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Abstract-The stochastic ¡natrix methocl is used to describe the statistical processes that take place when a

gl;;t i; fbrmecl. We srress the physical feature_s of the model and the relevancy of the hypotheses.made. Tlie

it1"ory ir appliecl to various typ.sbf binary and.temary chalcog_enide glasses, and the predictions olthe rnodel

"." 
.ó,r1poié,1 with the experimental data. We also reveal the influence of doping on the transition tenlperature.

The theóry is extenclecl to'the case of growing a disordered solid on a substrate.

INTRODUCTION

Glasses are common materials in nature and have

been used by mankind since the beginning of times.
However, there is very little theoretical understanding
in this fieid [1], due to the essential role that disorder
plays in dictating their peculiar physical propefiies.
Óné of the basic questions about glasses is the persis-
tence of a disordered structure at low temperatures,
knowing that the thermodynamically stable state is the
crystal. This f'act has driven people to conclude that a

gláss is in a metastable state that eventualy should
iransform to another more stable and ordered state [2]'
This metastable state couid be locked-in by a rapid
quenching, preventing atoms from diffusing into more
stable configurations, or by other steric hindrances aris-
ing fiom the complicated geometry of nucleated clus-
teis of molecules. However, there are many examples
of materials tlrat prefer the vitreous state regardless of
tlre process of formation. These are know¡r as good
glas.s fonners and are usually compound materials with
á deflnite chernical short-range order, such as SiO2 or
BzO3 [3]. Therefore, at least in these cases, olle should
recognize that there is more to the process of formation
of a glass than only themodynamic equilibrium con-
siderátions. The formation of a solid glass from the

melt or the growth of an amorphous solid from a free
surface are processes that take place far from equilib-
rium, and kinetics becomes very important.

The situation of good glass fbnners, in which the
short-range chemical order is very robust [4], has been
considered by the authors in previous papers [5, 6]. The
important physical consideration is that there are two
well separated time scales to reach equilibrium in the
cooling melt. The time to form a chemical bond and
reach local equilibrium is very fast, and the time it takes

tcl equilibrate the whole system is much longer. Under
thesé conditions, one could assign the Boltzmann fac-

tors to the process of formatiort of a bond, that is, to
agglomerate a single atom to the surface of the growing
solid. The other process can be regarded as a Mark-
ovian chain of events, each one having a statistical
probability of occurrence, dictated by some configura-
tional entropy (the number of ways to go from one ini-
tial configuration to a final one), and by some geomet-
rical rules that specify the facility to obtain a given con-
figuration from another one. The full details of this
theory of glass growing through agglomeration are

described elsewhere [5, 6]. However, in this paper, we
wili treat the detailed study of some features of chalco-
genide glasses that allows us to colnpare the predictions
of the theory with some experitnental data. After that,
we will consider a hypothetical situation in which one

has a single kind of atom, but the bonding could be dif-
t-erent. This extension of tire theory could be applicable
to amorphous semiconductors, like silicon or germa-
niurn, in which there exist dangiing bonds trapped in
the amorphous network. We conclude with some gen-

eral considerations about glass formation atld the rele-
vance of this understanding on current issues of interest
in the field.

MARKOV PROCESSES APPLIED
TO CHALCOGENIDE GLASSES

Chalcogenide glasses usually grow from a hot rnelt
that contains the basic atomic entities which form the

glass. During the cooling process of the melt, these

entities form clusters of different sizes that are the seeds

from which the resulting glass grows as a successive
agglomeration. This very basic physical observation
can give us lots of information about the formation and
properties of the glass, even though the glass ttansition
is a very complicated phenomenon. In what foilows, we
will show how to use this simple idea in order to
describe the growth of a typical glass in terms of a
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Fig. 1. A typical cluster with four kinds of sites in the sur-

faie layer,- indicated by the dashed line. Explanations are

given in the text.

Markov process, which is a probabilistic way of
clescribing the time evolution of the cluster surface.

Let us consider the particular case of vitreous
Ge"Se, -.r. This glass is made from a melt that contains

atoms Ge and Se with concentrations cB and c4 = I - cs,

respectively (note that, in principle, cs is not equal to

the concentration in the glass (x), although at the end,

one will demand that cs = r). With oniy two types of
atoms that form covalent bonds, there are three elemen-
tary processes for creation of single bonds Se-Se, Se-
Ge, and Ge-Ge. The bond creation is a rapid process

and can be assumed to reach equilibrium in a very short

time. Therefore, each bond created can be labeled by an

activation enetgy that we denote by E', E2, and Ev
rcspectively.

When a new atom (Ge or Se) comes close to the
cluster, it can bc attached to one of the unsaturated
bonds that are at the cluster surface. Since the coordi-
nation of Ge is four and that of Se is two, the new atom

may encounter fbur kinds of environment sites core-
sponding to particular configurations of unsaturated

bonds (these sites being explicitly shown in Fig. 1).

Since any atom at the surface is necessarily in one of
these configurations, ¿l vector with four components is
enougir to define the compositlon of the surface if each

component is thc probability of finding a given config-
uration on it. The growth process can be described with
a linear transfbrmation, that is, by a matrix operator that
gives the statistical result of agglomerating atoms at the

surf'ace. Here. it will be assumed that there are no two-
or three-rncmbered rings; i.e., the growth is dendritic.
This assumption allows one to simplify the size of the

matrix to 4 x 4, and it is only valid in the case of low
concentration x ( l. This matrix has to be stochastic
(¿rll elements in a column add up to one) if one wants to

describe the evolutiotl of probabilities.

NAUMIS

Each kind of site has a certain frequency of occur-
rence (denoted by s; y, z, t) at the surface of the cluster.
For example, a free bond that belongs to a Se has ¿r fre-
quency s in the rim, while a Ge atclm with only one fiee
bond has a frequency y. Thus, the di.stribution of ench
küd of tutsafurated boncls af any stage of the growing
process can be represented by the vector (s, .y, ¡, r), with
its trace normalized to one: s + y + z * t = l.

The new Ge or Se atom has a certain probability to
stick to each of the free bonds on the suúace. Once this
atom sticks, a new site on the surface is created and the

surf'ace changes. For example, if a Ge or Se atom is
added at a site s, the transformation is as follows:

s * Se * s: P(s, ,¡ -2ron-u"r', (i)

.r + Ge + t: P(s, r) - 4ct"-Ettkt , Q)

where the probabilities of each sticking process [repre-
sented by P(s, s), P(s, r)l are given by two iactors: one
is the purely configurational entropy factor [the number
of ways of joining the 4 (2) valetrces of Ge (Se) in each
kind of sitel, and the otheris the Boltzmann lactor
which takes into account the conesponding cnergy bar-
rier to form a bond. Similar expressions can bc found
wl-ren the Ge and Se atoms are added to ear:h of the
other sites, that is,

y + Se + s: P(y, s) - 2r:n"-E'/kt, (3)

y+Ge+ f: P(y,¡) -4rn"-0"", (1)

I * Se * s, -y: P(2, s) = P(¿, ¡,¡ - 2, nr-u!*' , (5)

¿ + Ge * t, y'. P(2, t) = P(2, t¡ - 4cne-u''k' , (6)

/+se+ s,z: P(t,s) = P(¡, z)-2co¿-E'tk'r, (1 )

I + Ge * t, zi P(t, t) = Plt, z) - 4crrn-E/k't' . (8)

lrlote that, for some sites, there are two posstble
paths with diff'erent probabilities [for example, for cre-
ating one ¿ site, there are two ways: (1) stick a Se on a

/ site or (2) stick a Ge on a I sitel. In these cases, the
total probability for creating a site is the sum of the
probabilities of each path.

This process can be written as a matrix whose ele-
ments represent the probabtlities P(j, j) of transfonning
a site i into a site j, because the total probability for all
atoms to stick to a ceftain site is the sticking probability
of the process multiplied by the frequency of occur-
rence in the surlace of that kind of site. Inserting all the

contributions, the explicit matrix is written as
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SincethismatrixactsonaVectorthatrepresentstlre

o-ü"üiiiii"l of finding each class of site and' as stated

ffiffi;l;,;ño'.,iá rr""normalized, the sum of the ele-

ments in each coiumn must be unity' so the vector

;;i;"J aftei applying the matrix is álso normalized'

Ái;;;;;"lizing éacñ column of the matrix' one gets

?
C¡ LAb

G;Ttffi(c^F utr)

00
00

2ro\ 2roq

ct\
TcE;rÑ

U2

0

2colt

t-c¡r9

rGErrÑ
0

ll2
2cnv

<

(10)
lltl =

G;.r'í) ('^(+ ñ Ñ^t,+Z'uP) 2(.^o\+Zco¡t)

wlrere f,=exp((Er - E)lkT) and p-exp((E' - h)lkT)'

The growth of clusters is modeled by a successive

aoolicatio¡r of the rnatdx on an arbitrary initial vector

iñ,';;i;h .""iJ rt" written as a linear combination of

thefoureigenvectorsofthismatrix.Afterapplyingthe
tr-ltrtt^,t titfi"t, tf-," final configuration of the rim is given

by

Yr = artrler + arXlrer+ asl"jtet + r'*)'roea' (l i)

where e, are tire eigenvectors of M corresponding to the

"ig"nuniu" 
1,,, anJo, are the projections of vo onto the

eigenvectors.

A matrix of this sort has at least one eigenvalue (in

n"n".ot- complex) with moclulus equal-to unity' wh-ile

;[";É;';;ñ;;'' r'oí. their rnoduli less than unitv' rhis

;;;;; i,ot onty the eigenvectors e¡ with eigenvalue

such that l)'¡l= I remaináfter successive applications of

tlie stochasiic matrix. If we suppose that M.has only one

il;ú;;ctor (call it e1)' Tlien, in the limit of i * -'
n, 

"onu!rg", 
to precisely that eigenve.ctor' since cr n-Iust

be unity due to conservation of probability' Thus' the

,i,n uttáin, a stable sratistical regime after enough suc-

;;ttil; steps of growing' Thñ regime is governed

;;üiy;; ;ñe statñtics oi the eigenvector with eigen-

uá1oÉ on". Note that beiore the giowing process attains

iñ"iJi. *gime, there are fluctuations in the first gen-

"iá,i""t 
duJ to the eigenvalues difTerent from unity'

which are in general complex numbers'
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The lonn of the eigenvector orle is obtained by solv-

ing thc system of equations given by

which for the present case yields the following vector:

et = ll+j AGB, 
A,2A.4A), (13)

where
.^ Y
ZL oL

A - "'
c^+ ¿cB\

and

rJ=- c¡ (15)

'EIT'nv
Once the ¿Isymptolic regime is attained' the concen-

ff"ti;;iS; oó*i i" the iim is given by thc siatistics

ottii-t" onry eigenvector that rernains' If ('r-' )-' z-' /-) is

it-r. 
"io"ní".ór 

which corrcsponds to eigcrtvalue one'

ifr.n ,ñ" proportion oi Sc atoms in thc stable regrnlcn ls

ffiñ;?;?op*tion of new Se atoms on the surface

of the cluster

(M-l)er = 0,

l-x = 4Bl(48+"1A).

(14)

(r2)

(16)

The concentration obtained from equation (16) is a

function of the concentration in the melt (cu)' However'

since tne glass is growing.at the expense. of the sur-

;;;;;ils ñ"dio*,-*" tuí itopot" a igndition of self-

consistency, x = cB, since the óompositions of the melt

;;;-;h" gtái, ur" ih" ,o*" after the glass transition' If
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one puts cs = -t in the nght-hand side of equation (i6),
three solutions are obtained, that is, x = 0,,r- = l, and the
following equation for the concentration:

1 a,
* = ¡fi-au, (17)

which grves a relation between the glass transition tem-
perature, the concentration and the difference of ener-
gies for forming the bonds, as we will discuss in the

next section.

PHYSICAL IMPLICATIONS FOR
CHALCOGEMDE GLASSES

Equation (i7) contains two free parameters, which
are th¿ differences in energies between the three kinds
of bonds. But we can use the fact that bonds Ge-Ge are
not observed in this glass [7, 8]. Thus, we may Set p =
0, since the energetic cost fbr this bond is too high, and,

thus, the only remaining parameter to fix is (' This
parameter is fixed by observing that in the limit ,{ 

->0, the glass transition temperature of pure seienium is

Zro = 315 K i8l. By making x = 0 in equation (17),

we get

E,- E, = kZ*uln( Il2) = 0'02 eV' (18)

which gives the corresponding energy difference
between difTerent kind of bonds. Using this for small ¡,
cquution (17) can be writtcn as

7,,
7, = ¡Pffi2' (le)

where (r) = 4x + 2(l - x) is the average coordination
nunber, and B = 0l21nZ) =0.72.

Equation (19) is tuflls out to be the well-known
rnodified Gibbs-Di Marzio equation, which is an

cmpirical law that has been very successful for obtain-
ing 7, in chalcogenide glasses [9]. Furthermore, the

method presented here allows onc to obtain theoreti-

Parameter B for various glasses

System D
Pp

o
Perp

Cor¡elation
coefficient

Refer-
ences

Ge-(Se)

Ge-(S)

Si-(Sc)

Ge-Sb-(Se)

Ga-Gc-(Se)

Ga-Ge-(S)

Al-P-(Se)

Ge-Sb-Te-(Se)

Si*As-Ge-(Te)

Ge-Sb-As-Te-(Se)

0.72

0.12

0.72

0.56

0.56

0.56

U.J¿

0.56

0.31

0.45

0.72

0.73

0.81

0.66

0.55

0.59

0.21

0.55

0.30

0.55

0.988

0.998

0.997

0.912

0.965

0.823

0.952

0.998

0.979

From [5]
From [5]
From [5 |

tl0l
t 151

ll6l
i17l

tl0l
tl 8.1

u0l

NALIMIS

cally the constant I = 0.72, whtch is very close to the
observed one in experiments I = 0.73 [10].

Note that the origin of this constant is purely topcl-
logical; i.c., it, depends only on the logaritlirn of the
ratio between valences, as was first proposed by Kerner
and Micoulaut [5]. Tliis explain why the vaiue of B is
similar to that for other glasses with similar coordina-
tion numbers, like Ge"S,-, (9 = 0.73) [11] and

Ge,AsySel -,-, (P = 0.73) [10]. ln this ternary glass, the

As atoms enter with an effective coordination of four.
since tl-rey occur in pairs connected by a selenium bond

[2]; thus, it should behave as oLlr exampie for a binary
chalcogenide glass. This way for obtaining B is also
valid for other binary glasses with diff'ercnt coordina-
tion numbcr ratios [l3l.

For niulticomponent glasses, we can obtain the
value of B by using the values observed in thc corre-
sponding binary systems. For example, if rve have a

glass of the type ArB),C.Dl -r- \.-: with coordinations
nt¡, tl1s, mg, and 2, respectively, where D is the chalco-
genide element, the derivative of (r) = ffiAx + n\ty +
mcz + 2(l - x - y - z) with respect to Z* is

d(,) 
= (ttt^_- dr dv

d7, " *r+ (/i¡u - '',tt

+ ('. - z)* 
Qo)

ol *

The binary giasses A.p' -,,, BrD' -u and C.D¡ -. fol-
low the modified Gibbs-Di Marzio equation with con-
stants B1,82, and p3, respectively. Then, ifequation (20)

is evaluated at x = 0, we obtain

l/p = 178' + l/$r+ 1/8.,, (21)

where $ is the constant of the multicomponent system.
Clearl¡,, this procedure can bc applied to systems with
an arbitrary number of chenrical component ¡¿. Thus,
the value of thc constant follows a law that reminds the
sum rulc of resistances in a parallel circuit. Some
glasses that obey this rules are listed in the table (repro-
duced frorn [l4]).

It is worth empl"rasizing what this sirnple theory is
able to predict tvith very little ef'fbrt. We have derived
an extremely imporlant empirical relation used ll glass

researci"l. This result was obtained basically with the
assumption that chemical bonding and order are the
main restrictions when agglomerating atoms from the
melt.

A SIMPLE MODEL FOR DII.FUSIVE, EPITAXY

There are cases when these f'aciiitating physical
considerations arc not present. One impoftant case is
when one obtains an amorphous film grown on a sub-
strate by some chemical deposition method. lt is true
that the {inal composition of the solid depends not only
on the concentrations of the chernicals in thc vapor, but
also on the substrate properties and temperature. For

GLASS PFIYSICS AND CIIEN'IISTRY \bl. 26 No. 4 2000
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instance, when growing an amorphous silicon film, the
porosity of the material depends crucially on the sub-
strate temperature, and the number and size of internal
voids can be modilled by subsequent thermal anneal-
ing. On the contrary, amorphous Ge hlms cannot be
thennaliy annealed, but the porosity can be reduced if
some bombardment with neutral atoms is combined
during the growing process [19].

In this case, there is only one sort of atom, and usu-
ally the substrate imposes some lattice mismatch
restrictions on the configurations of the adatoms, The
important f'eature that distinguishes between the Si, and
Ge cases should be the strength of the directional cova-
lent bonding, and the mobility of the adatoms on the
sud'ace. This lead us to conclude that a good model for
this kind of process should be an extension of our the-
ory to the bond binary alloy. One may suggest that an
atom can stick to the surface in two different ways:
either it is bonded strongly and becomes a part of the
solid, or it binds itself in a weak way such that, in a
shoft time, it could become an adatom by increasing the
strength of the bond, or diffuse away to another place,
or even be evaporated from the surface. The case of Si
or Ge is difficult to model, since the formation of rings
should be very important. A sirnple model to illustrate
this extension of the theory is to consider a one-dimen-
sional solid growing in one direction. There is a strong
bond with energy Et that defines a Boltzmann factor
cr = exp(-Er lkT), and a weak bond with energy E7 and
Boltzmann factor p = exp(EzlkT). If a strong bond is
formed, it remains unchanged and eventually forms a
perl'ect solid. Now, if a weak bond attaches, three situ-
ations could arise before coming to local equilibrium:
(i) it could be evaporated with rate ul\, since one has to
break a bond of strength B; (ii) it could be transformed
into a strong bond with rate vctlB, since one needs an
extra energy fictor of o/B; and (iii) it could remain
unchanged with rate w. The factors u, v, and w should
depend on the mobility of the atoms, i.e., the diffusion
coefficient and the initial kinetic energy with which
they strike the surface. In this simple model, nothing
else can happen; thus, one has that

u/$+valp*w = l. 122)

Tlte possible transformation rules are illustrated in
Fig.2. Notice that one iras to consider an intermediate
step to take into account the possible rapid changes of
the weak bonds due to diffusion. The final stochastic
matrix of the model is

tt+w$ 0 ,F 0

vcx, + cx, Lt vcl + cx 0

0rFuw$
0 vc{,+cr 0 vcr+ü,+u

- 

$¡¡6¡9 $e¡d
---- Weak bond

I,'ig. 2. Diagram showing all the possible transfbrmations in
thc model.

0 500 1000
Temperature (K)

I¡ig. 3. Temperature dependence of the components of the
cigcnvcctor with eigenvaluc onc fbr thc simple line¿r chain
model, with reasonable values of the parameters E1- Ii2=
0.01 and a = 0: (a) bond convcrsiou ratc v= 0.1 and (b) v=
l. Obscrve that for the llrst case P3 diminishes quadlati-
cally, whilc for thc second case, it grows aimost. lincarly.

(1) [

(2) [
(J)

(4)

.E o+

5
,ff o.z
oo
6o
3 r.o
o

.9 o.s
l¡oo.
oñ 0.6

Q.4

4.2

.=)l
] 

,,,,

(b)

PI

P3. P2

P4
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where the normalization factor ts d = u + wB + a(v +
1). This matrix has a single eigenvalue one with eigen-
veclor

€r = ( l, X,X,y)¡tql + y¡'. (24)

where 1- (v+ l)orlwp. Note that this eigenvector does
not dcpend on evaporation rate a, since this term pLrts
the system in the initial state regardless of the configu-
ration and only appears in the diagonal term. Its influ-
ence is indirect only in the normalization condition of
equation (22). From this solution, one can extract infor-
mation about the number of defects (weak bonds) left
in the structure as a function of the temperature and the
diffusion parameters contained in the parameter ¡. It is
not worth trying to fit these parameters to a real case,
because the model is exceedingly simple. This problem
was solved only to illustrate a different kind of situatron
rn the lleld of disordered solids. Nevertheless, one catl
see that the main pirysics is aiready in the model. In
Fig. 3, we have plottcd the components of the limit
eigenvector in equation (24) for two different values of'
the "mobility" r¡ with ¡¿ = 0 and for a fixed value of cd[3.
Note that, at normal substrate temperatures, the depen-
dence of the number of defects, or "porosity," couid be
almost linear or quadratic, and the porosity could
change appreciably or not. These two behaviors arc
documented experimentally for Si and Ge [19]. Cer-
tainly, a more sophisticated model is needed for a quan-
titative comparison with experimental data.

CONCLUSION

The stochastic matrix rnethod for studying a cova-
lent network glass has been applied to the case of chal-
cogenide multicomponent glasses. The modei turns out
to be extremely simpie but allows one to get inrportant
information about the glass fonning processes. The
anaiytical relationship between relevant physical
parameters of the glass was found. For the a-Ge-Se
system, the corresponding relation is similar to the
Gibbs-Di Marzio law in the limrt of small ¡. The
method has been applied to model other systents like
vitreous B2Oj and quasicrystals. In this paper, we have
exposed a simple extension of the modcl to consider
totally dillerent situations when growing disordered
solids. Future work is needed to investigate the wealth
of theoretical knowledge that can be extracted with this
method.
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