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Abstract—The stochastic matrix method is used to describe the statistical processes that take place when a
glass is formed. We stress the physical features of the model and the relevancy of the hypotheses made. The
theory is applied to various types of binary and ternary chalcogenide glasses, and the predictions of the model
are compared with the experimental data. We also reveal the influence of doping on the transition temperature.
The theory is extended to the case of growing a disordered solid on a substrate.

INTRODUCTION

Glasses are common materials in nature and have
been used by mankind since the beginning of times.
However, there is very little theoretical understanding
in this field [1], due to the essential role that disorder
plays in dictating their peculiar physical properties.
One of the basic questions about glasses is the persis-
tence of a disordered structure at low temperatures,
knowing that the thermodynamically stable state is the
crystal. This fact has driven people to conclude that a
glass is in a metastable state that eventually should
transform to another more stable and ordered state [2].
This metastable state could be locked-in by a rapid
quenching, preventing atoms from diffusing into more
stable configurations, or by other steric hindrances aris-
ing from the complicated geometry of nucleated clus-
ters of molecules. However, there are many examples
of materials that prefer the vitreous state regardless of
the process of formation. These are known as good
glass formers and are usually compound materials with
a definite chemical short-range order, such as SiO, or
B,0; [3]. Therefore, at least in these cases, one should
recognize that there is more to the process of formation
of a glass than only thermodynamic equilibrium con-
siderations. The formation of a solid glass from the
melt or the growth of an amorphous solid from a free
surface are processes that take place far from equilib-
rium, and Kinetics becomes very important.

The situation of good glass formers, in which the
short-range chemical order is very robust [4], has been
considered by the authors in previous papers [5, 6]. The
important physical consideration is that there are two
well separated time scales to reach equilibrium in the
cooling melt. The time to form a chemical bond and
reach local equilibrium is very fast, and the time it takes
to equilibrate the whole system is much longer. Under
these conditions, one could assign the Boltzmann fac-
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tors to the process of formation of a bond, that is, to
agglomerate a single atom to the surface of the growing
solid. The other process can be regarded as a Mark-
ovian chain of events, each one having a statistical
probability of occurrence, dictated by some configura-
tional entropy (the number of ways to go from one ini-
tial configuration to a final one), and by some geomet-
rical rules that specify the facility to obtain a given con-
figuration from another one. The full details of this
theory of glass growing through agglomeration are
described elsewhere [5, 6]. However, in this paper, we
will treat the detailed study of some features of chalco-
genide glasses that allows us to compare the predictions
of the theory with some experimental data. After that,
we will consider a hypothetical situation in which one
has a single kind of atom, but the bonding could be dif-
ferent. This extension of the theory could be applicable
to amorphous semiconductors, like silicon or germa-
nium, in which there exist dangling bonds trapped in
the amorphous network. We conclude with some gen-
eral considerations about glass formation and the rele-
vance of this understanding on current issues of interest
in the field.

MARKOV PROCESSES APPLIED
TO CHALCOGENIDE GLASSES

Chalcogenide glasses usually grow from a hot melt
that contains the basic atomic entities which form the
glass. During the cooling process of the melt, these
entities form clusters of different sizes that are the seeds
from which the resulting glass grows as a successive
agglomeration. This very basic physical observation
can give us lots of information about the formation and
properties of the glass, even though the glass transition
is a very complicated phenomenon. In what follows, we
will show how to use this simple idea in order to
describe the growth of a typical glass in terms of a
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Fig. 1. A typical cluster with four kinds of sites in the sur-
face layer, indicated by the dashed line. Explanations are
given in the text.

Markov process, which is a probabilistic way of
describing the time evolution of the cluster surface.

Let us consider the particular case of vitreous
Ge,Se, _,. This glass is made from a melt that contains
atoms Ge and Se with concentrations cg and c, =1 — ¢y,
respectively (note that, in principle, cg is not equal to
the concentration in the glass (x), although at the end,
one will demand that cg = x). With only two types of
atoms that form covalent bonds, there are three elemen-
tary processes for creation of single bonds Se-Se, Se—
Ge, and Ge—Ge. The bond creation is a rapid process
and can be assumed to reach equilibrium in a very short
time. Therefore, each bond created can be labeled by an
activation energy that we denote by Ej, E,, and Ej,
respectively.

When a new atom (Ge or Se) comes close to the
cluster, it can be attached to one of the unsaturated
bonds that are at the cluster surface. Since the coordi-
nation of Ge is four and that of Se is two, the new atom
may encounter four kinds of environment sites corre-
sponding to particular configurations of unsaturated
bonds (these sites being explicitly shown in Fig. 1).
Since any atom at the surface is necessarily in one of
these configurations, a vector with four components is
enough to define the composition of the surface if each
component is the probability of finding a given config-
uration on it. The growth process can be described with
a linear transformation, that is, by a matrix operator that
gives the statistical result of agglomerating atoms at the
surface. Here, it will be assumed that there are no two-
or three-membered rings; i.e., the growth is dendritic.
This assumption allows one to simplify the size of the
matrix to 4 x 4, and it is only valid in the case of low
concentration x < 1. This matrix has to be stochastic
(all elements in a column add up to one) if one wants to
describe the evolution of probabilities.
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Each kind of site has a certain frequency of occur-
rence (denoted by s; y, z, ) at the surface of the cluster.
For example, a free bond that belongs to a Se has a fre-
quency s in the rim, while a Ge atom with only one free
bond has a frequency y. Thus, the distribution of each
kind of unsaturated bonds at any stage of the growing
process can be represented by the vector (s, y, z, 1), with
its trace normalized toone: s + y + z+ ¢ = L.

The new Ge or Se atom has a certain probability to
stick to each of the free bonds on the surface. Once this
atom sticks, a new site on the surface is created and the
surface changes. For example, if a Ge or Se atom is
added at a site s, the transformation is as follows:

—EKT
5+ 88— 57 P(5, 8) =2cp28

5 (1)

s+Ge—t: P(s,t)~ 4638_52/“, (2

where the probabilities of each sticking process [repre-
sented by P(s, s), P(s, £)] are given by two factors: one
is the purely configurational entropy factor [the number
of ways of joining the 4 (2) valences of Ge (Se) in each
kind of site], and the other-s the Boltzmann factor
which takes into account the corresponding energy bar-
rier to form a bond. Similar expressions can be found
when the Ge and Se atoms are added to each of the
other sites, that is,

~E KT

; 3)

y+Se —= st P(y,5)~2c,e

y+Ge—s t: P(y, 1) ~dcge ", @)

7+ Se —» s, y: P(z,5) = P(z,y)~ ZCAc_El/kT, (5)

2+ Ge—nt,y: P(z,1) = P(z, 1) ~dege >, (6)

t+Se —= 5,2 P(t,5) = P(t,2) ~2cae 20, (7)
~EL kT

t+Ge—»1,2: P(1,1) = P(t,2) ~dcye (8)

Note that, for some sites, there are two possible
paths with different probabilities [for example, for cre-
ating one z site, there are two ways: (1) stick a Seon a
t site or (2) stick a Ge on a ¢ site]. In these cases, the
total probability for creating a site is the sum of the
probabilities of each path.

This process can be written as a matrix whose ele-
ments represent the probabilities P(i, j) of transforming
a site [ into a site j, because the total probability for all
atoms to stick to a certain site is the sticking probability
of the process multiplied by the frequency of occur-
rence in the surface of that kind of site. Inserting all the
contributions, the explicit matrix is written as
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—EJKT —EJKT _E, /KT E /KT
A cae 2che
“EJIKT “EJJKT
M = 0 0 2cpe +4dcge 0 : ©)
_EJkT _EJKT
0 0 0 2che ~  +4cge ’
—EJIKT “EJKT EJAT —EJ/KT
dege ®  doge dcge Acye

Since this matrix acts on a vector that represents the
probabilities of finding cach class of site and, as stated
previously, should be normalized, the sum of the ele-

&

Ca

ments in each column must be unity, sO the vector
obtained after applying the matrix is also normalized.
After normalizing each column of the matrix, one gets

(CA+2C13§) (cAk +2c5M) 2(cal + 2cpl) 2(ca& +2cplh)

M 0 0
0 0
2¢€ 2eplh

cab cab

1/2 0 (10)
0 172

2eplh 2cplh

(ca +2¢5E) (cab +2cpH) 2(cab +2cpl) 2(caE +2cpl)

where & = exp((E, — Ep/kT) and p = exp((E| — E)/KT).

The growth of clusters is modeled by a successive
application of the matrix on an arbitrary initial vector
(v,), which could be written as a linear combination of
the four eigenvectors of this matrix. After applying the
matrix j times, the final configuration of the rim is given
by

o ] J i J
v, = ahe + aMe, + azhie; + azhies,

(1D

where e; are the eigenvectors of M corresponding to the
eigenvalue A;, and a; are the projections of v, onto the
eigenvectors.

A matrix of this sort has at least one eigenvalue (in
general, complex) with modulus equal to unity, while
a1l the others have their moduli less than unity. This
means that only the eigenvectors € with eigenvalue
such that |A;| = 1 remain after successive applications of
the stochastic matrix. If we suppose that M has only one
such eigenvector (call it ;). Then, in the limit of j — oo,
v; converges to precisely that eigenvector, since a; must
be unity due to conservation of probability. Thus, the
rim attains a stable statistical regime after enough suc-
cessive steps of growing. This regime is governed
solely by the statistics of the eigenvector with eigen-
value one. Note that before the growing process attains
the stable regime, there are fluctuations in the first gen-
crations due to the eigenvalues different from unity,
which are in general complex numbers.
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The form of the eigenvector one is obtained by solv-
ing the system of equations given by

(M-1)e, =0, (12)
which for the present case yields the following vector:
1
= — 4
e = 17 +7A(4B, A, 24, 4A), (13)
where
2c38
A= ——— 14
cp+2c8 (14
and
B st (15)
T cab+2cph

Once the asymptotic regime is attained, the concen-
tration of Se atoms in the rim is given by the statistics
of the only eigenvector that remains. If (S.s Yoo Zoo foa) 18
the eigenvector which corresponds to eigenvalue one,
then the proportion of Se atoms in the stable regimen is
given by the proportion of new Se atoms on the surface
of the cluster

1—x = 4B/(4B +7A). (16)

The concentration obtained from equation (16)isa
function of the concentration in the melt (¢p)- However,
since the glass is growing at the expense of the sur-
rounding medium, we can impose a condition of self-
consistency, x = cp, since the compositions of the melt
and the glass are the same after the glass transition. If
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one puts cg = x in the right-hand side of equation (16),
three solutions are obtained, thatis, x =0, x =1, and the
following equation for the concentration:

__1-2t

T 148 +4w
which gives a relation between the glass transition tem-
perature, the concentration and the difference of ener-
gies for forming the bonds, as we will discuss in the
next section.

x (I

PHYSICAL IMPLICATIONS FOR
CHALCOGENIDE GLASSES

Equation (17) contains two free parameters, which
are the differences in energies between the three kinds
of bonds. But we can use the fact that bonds Ge-Ge are
not observed in this glass [7, 8]. Thus, we may set iU =
0, since the energetic cost for this bond is too high, and,
thus, the only remaining parameter to fix is &. This
parameter is fixed by observing that in the limit x —»
0, the glass transition temperature of pure selenium is

T, =315 K [8]. By making x = 0 in equation (17),

we get

E,-E, = kT, In(1/2) = 0.02 eV. (18)

which gives the corresponding energy difference
between different kind of bonds. Using this for small x,
equation (17) can be written as
Ty
T, — &0 !
B BBl -2
where (r) = 4x + 2(1 - x) is the average coordination
number, and 3 = (1/2In2) = 0.72.

Equation (19) is turns out to be the well-known
modified Gibbs-Di Marzio equation, which is an
empirical law that has been very successful for obtain-
ing T, in chalcogenide glasses [9]. Furthermore, the
method presented here allows one to obtain theoreti-

19)

Parameter { for various glasses

spien | e | oo [ Sliton | e
Ge—(Se) 0.72 | 0.72 0.988 From [5]
Ge—(S) 0.72 | 0.73 0.998 From [5]
Si—(Se) 0.72 | 0.81 0.997 From [5]
Ge-Sb—(Se) 0.56 | 0.66 0.972 [10]
Ga-Ge—(Se) 0.56 | 0.55 0.965 [15]
Ga-Ge—(S) 0.56 | 0.59 0.823 [16]
Al-P-(Se) 032 0.21 0.952 [17]
Ge-Sb-Te—(Se) 0.56 | 0.55 0.998 [10]
Si-As-Ge—(Te) 0.31] 0.30 0.979 [18]
Ge-Sb-As-Te—(Se)| 0.45 | 0.55 [10]
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cally the constant § = 0.72, which is very close to the
observed one in experiments 3 = 0.73 [10].

Note that the origin of this constant is purely topo-
logical; i.e., it, depends only on the logarithm of the
ratio between valences, as was first proposed by Kerner
and Micoulaut [5]. This explain why the value of B is
similar to that for other glasses with similar coordina-
tion numbers, like Ge,S,_, (B = 0.73) [l1] and
Ge,As,Se; _,_, (3=0.73) [10]. In this ternary glass, the
As atoms enter with an effective coordination of four,
since they occur in pairs connected by a selenium bond
[12]; thus, it should behave as our example for a binary
chalcogenide glass. This way for obtaining B is also
valid for other binary glasses with different coordina-
tion number ratios [13].

For multicomponent glasses, we can obtain the
value of B by using the values observed in the corre-
sponding binary systems. For example, if we have a
glass of the type A,B,C.D, _,_,_. with coordinations
my, my, Mg, and 2, respectively, where D is the chalco-
genide element, the derivative of (r) = max + myy +
mez + 2(1 = x =y —z) with respect to T, is

d{r) _ dx a7 Y
dTg = (my 2)dTg+(”lB —)qu
q ‘ (20)
z
+(I’)1C—2)a'—",rg.

The binary glasses A\D, _,, B,D,_,, and C.D, __ fol-
low the modified Gibbs—Di Marzio equation with con-
stants By, B, and B5, respectively. Then, if equation (20)
is evaluated at x = 0, we obtain

1B = 1B+ L/By + LB, 1)

where [ is the constant of the multicomponent system.
Clearly, this procedure can be applied to systems with
an arbitrary number of chemical component n. Thus,
the value of the constant follows a law that reminds the
sum rule of resistances in a parallel circuit. Some
glasses that obey this rules are listed in the table (repro-
duced from [14]).

It is worth emphasizing what this simple theory is
able to predict with very little effort. We have derived
an extremely important empirical relation used m glass
research. This result was obtained basically with the
assumption that chemical bonding and order are the
main restrictions when agglomerating atoms from the
melt.

A SIMPLE MODEL FOR DIFFUSIVE EPITAXY

There are cases when these facilitating physical
considerations are not present. One important case is
when one obtains an amorphous film grown on a sub-
strate by some chemical deposition method. It is true
that the final composition of the solid depends not only
on the concentrations of the chemicals in the vapor, but
also on the substrate properties and temperature. For
Vol. 26

No. 4 2000



MODELS OF DISORDER

instance, when growing an amorphous silicon film, the
porosity of the material depends crucially on the sub-
strate temperature, and the number and size of internal
voids can be modified by subsequent thermal anneal-
ing. On the contrary, amorphous Ge films cannot be
thermally annealed, but the porosity can be reduced if
some bombardment with neutral atoms is combined
during the growing process [19].

In this case, there is only one sort of atom, and usu-
ally the substrate imposes some lattice mismatch
restrictions on the configurations of the adatoms. The
important feature that distinguishes between the Si, and
Ge cases should be the strength of the directional cova-
lent bonding, and the mobility of the adatoms on the
surface. This lead us to conclude that a good model for
this kind of process should be an extension of our the-
ory to the bond binary alloy. One may suggest that an
atom can stick to the surface in two different ways:
either it is bonded strongly and becomes a part of the
solid, or it binds itself in a weak way such that, in a
short time, it could become an adatom by increasing the
strength of the bond, or diffuse away to another place,
or even be evaporated from the surface. The case of Si
or Ge is difficult to model, since the formation of rings
should be very important. A simple model to illustrate
this extension of the theory is to consider a one-dimen-
sional solid growing in one direction. There is a strong
bond with energy £, that defines a Boltzmann factor
o = exp(-E/kT), and a weak bond with energy £, and
Boltzmann factor B = exp(=E,/kT). If a strong bond is
formed, it remains unchanged and eventually forms a
perfect solid. Now, if a weak bond attaches, three situ-
ations could arise before coming to local equilibrium:
(1) it could be evaporated with rate /P, since one has to
break a bond of strength f3; (ii) it could be transformed
into a strong bond with rate vo/f, since one needs an
extra energy factor of o/f}; and (iii) it could remain
unchanged with rate w. The factors u, v, and w should
depend on the mobility of the atoms, i.e., the diffusion
coefficient and the initial kinetic energy with which
they strike the surface. In this simple model, nothing
else can happen; thus, one has that

ul/B+va/fp+w = 1. 22)

The possible transformation rules are illustrated in
Fig. 2. Notice that one has to consider an intermediate
step to take into account the possible rapid changes of
the weak bonds due to diffusion. The final stochastic
matrix of the model is

u+wp 0 wp 0
1
M=+ VO+o u vo+o 0 @3
d 0 wp u w
0 vo+a 0 VO + O+ u
GLASS PHYSICS AND CHEMISTRY  Vol. 26 No. 4
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Fig. 2. Diagram showing all the possible transformations in

the model.
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Fig. 3. Temperature dependence of the components of the
cigenvector with eigenvalue onc for the simple linear chain
model, with reasonable values of the parameters £y — £, =
0.01 and u = 0: (a) bond conversion ratec v=0.1 and (b) v=
1. Observe that for the first case P3 diminishes quadrati-
cally, while for the second case, it grows almost lincarly.
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where the normalization factor is d = u + wp + a(v +
1). This matrix has a single eigenvalue one with eigen-
vector

e, = (L% % x)/(1+7)% (24)

where x = (v + 1)o/wf. Note that this eigenvector does
not depend on evaporation rate u, since this term puts
the system in the initial state regardless of the configu-
ration and only appears in the diagonal term. Its influ-
ence is indirect only in the normalization condition of
equation (22). From this solution, one can extract infor-
mation about the number of defects (weak bonds) left
in the structure as a function of the temperature and the
diffusion parameters contained in the parameter . It is
not worth trying to fit these parameters to a real case,
because the model is exceedingly simple. This problem
was solved only to illustrate a different kind of situation
in the field of disordered solids. Nevertheless, one can
see that the main physics is already in the model. In
Fig. 3, we have plotted the components of the limit
eigenvector in equation (24) for two different values of
the “mobility” v with u = 0 and for a fixed value of a/p.
Note that, at normal substrate temperatures, the depen-
dence of the number of defects, or “porosity,” could be
almost linear or quadratic, and the porosity could
change appreciably or not. These two behaviors are
documented experimentally for Si and Ge [19]. Cer-
tainly, a more sophisticated model is needed for a quan-
litative comparison with experimental data.

CONCLUSION

The stochastic matrix method for studying a cova-
lent network glass has been applied to the case of chal-
cogenide multicomponent glasses. The model turns out
to be extremely simple but allows one to get important
information about the glass forming processes. The
analytical relationship between relevant physical
parameters of the glass was found. For the a-Ge-Se
system, the corresponding relation is similar to the
Gibbs-Di Marzio law in the limit of small x. The
method has been applied to model other systems like
vitreous B,05 and quasicrystals. In this paper, we have
exposed a simple extension of the model to consider
totally different situations when growing disordered
solids. Future work is neceded to investigate the wealth
of theoretical knowledge that can be extracted with this
method.
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