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Abstract
An intuitive explanation of the increase in localization observed near the Dirac point in doped
graphene is presented. To do this, we renormalize the tight binding Hamiltonians in such a
way that the honeycomb lattice maps into a triangular one. Then, we investigate the frustration
effects that emerge in this Hamiltonian. In this doped triangular lattice, the eigenstates have a
bonding and antibonding contribution near the Dirac point, and thus there is a kind of Lifshitz
tail. The increase in frustration is related to an increase in localization, since the number of
frustrated bonds decreases with disorder, while the frustration contribution raises.

(Some figures in this article are in colour only in the electronic version)

Since its discovery [1], graphene has became ipso facto
a viable material for designing nanoelectronic devices
due to its unusual transport properties [2–4]. At room
temperature, graphene has a high electrical [5] and thermal
conductivity [6]. However, the electrical conductivity is
difficult to manipulate by means of an external gate voltage [7,
8], a situation that turns out to be a problem in the construction
of field effect transistors. This is due to the fact that graphene
does not have a gap, i.e. it is a semi-metallic material. An
alternative is to induce localized states by adding non-carbon
atom impurities to the lattice. This method has being proved
theoretically [9, 10] and experimentally [11, 12]. This leads to
the appearance of resonant or localized states around the Dirac
point, with two energies that separates states with different
degrees of localization [9, 13], i.e. the states near the Dirac
point are much more localized that the rest of the states in
the band. It is worthwhile mentioning that such energies are
similar to mobility edges; however, in doped graphene all
states are localized [14–16] except at the Dirac point [17],
in agreement with the usual picture of Anderson localization.
Thus, we will refer to such energies separating states with very
different localization degrees as pseudo-mobility edges.

A recent scaling analysis of the inverse participation
ratio [18] has confirmed the existence of these pseudo-

mobility edges seen by [9]. In [9], we used a variational
method to prove the fundamental role of frustration of the
electronic wave function in such a process. In this paper,
we revisit the problem by evaluating numerically the ideas
behind the proposed scenario, i.e. we map the honeycomb
graphene lattice into a triangular one, just by removing one of
the bipartite sublattices. This process is equivalent to taking
the squared Hamiltonian. Then a frustration effect appears
near the antibonding limit, which corresponds exactly to the
Dirac point. This explains why there is increased localization,
since defects enhance frustration producing a kind of Lifshitz
tail [19]. We consider the phase between neighboring sites
in the underlying triangular lattice, since in the renormalized
graphene lattice there is competition between antibonding
and bonding bonds. Also, the pseudo-mobility edges near the
Dirac point are the simple result of unfolding the mobility
edge that appears at the squared Hamiltonian. The general
background of the renormalized Hamiltonian is included in
the following paragraphs, as well as the results and discussion.

As a model, consider pure graphene with substitutional
non-carbon atoms distributed randomly on the lattice. We
model this system by using a tight binding Hamiltonian
approximation:

H = HC + HI, (1)
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where HC is the usual nearest-neighbor Hamiltonian of pure
graphene. Using the fact that the lattice can be separated into
two interpenetrating triangular sublattices [20], A and B, the
Hamiltonian is given by

HC = −t
∑

i

|Ai〉〈Bi| + |Bi〉〈Ai|, (2)

where t ≈ 2.79 eV is the nearest-neighbor hoping energy,

HI = ε
∑

l

|l〉〈l| (3)

is the Hamiltonian due to impurities (ε is the energy difference
between a carbon atom and a foreign atom) and |l〉 = |Al〉 or
|Bl〉. The impurities are randomly distributed along the lattice
with concentration x.

In the limit ε � t the bands are separated, and we can
suppose that the wave functions on the carbon band do not
have amplitude in the impurity sites and vice versa, although
corrections are easily obtained by using a power series [21]
on t/ε. Impurities are thus considered as holes in the pure
graphene lattice, and the bipartite character is preserved.
This allows us to renormalize the lattice using the squared
Hamiltonian [9], H2. By looking at the eigenvalues E2 of H2,
this method leads us to separate the contributions for a given
energy as [22, 9]

E2
=

∑
i

Zit
2
|ci(E)|

2
+

∑
j6=i

(H2
C)ijcj(E)c

∗
i (E), (4)

where ci(E) is the amplitude of the wave function at site i
for an eigenenergy E. Here, sites i and j are no longer in a
honeycomb lattice; they belong to a triangular lattice which
results from a deletion of one of the bipartite lattices (see
figure 1) . Notice that in (4), Zi is the coordination of site i
in the original lattice with Hamiltonian H. The spectrum of
H2 is basically obtained by folding the spectrum of H around
0. So, the states near the Dirac point, E = 0, become closer to
antibonding states in a triangular lattice, as shown in figure 1
where we plot the density of states (DOS) of the honeycomb
lattice ρ(E) and triangular lattice ρ(E2). It is well known that
such states are frustrated in a triangular lattice. If disorder is
present this can lead to localization, since the wave function
tends to avoid regions of high frustration, producing a kind
of Lifshitz tail [19]. Thus, we can expect interesting effects
since the Dirac point corresponds to the antibonding limit in a
triangular lattice. Now let us examine such a scenario in more
detail.

Equation (4) contains two contributions: one is the
self-energy term, the other is the contribution in energy of
each bond. Clearly, each bond can raise or decrease the energy
depending on the sign of cj(E)c∗i (E). From (4), we define

E2
= C1(E

2)− C2(E
2)+ C3(E

2), (5)

where C1(E2) =
∑

i Zit2|ci(E)|2 is the contribution of the
self-energies, which depends on the Zi of the original lattice.
C2(E2) =

∑
′

j6=i(H
2
C)ij|cj(E)c∗i (E)|, where the prime means

that one considers only those bonds whose product cj(E)c∗i (E)
is negative. This is the antibonding contribution. Finally,
C3(E2) is similar to C2(E2), except that the summation is over

Figure 1. Schematic diagram of the map that transforms a
hexagonal lattice into a triangular one. This is equivalent to folding
the spectrum of the graphene Hamiltonian, H, into the one of H2, as
seen in the DOS for each Hamiltonian. States near the Dirac point
become frustrated antibonding states on a triangular lattice. The ±
signs, and zeros at each location in the spectrum represent
schematic phase changes between neighbors. The central state in H
is mapped into an antibonding state once the zeros are removed in
one of the sublattices.

bonds with positive cj(E)c∗i (E). To obtain a minimal energy
for a state, −C2(E2)+ C3(E2) needs to be as low as possible
since C1(E2) > 0.

For pure graphene, the contribution of each coefficient is
shown in figure 2. As the coordination is Zi = 3 for every
site, and all |ci(E)| are equal, then C1(E2) is a line at 3,
as seen in figure 2. There is a considerable variation of
the contributions C2(E2) and C3(E2) as function of E2; this
is a result of the degeneration in the spectrum. Thus, the
graph shows an envelope for C2 and C3; in particular there
is a maximal variation at the Van Hove singularity located
at (E/t)2 = 1. However, one clearly sees how the maximal
E2, corresponding to 9t, is obtained by making all bonds
frustrated. As the energy is decreased, C3(E2) goes down and
C2(E2) increases. The interesting region for conductivity is
around the Fermi energy, E2

= 0, were there is a frustration
effect, i.e. there is a bonding and antibonding contribution
to the energy. The corresponding C2 and C3 values are
(3/2π)(2

√
3 + 4π/3) ≈ 3.65 and (3/2π)(2

√
3 − 2π/3) ≈

0.65, obtained simply by looking at the phase differences
of the minimal energy wave function on a triangular lattice.
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Figure 2. Energy contributions C1(E2) (self-energy), C2(E2)
(antibonding) and C3(E2) (bonding) for pure graphene, (5). The
width in C2(E2) and C3(E2) is due to the degeneration of the
spectrum, which is maximal at the Van Hove singularity (E = 1).
Inset: amplification near the Dirac point. These results were
obtained from a diagonalization of H for lattices of N = 7688 sites.

These numbers are in excellent agreement with the numerical
simulations observed in the inset in figure 2. Such results were
obtained by a direct diagonalization of the operator H for a
lattice of N = 7688 sites, and confirm the hypothesis of the
existence of antibonding states around the Dirac point.

Now we introduce the impurities in H. From a direct
diagonalization of the operator H, we obtain figure 3 for N =
7688 sites. The behavior of C1(E2) suggests an amplitude
reduction in carbon sites around impurity sites near E ≈ 0
as the doping x increases, since if we write the coordination
and the amplitude as an average part plus fluctuation, Zi ≡

〈Z〉 + δZi and |ci(E)|2 ≡ 〈|c(E)|2〉 + δ|ci(E)|2, it is easy to
show that

C1(E
2) = 3(1− x)+

∑
j6=i

δZiδ|ci(E)|
2 (6)

where we used that 〈Z〉 = 3(1 − x), as obtained from a
binomial distribution [9]. The first term in (6) is in perfect
agreement for the highest energy, corresponding to the pure
bonding state. However, the last term in (6) is the correlation
between amplitude–coordination fluctuations. According to
figure 3, δZiδ|ci(E)|2 < 0 and grows in magnitude as E2

→ 0.
Thus, there is an anticorrelation, and the amplitude tends to
grow in sites of lower coordination, i.e. around impurity sites.

Also from figure 3, we see that the spacings between
C2(E2) for different impurity concentrations x are always
bigger than the ones corresponding to C3(E2). Thus, figure 3
proves that there is an increase in the frustration term with x.
There are some points in figure 3 that go to zero value; those
points correspond to resonant states at impurities.

One of the interesting questions here is why C2(E2) and
C3(E2) change in a different fashion. Is it due to an increased
number of frustrated bonds or is it a consequence of amplitude
changes in such bonds? In order to compare these variations
for C2(E2) and C3(E2), we introduce the average contribution
per bond

A2 =
C2(E2)

NA/NT
, A3 =

C3(E2)

NB/NT
, (7)

Figure 3. Energy contributions C1(E2) (self-energy), C2(E2)
(antibonding) and C3(E2) (bonding) for doped graphene. The
reduction of C2(E2) as x grows means that the antibonding
contribution goes down, and thus frustration is increased. A drop
near E2

≈ 0 is also observed, corresponding to resonant states.
These results were obtained from a diagonalization of H for lattices
of N = 7688 sites.

where NA is the total number of bonds where cj(E)c∗i (E) < 0,
NB corresponds to bonds where cj(E)c∗i (E) > 0, and NT is the
total number of bonds without considering links to impurity
sites.

In this measurement scale it is evident that the
antibonding contribution has a wider variation when
compared with the bonding contribution as x grows (figure 4).
Also, in figure 4 we present NA as a function of E2. Since
NB = NT−NA, is clear that disorder increases NA with respect
to NB. However, the average amplitude on each antibonding
link is decreased with disorder, leading to higher frustration.
This is a consequence of the inequality C1(E2) + C3(E2) ≥

C2(E2) obtained from (7) since C1(E2) decreases as (1 −
x) and C3(E2) has only small changes. Thus, C2(E2) must
decrease accordingly and the pseudo-mobility edge seems to
appear as a consequence of avoiding sites of high coordination
which leads to high frustration. When the spectrum of H2

is unfolded by taking the square root of E2, this edge
is transformed in two edges, as shown using the inverse
participation ratio calculated in [9].

In conclusion, the problem of graphene with impurities
is mapped into a triangular lattice with holes. As a result,
the Dirac point turns out to be an antibonding edge,
where frustration effects are important due to the underlying
triangular symmetry.
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Figure 4. Top: average antibonding (A2) and bonding contribution
(A3) per bond as a function of E2 near E2

= 0 for different
concentrations x, as defined in (7). Notice how the antibonding
contribution diminishes more than the bonding contribution with x,
and thus the frustration per bond is increased. Bottom: total number
of antibonding bonds, NA, as a function of E2 for different
concentrations x. Since NA increases and A2 decreases for E2

→ 0
and x→ 1, frustration is rising due to localization effects.
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