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Departamento de F́ısica-Qúımica, Instituto de F́ısica,
Universidad Nacional Autónoma de México (UNAM),
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Electron group velocity for graphene under uniform strain is obtained analytically by
using the tight-binding (TB) approximation. Such closed analytical expressions are useful
in order to calculate the electronic, thermal and optical properties of strained graphene.
These results allow to understand the behavior of electrons when graphene is subjected
to strong strain and nonlinear corrections, for which the usual Dirac approach is no
longer valid. Some particular cases of uniaxial and shear strain were analyzed. The
evolution of the electron group velocity indicates a break-up of the trigonal warping
symmetry, which is replaced by a warping consistent with the symmetry of the strained
reciprocal lattice. To do this, analytical expressions for the shape of the first Brillouin
zone (BZ) of the honeycomb strained reciprocal lattice are provided. Finally, the Fermi
velocity becomes strongly anisotropic, i.e., for a strong pure shear strain (20% of the
lattice parameter), the two inequivalent Dirac cones merge and the Fermi velocity is zero
in one of the principal axis of deformation. We found that nonlinear terms are essential
to describe the effects of deformation for electrons near or at the Fermi energy.

Keywords: Graphene; strain; group velocity.
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1. Introduction

Graphene was the first two-dimensional (2D) crystal discovered.1 It has been

broadly studied due to the observed peculiar physical properties.2–5 The electronic

properties are mainly determined by electrons at the Fermi energy.4 For graphene,
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such electrons have momentum near or at the high symmetry points of Brillouin

zone (BZ). This behavior can be modeled by a Dirac Hamiltonian,6 where electrons

behave as massless Dirac fermions with a Fermi velocity vF ≃ 1 × 106 m/s, which

plays the role of the speed of light. In this model, the Fermi velocity is a constant

parameter. However, this is no longer true when graphene has corrugations (curved

space) or is stretched, since these deformations give rise to a space-dependent Fermi

velocity,7 suggesting changes in the electronic conductivity. Furthermore, in the case

of stretching or periodic strain, a band-gap opening is observed.7–12 Such results

open the possibility for doing “strain engineering” in order to tailor the electronic

properties and thus control the electron transport.13–17

Several theoretical approaches have been proposed to study deformations in

graphene.6,18–24 The most common one is a combination of the tight-binding (TB)

Hamiltonian and linear elasticity to derive a Dirac effective equation.6 Under such

approach, pseudomagnetic fields appear, although lattice deformations were not

included in the original derivation.25 In the case of strain, recent works have in-

cluded these considerations starting from different treatments.16,20,25,26 Still, there

are some problems with such approach27 because a common confusion is the as-

sumption that the Dirac cone tips KD in the new deformed lattice coincides with

the strained high symmetry points K and K′.

For example, in the usual pseudomagnetic field approach,28 the case of a uniform

strain is not well reproduced.27 This case turns out to be simple benchmark tool

to test theories of strain on graphene since it can be solved by other means in a

straight forward manner.27 To do so, consider a simple isotropic stretching of the

lattice, which can be written as ǫ = ǫI, where ǫ is the strain tensor, given by a

constant ǫ multiplied by the unitary matrix I. This stretching produces a simple

rescaling of the lattice parameter, i.e., of the distance between carbons atoms. As a

result, the new carbon–carbon distance under isotropic strain is a′ = (I+ ǫ) ·a and

the new hopping parameter up to first-order in strain is t′ = t(1 − βǫ). Therefore,

the new Fermi velocity obtained from the nearest-neighbor TB Hamiltonian is v′F =

3t′a′/2~ ≃ vF (1 − βǫ + ǫ). This result is not reproduced by the usual expansion

around the old Dirac points as used in the pseudomagnetic field approach.28

Due to the utility of the uniform strain as a benchmark tool to test theories

of strained graphene, here we calculate analytically the group velocity surfaces

for such important case. Furthermore, this case can be solved without the usual

perturbative analysis of the Dirac equation. For this goal, the TB approximation

has been used. The Fermi velocities are obtained by looking at the appropriate

points in the reciprocal space. Thus, our results are more general and include the

Dirac theory of strain as a limiting case. Additionally, we found that even for a

realistic value of pure shear strain, a mixed Dirac–Schrödinger behavior can arise,

suggesting that the Dirac theory has to be modified. In fact, this behavior has been

obtained in other cases.7,29

The layout of this paper is the following. In Sec. 2, we describe electron behavior

in graphene under uniform strain. Then, a dispersion relation is obtained using the
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TB approximation. For this relation, we display the surfaces and contour plots for

the particular case of pure shear strain. In Sec. 3, we derive the group velocity

for electrons and analyze the pure uniaxial and pure shear strain cases. Finally, in

Sec. 4, we give our conclusions.

2. Electrons in Strained Graphene

Graphene is formed by a single atomic layer of carbon atoms arranged in a hexago-

nal structure. The structure can be described in terms of two triangular sub-lattices,

A and B, with a basis of two atoms per unit cell. The lattice unit vectors are given

by a1 and a2 and the three nearest-neighbor vectors can be written as δ1, δ2 and

δ3, as shown in Fig. 1(a). Likewise, there are two reciprocal-lattice vectors given by

b1 and b2 and two inequivalent special points at the corners of the graphene BZ,

called high symmetry points K0 and K′
0. All these important points and a scheme

of the unstrained graphene BZ are presented in Fig. 1(b) as an aid to the reader.

For unstrained graphene, the tips of the Dirac cones (or the Dirac points KD) are

located at the K0 and K′
0 points.

In the case of a uniform strain, if the vector r represents the positions of the

carbon atoms in the undeformed graphene, its deformed counterpart is given by

r′ = (I + ǫ) · r, where I is the 2 × 2 identity matrix and ǫ is the uniform strain

tensor. The lattice unit and nearest-neighbor vectors thus are a′i = (I + ǫ) · ai
(i = 1, 2) and δ

′
n = (I+ ǫ) · δn (n = 1, 2, 3), while the reciprocal-lattice vectors are

deformed as b′
i = (I + ǫ)−1 · bi (i = 1, 2). The new high symmetry points in the

corners of the first BZ of the strained reciprocal lattice are obtained by construction

of the Wigner–Seitz primitive cell. From geometrical arguments, it is easy to prove

1

2

3

A B

a1

a2

K0

K 0

KD

(a) (b)

Fig. 1. (Color online) (a) The unstrained graphene lattice and the sublattices A and B. The
associated unitary and first neighbor vectors are also shown. (b) The scheme of the corresponding
first BZ in reciprocal space showing the high symmetry points. The contours correspond to the
energy surface.
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that the new high symmetry points are given by

K = M−1
1 C1 and K′ = M−1

2 C2 , (1)

with

Mi =

(

(b′i)x (b′i)y

(b′1)x + (b′2)x (b′1)y + (b′2)y

)

and

Ci =
1

2

(

‖b′
i‖

‖b′
1 + b′

2‖

)

,

where (b′i)x and (b′i)y are the x- and y-components of the deformed reciprocal vectors

b′
i (i = 1, 2).

To obtain the electronic properties of graphene under uniform strain, we use the

nearest-neighbor TB Hamiltonian27

H = −
∑

r′,n

t′na
†
r′
br′+δ′

n

+H.c. , (2)

where r′ runs over all sites of the deformed honeycomb lattice and the hopping

integral t′n varies due to the modification in the carbon–carbon distances as t′n =

t exp[−β(|δ′
n|/a − 1)],30 with β ≈ 3 and t ≈ 2.7 eV is the hopping energy for

unstrained graphene.6 The operators a
†
r′

and br′+δ′

n

correspond to creating and

annihilating electrons on the A sublattice position r′ and B sublattice position

r′ + δ
′
n, respectively. Now, using the Fourier representation for these operators, the

previous Hamiltonian can be written as27

H = −
∑

k,n

t′ne
−ik·(I+ǫ)·δna

†
k
bk +H.c. , (3)

which finally leads to the closed dispersion relation for graphene under uniform

strain27

E(k) = ±

∥

∥

∥

∥

∥

∑

n

t′ne
−ik·(I+ǫ)·δn

∥

∥

∥

∥

∥

. (4)

For the purposes of this work, it is useful to rewrite Eq. (4) in a more explicit way.

We start by writing the norm in Eq. (4) as

E(k) = ±

(

∑

n

t′ne
−ik·(I+ǫ)·δn

)(

∑

s

t′se
ik·(I+ǫ)·δs

)

. (5)

By splitting the resulting sum into terms with n = s and n 6= s, this leads to

E(k) = ±
√

γ + g(k) , (6)

where

g(k) =

3
∑

n=1

3
∑

s>n

2t′nt
′
s cos[k · (I+ ǫ) · (δn − δs)]
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and

γ =

3
∑

n=1

t′ 2n .

The obtained expression Eq. (6) turns out to be very useful because it allows a

straightforward analytical evaluation of the energy and velocity surfaces, as we will

show in the rest of the paper. Let us start by exploring the strain effects on the

energy dispersion relation. As explained previously, when a uniform strain is applied

the reciprocal lattice is also strained. Thus, the first BZ is modified, i.e., its original

hexagonal form is varied to a polygonal form, as shown for the particular cases of

pure shear strain along the armchair direction: ǫxx = ǫyy = 0, ǫxy = ǫyx = 0.1 [see

red lines Fig. 2(a)] and ǫxy = ǫyx = 0.2 [see red lines Fig. 2(b)]. In the same Fig. 2,

along with the first BZ, we present the contour plot of the energy obtained from

Eq. (6).

Once the first BZ and the energy surfaces are obtained, we need to locate the

Dirac points KD using the condition E(KD) = EF , which corresponds to electrons

at the Fermi level. By applying this condition, the Dirac points are indicated as

pink circles in Fig. 2. The most important conclusion from the figure is that such

points are no longer located at the high symmetry points K and K′ (red circles)

of the corners of the first BZ [Eq. (1)], since they are shifted to the saddle point.

In fact, the separation of the Dirac points from the high symmetry points revealed

Fig. 2. (Color online) Contour plots of the energy for a shear strain given by ǫxx = ǫyy = 0 and
with (a) ǫxy = 0.1 and (b) ǫxy = 0.2. The first BZ of the strained reciprocal lattice is presented
with red lines. The high symmetry points K and K

′ [Eq. (1)] are indicated with red circles. The
pink circles correspond to the position of the Dirac cones KD, where the Fermi energy is located.
Notice how two Dirac cones merges into one in case (b) and do not have the same position as K

and K
′.
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by Fig. 2 has been mostly disregarded in several papers available in the literature,

although it has been reported in some carefully made works.10,12

As deformation increases (up to 20%), the Dirac points merge into the saddle

point and a gap opens, which is consistent with the results in references.7,32 Fur-

thermore, in this critical point, the dispersion relation is linear along one direction

((relativistic Dirac behavior) and quadratic along the other one (nonrelativistic

Schrödinger behavior). Therefore, the Dirac theory needs to be modified.

Summarizing the above, the effects caused in graphene under uniform strain are

the following:

• The Dirac points are shifted from the corners of the strained BZ.

• The Dirac equation is no longer suitable for long strain (≥ 20%), since for partic-

ular cases a Dirac–Schrödinger behavior is observed and furthermore one might

expect significant nonlinear corrections. It follows that the anisotropic Fermi ve-

locity is no longer valid in these regimens. Therefore, we must consider a more

general velocity to understand the electron behavior. This is done through the

calculation of the group velocity, as we will discuss in the following section.

3. Group Velocity

In the literature, the basic properties of electron transport phenomena in a crystal

are described in terms of Bloch waves with wave vectors k.31 Using these waves, we

can build a dispersive wave packet with a certain group velocity. It can be shown

quite generally that the mean electron velocity is given by the group velocity of the

wave packet31

v(k) = ∇kE(k) , (7)

where ∇k is the gradient operator in k-space.

From this equation, the real-space motion of the electron can be described. Here

we are interested in the behavior of electrons in graphene under uniform strain.

Thus, by substituting Eq. (6) into Eq. (7) we obtain

v(k) = ±
1

2E(k)
∇kg(k) . (8)

The components x and y of v(k) are given by

vl(k) = ±

3
∑

n=1

3
∑

s>n

[(1 + ǫll)(δ
l
n − δls) + ǫlm(δmn − δms )]

× t′nt
′
s

sin[k · (I+ ǫ) · (δn − δs)]
√

γ + g(k)
, (9)

where l, m = {x, y} and l 6= m. The group velocity norm is given by v(k) = |v(k)|.

In Fig. 3, we plot the surfaces and contour of the group velocity norm v(k) for

pure graphene. It is important to note that at low energies and in the vicinity of

1550263-6
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Fig. 3. (Color online) (a) Surface and (b) contour plots of the group velocity norm for pure
graphene. Notice the three lobules centered at the high symmetry points, which arise when non-
linear terms are included in the expansion of the energy around these points.

the Dirac points, v(k) is isotropic, coinciding with the Fermi velocity. However,

as we move away from the Dirac point (corresponding to nonlinear corrections to

the Dirac cone) a trigonal warping appears, giving rise to an anisotropic behavior,

corresponding to the lobes seen in Fig. 3. Furthermore, it can be observed that

in the directions where the trigonal warping appear, v(k) increases, while in other

directions it decreases drastically. These results do not appear when the Dirac

theory is used. Therefore, if we want a complete understanding of the behavior

of electrons in the energy bands, nonlinear corrections and directions should be

considered, since strain effects enhance these features, as we discuss below.

We analyze the particular cases of pure uniaxial and pure shear strain along the

armchair direction: ǫxy = ǫyy = 0, ǫxx = 0.1, 0.2 and ǫxx = ǫyy = 0, ǫxy = 0.1, 0.2,

as shown in Figs. 4 and 5, respectively. In Figs. 4 and 5, the contour plots of the

velocity norm v(k) are presented. Over imposed to these contours, we present the

first BZ of the strained reciprocal lattice with red lines. Likewise, the high symmetry

points [Eq. (1)] are indicated with red circles. The pink circles correspond to the

position of the Dirac points KD where the Fermi energy is located. Notice again

how the KD points do not have the same position as the high symmetry points K

and K′. This effect is much more pronounced for shear strain.

On the other hand, the effects caused by the deformation in the velocity surfaces

are the following:

• As seen in Figs. 4 and 5, the Fermi velocity is no longer isotropic. Instead, it

becomes strongly anisotropical. This is seen by inspecting the neighborhoods of

the Dirac points, i.e., the pink dots in Figs. 4 and 5.
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Fig. 4. (Color online) Contour plots of the group velocity for a uniaxial uniform strain given by
ǫxy = ǫyy = 0 and with (a) ǫxx = 0.1 and (b) ǫxx = 0.2. The first BZ of the strained reciprocal
lattice is presented with red lines. The high symmetry points K and K

′ [Eq. (1)] are indicated
with red circles. The pink circles correspond to the position of the Dirac cones KD, where the
Fermi energy is located. Notice how KD do not have the same position as K and K

′.

Fig. 5. (Color online) Contour plots of the group velocity for a shear strain given by ǫxx = 0,
ǫyy = 0 and with (a) ǫxy = 0.1 and (b) ǫxy = 0.2. The first BZ of the strained reciprocal lattice
is presented with red lines. The high symmetry points K and K

′ [Eq. (1)] are indicated with red
circles. The pink circles correspond to the position of the Dirac cones KD, where the Fermi energy
is located. Notice how two Dirac cones merge in case (b) and do not have the same position as K

and K
′. From the contour plot, it is clear that the Fermi velocity is constant (Dirac behavior) in the

principal axis of the shear, while it follows a parabolic (Schrödinger) behavior in the perpendicular
direction.
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• The surfaces do not display the trigonal symmetry anymore, instead they present

the symmetry of the corresponding strained reciprocal lattice.

• For uniaxial strain, the non-linear trigonal warping lobes observed around the

Dirac cones in pure graphene are strongly modified as seen in Fig. 4. The new

lobes follow the symmetry of the strained reciprocal lattice, i.e., the angles be-

tween them are no longer 120◦. This new warping is strongly spatially modulated.

Furthermore, some lobes can even touch the Dirac points as occuring in Fig. 4(b).

Since the warping is associated with nonlinear terms, this shows that nonlinearity

is important in order to describe such cases. As a result, a pure Dirac equation

is no longer valid.

• For shear strain, the results are similar. As seen in Fig. 5(a), the nonlinear trigonal

warping lobes are deformed. In Fig. 5(b), the three lobes merge into two lobules

reflecting the symmetry of the strained reciprocal space.

• When the Dirac cones merge by shear strain as in Fig. 5(b), the group veloc-

ity is zero along one of the principal axis of the deformation. This is just the

consequence of the energy having a parabolic (Schrödinger) behavior with a gap

opening.7 This effect has also been documented when periodic uniaxial strain is

applied,29 as found by using a nonperturbative approach that maps the problem

to a one-dimensional effective chain.29,33 This effective chain has a complex spec-

trum due to its similarity with other quasiperiodic or modulated systems.34–37

4. Conclusions

By deriving a simplified expression for the energy dispersion surface, we obtained

the electron group velocity for graphene under uniform strain using the TB ap-

proximation. Our results indicate that the velocity is strongly anisotropic and that

the trigonal warping is deformed to follow the symmetry of the strained reciprocal

lattice. As strain increases, this warping touches the Dirac points. Thus, we found

that nonlinearity is very important in order to describe electrons in a proper way

near the Fermi energy, since the trigonal warping observed in graphene touches the

Dirac point and gets modulated by the symmetry of the strained reciprocal lattice.

As a result, a Dirac equation kind of approximation is no longer valid for such

cases. In fact, our results suggest the need for a dual Schrödinger–Dirac equation,

in the sense that its character must depend on the direction, as a starting point for

effective equations in shear strain.

Finally, our closed analytical expressions for the electron velocities are use-

ful in order to calculate the electronic, thermal and optical properties of strained

graphene. For example, the electronic conductivity will be modified, leading to a

modulated optical reflectivity, transmittance and a modified Raman response, as

has been documented recently.38 Another interesting question is how the underly-

ing wavefunction frustration present in graphene is modified by strain,39,40 as well

as the multifractal properties of the wavefunctions for doped graphene.41
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