamics from the long-time behavior. Usually, the
vibrational component of the trajectory is separated through
quenching to ISs, assuming that the vibrational component
can be removed. Then the trajectory between ISs is kept.
A different approach is obtained by identifying a network
composed of transition states and the minima they connect
[21,22]. When basins refer to individual local minima, this
method allows us to separate local vibrational modes and
transitions between minima. Recently, a clear criterion to
define MBs has been identified, where changes between MB
are due to productive cage-breaking events [23,24]. These
events are defined by nonreversible changes of at least two
neighbors for any atom. The criterion to decide which are
the neighbors depends upon a critical distance (Rc), chosen
from the radial distribution function [23]. It turns out that
these events are in clear correspondence with the MBs found
using a metrics defined as the “distance” between ISs [23].
Clearly, the mean square displacement fluctuations are useful
for looking at the possibility of cage breaking [25], since at
least two displacements must have a magnitude bigger than
a certain threshold. Thus, it is worthwhile to study such
fluctuations. In this article, we will examine this point by
analyzing the vibrational component statistics. In particular,
we will consider the mean square displacement at its plateau
level (u2) fluctuations.

Thus, here we will need to calculate the distribution
function P (u2; l) of u2, where l is a label for the energy basin.
Since one of the most intriguing questions on glasses is why the
short-time scale behavior, given by the properties of u2, can be
used to predict the long-time behavior [26,27], the knowledge
of P (u2; l) can also be used to shed some light on the problem.
Also, we will discuss its relationship with the total probability
density over different inherent structures P (u2), and the mean
square displacement 〈u2〉l and 〈u2〉 obtained from the first
moment of P (u2; l) and P (u2), respectively.

It is worthwhile mentioning that the vibrational time scale
corresponds to cage effects [23,28], and thus to a plateau
for u2. Following this idea, we can study the mechanical
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stability for temperatures below the melting point (Tm) or
glass transition temperature (Tg). Recently, we have shown
that in fact, the glass transition temperature as well as the
viscosity are determined by 〈u2〉 [29–36]. In such a deduction,
we observed that the excess of low-frequency vibrational
modes (LFVMs) [37,38] present in glasses leads to a bigger
〈u2〉 when compared to crystals, explaining why Tg is always
below Tm. Furthermore, glasses present two anomalies in the
reduced vibrational density of states (RVDOS) [39]: One is
associated with the excess of LFVMs, dubbed the boson peak
(BP), which is over finite tera-hertz frequencies (ω) [38]. The
other one is called the floppy peak (FP), which appears at ω

close to zero [40]. The latter case is explained by means of the
floppy mode concept that was introduced by Phillips-Thorpe’s
rigidity theory (RT) [41–44]. Basically, floppy modes arise
in atomic networks with low coordination [40]. Recently,
it has been suggested that the BP and FP have a common
origin, a lack of contacts [39]. This fact has been observed
experimentally in [45]. Namely, a BP occurs as a consequence
of a reduction of constrictions in an overconstrained lattice,
while the FP appears due to a reduction of contacts in an
isostatic network [39].

Finally, in this article we want to make a connection
between anomalous LFVMs and the probability distributions
functions P (u2; l) and P (u2) in crystals and glasses, and
their relationship with the interbasin and intrabasin dynamics.
Notice that some of the short-time dynamics is not just
vibrational since transitions between local minima also occur
with low barriers, as has been observed in computer simu-
lations [23,24]. Our method, in principle, cannot distinguish
between them, since we assume harmonic oscillations right
from the beginning. In spite of this, the well known fact that
in real glasses long-time properties are given by short-time
vibrational properties hints at the fairness of the procedure
[26,27]. Maybe this is due to a nearly similar local topology
between ISs separated by low energy barriers.

This work is organized as follows. In Sec. II, we present
a discussion on the energy landscape dynamics and some
molecular dynamics simulations (MD) which were used to
compare with our theoretical results, developed in Sec. III.
The conclusions are given in Sec. IV.

II. SQUARE DISPLACEMENT AND INHERENT
STRUCTURES IN BINARY GLASSES

The proposal of this section is twofold. First, we want to
present how u2 is related with the energy basin in simulations
concerning binary glasses, and second, we want to show
the protocol of the simulations that were made in order to
corroborate our theoretical outcome. As our system, we used
an 80:20 mixture glass of A and B particles. For crystals,
we used a face-centered-cubic (fcc) crystal made only with
A particles. This choice is due to the fact that for the A-B
system, the lowest-energy non-phase-separated state is not fcc
for a binary Lennard-Jones potential [46,47]. However, here
we are only concerned with testing our theoretical distribution
for glasses and crystals, thus one can use any arbitrary crystal
to make the corresponding check.

In both cases, all particles have the same mass m. The
interactions between particles are given by a purely repulsive
potential [48],

φαβ(rij ) =
{

4εαβ

[( σαβ

rij

)12 − ( σαβ

rij

)6] + εαβ if rij � rc
αβ

0 in any other case,
(1)

where rij is the interparticle distance, εαβ is a constant energy,
and rcut

αβ = 21/6σαβ is the cutoff radius. The units of mass,
length, time, pressure, and temperature are m, σAA, τ =
σAA

√
m/εAA, εAA/σ 3

AA, and εAA/kB , respectively, with kB

being Boltzmann’s constant. The glass simulation parameters
ε

g

αβ and α
g

αβ were chosen as follows to inhibit crystallization
[48]: σ

g

AA = 1.0, ε
g

AA = 1.0, σ
g

AB = 0.88, ε
g

AB = 1.5, σ
g

BB =
0.8, and ε

g

BB = 0.5. The length box was Lg/σ
g

AA = 8.4852.
The glass was produced by supercooling [48]: we heated a
doped simple-cubic (sc) crystal up to fluid state, and then
we cooled it at speed γ− = dT /dt = 0.2 until it was in
a solid amorphous state. Once the glass was obtained, the
initial configuration was heated at the heating rate γ = 0.005.
Meanwhile, the monodispersive crystal simulation was per-
formed with the following parameters: σ c

AA = 1.0, εc
AA = 1.0,

σ c
AB = 1.0, εc

AB = 1.0, σ c
BB = 1.0, εc

BB = 1.0 and length box
Lc/σ c

AA = 9.5244 with the same repulsive potential (1). The
simulations were made with N = 864 particles at constant
volume and temperature. All quantities reported in this paper
are in dimensionless molecular dynamics units.

An interesting question is why we chose a purely repul-
sive potential. The answer to this question has to do with
the possibility of relating the boson peak with the mean-square
displacement (MSD) and rigidity. The use of a purely repulsive
potential with a given cutoff allows us to define unambiguously
when particles have constraints and how to count them [49].
As we will see, the MSD distribution is basically defined from
the low-frequency modes, and thus constraints play a major
role, as we shown in Ref [49].

Once the glasses and crystals were obtained, an analysis
of the statistical properties of the MSD was performed. The
MSD, u2(t), is an average over all particles at a given time,

u2(t) = 1

N

N∑
j=1

u2
j = 1

N

N∑
j=1

[rj (t) − rj ]2, (2)

where uj is the particles’ displacement, rj (t) is the position,
and rj is the average position after a time T ,

rj = 1

T

∫ T

0
rj (t) dt. (3)

If u2(t) reaches a plateau after a certain time t1, we define a
stochastic variable u2 whose values are given by the sequence

u2 = u2 (t) , (4)

where t is inside a time interval t1 < t < t2 such that u2(t2) is
still in the same plateau.

In the case of the relaxed crystal, the distribution Pc(u2; l) is
equal to Pc(u2) since the system is in the absolute minimum of
φ and rj corresponds to the mechanical equilibrium position.
Then we can obtain Pc(u2) just by doing the statistics of u2
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during a given amount of time t2 − t1. The results are going to
be discussed in the next section and are presented in Fig. 3.

For glasses, the probability distribution over different
energy basins Pg(u2; l) warrants some important remarks:

(i) The system can jump between IS and metabasins, and
u2 can have many or any jumps.

(ii) Such jumps produce huge changes in rj as T → ∞.
(iii) One can only do statistics for u2 during the lifetime on

each basin [τ (l)], where l labels the basin.
To keep track of changes in rj when a hop to a new basin

occurs, we replace rj by Rj (t), where Rj (t) is the coordinate
of particle j in the new IS at time t . Therefore we have two
distributions, one over a given basin denoted by P (u2; l) and
one over all basins Pg(u2), as stated previously. On both cases,
the critical step is how to decide when the system leaves a
basin. This problem can be tackled if a distance is defined
between ISs [9] at each time step,

δR(t) =
√√√√ 1

N

N∑
j=1

[Rj (t) − Rj (t − �t)]2. (5)

Ideally, one should obtain δR(t) �= 0 only when a change of
IS occurs. However, δR(t) also follows a distribution [9].
Therefore, δR(t) is almost always different from zero. To
solve this problem, a minimal cutoff in δR0 is needed in
order to discriminate between small and big jumps. In the
present case, we used a steepest-descent algorithm to search
for the IS while looking at u2(t). In Fig. 1, we plot u2(t)
against time for different cutoffs (δR0). Notice how the value
of u2(t) is reset to zero once a change in the inherent structure
is detected with a given cutoff, as shown in the figure for
δR0 = 0.45,0.55,0.65,0.75. Clearly, u2(t) never reaches a
plateau if δR0 is very small. Thus, the criterion is to look
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FIG. 1. (Color online) MSD as a function of the computer time
using different cutoffs to separate inherent structures in a glass at
T = 0.5. As explained in the inset, each symbol represents a different
cutoff criteria chosen to distinguish small and big jumps between
ISs. A reset of the MSD occurs whenever a change in the inherent
structure is detected with the given cutoff, since the system hops to
a new basin. In the example, it is impossible for the MSD to reach
a plateau for δR0 < 0.85. This value is similar to the one obtained
using the distance matrix method [18].

for a minimal value of δR0 able to produce plateaus in u2(t).
Then statistics of u2 can be measured for each visited inherent
structure. This is in agreement with the idea of separating the
energy landscape into a hierarchical structure, where some
rearrangements are minimal compared with large but rare
changes. In fact, our criterion is akin to the MB concept
investigated by Heuer and co-workers [16,17,19], where ISs
are grouped into MBs. ISs in the same MB are found by
looking to a distance matrix [18], akin to Eq. (5). For example,
Appignanesi et al. [18] found that the quadratic distance
between MBs is around 0.06 for T = 0.50, close to the value
δR2

0 ≈ (0.85)2 = 0.72 found by us in a similar temperature.
The cutoff δR0 depends on the temperature, and eventually it
is impossible to obtain plateaus, as expected. However, below
Tg we observed that such separation is possible, but it requires
a fine tuning of δR0. Since Eq. (5) is akin to the distance matrix
method, our identification of MBs produces similar results to
those obtained from the identification of the transition and
minima network using disconnectivity graphs [23,24].

In what follows, by different energy basins we will be
referring to those that have a δR > δR0, since they correspond
to different MBs. As a result, all of our averages over IS are
performed over MBs. The distribution of waiting time on MBs
has been well documented [16,17,19], with a mean dominated
by contributions from large waiting times [17]. The possibility
of having a plateau in u2(t) depends on the time scale for
ballistic behavior and the mean waiting time on MBs. In fact,
it is interesting to ask when the time average of u2(t) at a given
short time ς ,

〈u2〉 = 1

ς

∫ ς

0
u2(t)dt, (6)

calculated during many time windows, can be equal to the
average of u2 over IS with a cutoff δR0. In Fig. 2, we compare
the results using Eq. (6) for short times, the average of u2 in
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FIG. 2. (Color online) 〈u2〉 normalized by the average interatomic
distance as a function of the temperature using averages over short
times, and averages of u2 on IS. Inset: the same but using long times
in Eq. (2). Tg is indicated and corresponds to 〈u2〉/a2 ≈ 0.012, which
is close to the Lindemann ratio. Tg was obtained from the radial
distribution function, internal energy, and specific heat [49].
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IS (denoted as 〈u2〉), and for long times. In this simulation,
Tg is shown with an arrow; its value was obtained by looking
at the radial distribution function, the internal energy, and the
specific heat, as explained in Ref. [49]. One can see that the
results from short times and ISs are similar below Tg , while for
long times the behavior is not smooth and nonconvergent, as
expected. After Tg , it is difficult to extract a meaningful 〈u2〉
using the IS criterion. However, two interesting conclusions
are obtained from Fig. 2:

(i) 〈u2〉 and 〈u2〉 are linear in T , indicating harmonic
behavior on each MB [35].

(ii) Tg follows Lindemann’s criterion where
√

〈u2〉 ≈ 0.1a,
and thus it is very difficult to separate the vibrational and
intrabasin dynamics beyond Tg , at least for this soft glass.

In the following section, we will discuss the MSD distribu-
tion on crystals and in a given energy basin.

III. DISTRIBUTION FUNCTION OF THE SQUARED
DISPLACEMENT IN AN ENERGY BASIN

As explained before, here we are interested in the square
displacement u2 and its distribution function P (u2; l) for
crystals and glasses in a basin l. Assuming a harmonic
approximation, consider a network of N point particles with
mass m = 1 and connected by springs in a space of dimension
D. The potential part of the Hamiltonian in the harmonic
approach is

E = 1

2

∑
ij

kij [(ui − uj ) · n̂ij ]2, (7)

where uj and ui are the particles’ displacement, n̂ij is the
unitarian vector between such elements, and kij is the second-
order derivative of the harmonic potential. It is convenient
to express Eq. (7) in matrix form, defining the set of
displacements u1, . . . ,uj as a DN dimensional vector U .
Equation (7) can be written in the form

E = 1
2U

TMU , (8)

where M is the corresponding DN × DN dynamical matrix
[50] whose elements are Mij = δij

∑
l kil n̂il ⊗ n̂il − kij n̂ij ⊗

n̂ij . As is well known, we can apply a linear transformation,
U = AQ, to diagonalize [51] Eq. (8),

E = 1

2
QTOQ = 1

2

DN∑
j=1

ω2
jQ

2
j . (9)

In this expression, O = ATMA, a DN × DN matrix, con-
tains the square normal frequencies ω2

1, . . . ,ω2
DN and the vector

Q contains the set of normal mode coordinates Q1, . . . ,QDN .
We can obtain the square displacement per particle as

u2 = 1

N
UTU = 1

N
QTATAQ = 1

N
QTQ = Q2. (10)

Behind this result there is a clear mathematical fact: u2 is the
norm of a DN -sized vector in configurational space and is an
invariant under rotations, as is the one induced by the linear
transformation A.

In this way, P (u2; l) is the distribution function of the sum of
DN square random variables. This problem has a long history

and still is a subject of research by mathematicians [52–56].
However, their resulting expressions are quite complicated
and without a clear physical context; here we want to find an
expression for P (u2; l) with a physical background. For the
particular case of an Einstein solid, the result is simple, since
all normal modes are at the same frequency ω0, and,

PEC(u2) = [N ]DN/2

(DN/2)σDN/2
1

[u2]DN/2−1e
−N u2

2σ2
1 (11)

with σ 2
1 = kBT /ω2

0, and mean and variance given by

〈u2〉EC = DkBT

ω2
0

and (12)

�2
EC = 2D (kBT )2

Nω4
0

, (13)

respectively.
In a general case, we will calculate P (u2; l) from the

distribution of displacements of the normal modes P (Q2; l),
since from Eq. (10), u2 = Q2, P (u2; l) = P (Q2; l).

Under the assumption of being in a metastable or stable
state, according to the Gibbs distribution [57] and Eq. (9), the
distribution function of P (Qj ) is a Gaussian,

P (Qj ) = 1√
2πσj

e−Q2
j /2σ 2

j , (14)

where σ 2
j = kBT /ω2

j . Equation (14) is very important because
it gives the distribution function P (Q2

j ), due to the fact that
P (Q2

j )dQ2
j = P (Qj )dQj . It is better to define a variable

Yj ≡ Q2
j /N , write u2 as u2 = ∑DN

j=1 Yj , and P (Yj ) as

P (Yj ) = 1√
2πσ̃j

√
Yj

e−Yj /2σ̃j
2
, Yj ∈ [0,∞) , (15)

where σ̃j
2 = σ 2

j /N .

With all the previous elements, P (u2; l) is in essence the
distribution function of the sum of DN random variables Yj ,
with median σ̃j

2 and variance 2σ̃j
4 [54]. Therefore,

P (u2; l) =
∫ ∞

0
· · ·

∫ ∞

0
δ

⎛⎝u2 −
DN∑
j=1

Yj

⎞⎠ P (Y1) · · ·P (YDN )

× dY1 · · · dYDN . (16)

In this preceding equation, δ(u2 − ∑DN
j=1 Yj ) is a constriction

and P (Yj ) refers to the expression (15). We can use an integral
representation of the Dirac δ expression in order to rewrite the
constriction,

δ

⎛⎝u2 −
DN∑
j=1

Yj

⎞⎠ = 1

2π

∫ ∞

−∞
e−iK(u2−∑DN

j=1 Yj )dK.

Inserting this expression and the relation (15) in Eq. (16), we
have

P (u2; l) = 1

2π

∫ ∞

−∞
e−iKu2

DN∏
j=1

�j (K) dK , (17)

where �j (K) is a j th generating function, corresponding to
the Yj random variable. Actually, Eq. (17) is a convolution of
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DN functions �j , or more explicitly, P (u2; l) = (�1 ∗ . . . ∗
�DN )(u2).

The expression for �j (K) is

�j (K) = 1√
2πσ̃j

∫ ∞

0

e−Yj [(2σ̃j )−1−iK]√
Yj

dYj = 1

[1−iK2σ̃j ]1/2
.

(18)

We expand at second order in K the j th generating function
[1 − iK2σ̃j ]−1/2 ≈ 1 + iKσ̃j

2 − 3
2K2σ̃j

4. In this way, we

perform the product
∏DN

j=1[1 − iK2σ̃j ]−1/2 until K2. Such an
approach works better when there is a huge number of DN

degrees of freedom, therefore

DN∏
j=1

[1 − iK2σ̃j ]−1/2 ≈ 1

[1 − iKσ 2
l /N]N

, (19)

where σ 2
l = ∑DN

j=1 σ̃j
2 ≈ DkBT

∫ ωcut

0 ρl(ω)/ω2dω ≡ DkB

T 〈ω−2〉l and ρl(ω) is the vibrational density of states in the
corresponding energy basin l. Using Eq. (19), we perform the
integral (17) and the resulting probability density for u2 is

P (u2; l) ≈ [N ]N

(N )σN
l

[u2]N−1e
−N u2

σ2
l . (20)

The distribution given by (20) is a Gamma function [54]
with mean 〈u2〉l [35,36,49] and variance �2

l given by the
expressions

〈u2〉l ≈ DkBT

∫ ωcut

0

ρl(ω)

ω2
dω ≡ DkBT 〈ω−2〉l and (21)

�2
l ≈ (DkBT )2

N

[∫ ωcut

0

ρl(ω)

ω2
dω

]2

= 〈u2〉2
l

N
. (22)

The predictions contained in Eqs. (21) and (22) are going to
be tested against the simulations once an average over energy
basins is performed, as shown in Fig. 5.

It is important to observe that P (u2; l) in (20) could also
be approximated by a normal distribution N (〈u2〉l ,�2

l ) when
N → ∞ [55]. However, here we decide to express P (u2; l) as
a Gamma distribution since its domain is the positive real axis,
which is not the case for the Gaussian.

Also, it is worthwhile observing that Eqs. (21) and (22)
were derived under the assumption of a long-lived metastable
state which allows us to define the lower limit of the
integral as ω → 0. However, is clear that one cannot go
below a lower cutoff frequency ω∗

l = 2π/τ (l), where τ (l)
is the lifetime of the system in the metastable feature l.
Thus,

〈u2〉l ≈ DkBT

∫ ωcut

2π/τ (l)

ρl(ω)

ω2
dω. (23)

Now let us analyze the deep physical meanings of Eqs. (21)
and (22). First, the linear scaling of 〈u2〉l with T predicted in
Eq. (21) is consistent with the computer simulation (see Fig. 2)
and has also been reported in other simulations of glasses and
crystals [35,36,49] and in experimental data for strong and
fragile glasses [58–60].
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FIG. 3. (Color online) Distribution function Pc(u2) in a fcc
monocomponent crystal made of A atoms at T = 0.510. The
continuous green line refers to the fitting using Eq. (20), and the
fuchsia points refer to the crystal molecular dynamics simulations
with 〈u2〉c ≈ 1.40 × 10−2 and σ 2

c ≈ 8.69 × 10−8 at T = 0.510.

Second, the mean of the MSD is given by the second
inverse moment 〈ω−2〉l of the density of states. In Eq. (21) it
means that low-frequency modes are essential to the stability
of the system. In crystals at T < Tm, when the quantity
〈ω−2〉c is analyzed, one obtains an important criterion for the
stability [61]. For D = 1 or 2, 〈ω−2〉c → ∞ when ω → 0.
As a consequence, 〈u2〉c → ∞ as well as σ 2

c → ∞. For
D = 3, ρc(ω) ∼ ω2 and 〈ω−2〉c = const. Thus, 〈u2〉c ∼ T and
σ 2

c ∼ T 2 and three-dimensional crystals turn out to be stable
against thermal fluctuations. Figure 3 shows a comparison
between Pc(u2), Eq. (20), and the results from the molecular
dynamics simulation in a fcc monocomponent crystal made of
A atoms at T = 0.510 < Tm. The agreement between both is
very good.

Equations (20)–(22) can be applied to glasses in a range
of temperatures in which the harmonic approach works. The
boson [2,62] or floppy mode peak on glasses leads to a
distribution function Pg(u2; l) that differs from that of the
crystals in the following ways:

(i) The average of the MSD is shifted to higher values since
ρl(ω)/ω2 has a peak at low frequencies.

(ii) The width of the distribution is increased by the same
phenomena.

From the previous analysis, is clear that the common picture
of viewing the crystalline state as if it is just a global minimum
of φ needs to be refined by observing that the local topology of
the crystalline minimum and glasses is different, in the sense
that the average curvature of the basin is reduced in the former.
As a result, there is a higher probability of big displacements.

Finally, Eqs. (21) and (22) depend on the particular MB.
This problem can be solved by averaging under ISs, i.e.,
we define Pg(u2), where u2 is taken from a representative
sample of ISs, chosen using a good cutoff criterion. By
representative we mean that the mean and variance of the
distribution are convergent. Since we are summing random
stochastic variables with different distributions at each basin,
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FIG. 4. (Color online) Distribution functions Pg(u2) for a binary glass 80:20 at different temperatures. The continuous red line refers to the
fitting using the theoretical approach, Eq. (24), and the blue triangles refer to the binary glass molecular dynamics simulations. The heating
rate was γ = 0.005. Notice the scale change as the temperature is raised, indicating wider distributions.

we can use the central limit theorem to obtain a Gaussian
distribution,

Pg(u2) = 1√
2πσ 2

g

e
− (u2−〈u2〉g )2

2σ2
g , (24)

with mean and variance given by

〈u2〉g = 1

Nl

∑
l

〈u2〉l = DkBT 〈〈ω−2〉〉, (25)

σ 2
g = 1

Nl

∑
l

�2
l = 〈u2〉2

g

N
, (26)

respectively, where

〈〈ω−2〉〉 = 1

Nl

∑
l

∫ ωcut

2π/τ (l)

ρl(ω)

ω2
dω ≈

∫ ωcut

0

ρ(ω)

ω2
dω. (27)

To test this idea, a MD simulation was performed in order to
obtain the distribution function of u2 in a binary glass 80 : 20
using the procedures described in Sec. II. In Fig. 4, we present
a comparison between the numerical binary glass probability
density distribution Pg(u2) at different temperatures and
Eq. (24). One can observe that the mean of each distribution
is displaced as the temperature is raised, and at the same time
the distributions become wider. The key to a more quantitative
comparison of the obtained distributions and the simulations is
to show that the mean and variance of Pg(u2) are really given
by Eqs. (25) and (26). To test this, in Fig. 5 we present the mean
of Pg(u2) compared to 3kBT 〈〈ω−2〉〉, which was obtained from

ρ(ω) through the velocity-velocity correlation, as explained in
Ref. [49]. Both are linear on T , as predicted, and the slope is
similar, although the line defined by 3kBT 〈〈ω−2〉〉 is steeper.
Such a discrepancy can be due to the presence of nonlinear
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FIG. 5. (Color online) Upper plot: mean of Pg(u2) as a function
of the temperature, compared with 3T 〈〈ω−2〉〉 as obtained from the
density of vibrational states. Lower plot: a comparison of the Pg(u2)
variance against 〈u2〉2

g . The upper plot validates Eq. (25), while the
lower plot validates Eq. (26).
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FIG. 6. (Color online) Normalized distribution function of u2

in a semilog scale. The continuous orange line refers to the
normal distribution N (0,1). The fuchsia points represent the crystal
simulations at T = 0.510, while the solid blue triangles represent
the binary glass MD at the same temperature. The open triangles
correspond to a normalization of the data without considering bigger
u2 than a cutoff defined by the variance.

effects. In Fig. 5, we also plot the variance of Pg(u2) as a
function of 〈u2〉2

g . Again we obtain an almost linear behavior,
indicating that Eqs. (22) and (26) are valid.

Although the agreement is qualitatively correct between
simulations and theory, we observe an asymmetric behavior
when compared with Eq. (24). To visualize the asymmetric
and the tail of Pg(u2), in Fig. 6 we reproduce the same data
of Fig. 4 using a semilog scale, where this behavior is more
evident when compared with a normal distribution N (0,1).
This behavior is basically due to the fact that in some ISs, the
system does not reach the plateau for the given cutoff. Thus,
we can normalize the data by using only those u2 which are
lower than a cutoff defined by the variance, as shown in Fig. 6
with open triangles. The agreement is much better and gives a
further refinement of the cutoff criterion. Also in Fig. 6, we see
the crystal simulation points and their good agreement with the
normal distribution.

We realize that in Eq. (24), σ 2
g ≈ 〈〈ω−2〉〉2 appears in the

denominator of the exponential decay part. Also, we notice that
due to the boson peak, 〈〈ω−2〉〉 > 〈ω−2〉c [35], or in other terms,
σ 2

g > σ 2
c . Then a natural consequence of the boson peak is that

Pc(u2) decays faster than Pg(u2) and therefore the distribution
of square displacements in glasses has a long tail at a bigger
u2. Also, from the simulations we observed that it has a more
asymmetric shape than its crystal counterpart. Other effects
of the boson peak are seen in some statistical properties of

Pg(u2) and Pc(u2). For example, if we had equivalent glassy
and crystalline systems, the mean and variance in the glass
would be bigger than in the crystal, i.e.,

〈u2〉g > 〈u2〉c and (28)

σ 2
g > σ 2

c . (29)

Actually, the relation given by Eq. (28) has already been
explained through MD simulations in glasses and crystals
[35,36]. As a result, in glasses the interbasin dynamics can
have a significant overlap with the time scale of harmonic
vibrations.

IV. CONCLUSIONS

The aim of this paper is to find the distribution function of
the quadratic displacement in crystals and glasses in order to
understand what determines the fluctuations in such a quantity.
We obtained that inside a MB [16,17], the distribution is given
by a Gamma function with a mean that depends linearly on
the temperature and on the inverse second moment of the
density of vibrational states. The width of the distribution is
also dependent on this last quantity. Thus, the boson peak
leads to changes in P (u2; l) when a glass is already formed.
The contribution of the boson peak is evident on the tail of
the distribution function (20). It causes the distribution of
the MSD to decay slower in glasses than in crystals, and it
indicates a different local topology of the energy landscape.
When statistics are measured under ISs, we obtain a Gaussian
in which the width is regulated by the mean inverse second
moment of the density of states. The simulations are only
in good qualitative agreement with such a result because
the cutoff used does not work for all ISs; however, the
analysis of the distribution allows us to further separate the
interdynamics and intradynamics by cutting the tail. Finally,
it would be interesting to compare the MSD for transitions
involving cage-breaking processes with the contributions from
low-barrier rearrangements within a metabasin [23,24]. In
principle, cage breaking involves a mean-square displacement
above a certain threshold [23]. Since glasses have long tails in
the distribution of the MSD, the probability for cage-breaking
events is increased when compared to crystals. These long tails
are a consequence of a reduction in the number of constraints,
in agreement with intuitive ideas concerning cage breaking
and lack of contacts [25,63].
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