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The thermal conductivity (κ(T )) in a lattice is studied as a function of rigidity by using the Kubo–
Greenwood formula. The rigidity is modulated by changing the second neighbour interactions. The results
show that κ(T ) is strongly determined by the rigid character of the network through the low frequency
vibrational modes. The transition from an isostatic to overconstrained lattices is thus reflected in the
behavior of κ(T ).
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1. Introduction

The physics of glass formation is a complex multiparticle prob-
lem. It depends on time, which means that basically, there is
no thermal equilibrium. During glass formation the cooling speed
plays an important role. If the cooling process is slow, a first or-
der phase transition occurs resulting in a crystalline structure [1].
Therefore, in order to make a glass, it must be cooled fast enough
to avoid crystallization, and there is a smooth change to a solid
state at a temperature known as the glass transition tempera-
ture (T g ). The behavior of viscosity near the glass transition [1]
defines the glass fragility. It can be changed from strong to frag-
ile by chemical doping [2]. Particularly, the structure of network
glasses as oxides, chalcogenides and amorphous semiconductors is
similar to a network with topological disorder. It is known that
most glasses have an excess of Low Frequency Vibrational Modes
(LFVM) when compared with crystals. Two examples of this excess
are the boson peak [3] and the floppy mode contribution. While
there is not consensus about the nature of the boson peak [3,4],
the floppy mode contribution can be explained very successfully
by rigidity theory [5,6] considering the covalent bonding as a me-
chanical constrain. Notice that there are some indications that the
Boson peak and the floppy modes share a common origin, as has
been shown in a series of conclusive experiments on the binary
glass [7] AsxS1−x, as well as using numerical simulations [8] and
perturbation techniques [9]. If the number of constraints (Nc) is
lower than the degrees of freedom (dN where d is the dimension),
there is a fraction f = 1 − Nc/dN of zero frequency vibrational
modes (floppy modes). If f = 0, the lattice is rigid while it is flex-
ible for f > 0. When dN = Nc , the lattice is isostatic because it

* Corresponding author. Tel.: +55 56 22 51 74; fax: +55 56 22 55 08.
E-mail address: naumis@fisica.unam.mx (G.G. Naumis).
0375-9601/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2011.08.008
has the minimal number of constraints required to be rigid. The
transition from flexible to rigid, has been documented extensively,
including many interesting effects like changes in the ionic conduc-
tivity in glasses [10], fragility [2] or glass transition temperature
[11–13]. Isostatic lattices have been used to investigate the elastic
and vibrational properties of different systems [14–16] including
network glasses [6]. Furthermore, there is evidence of a glassy
phase in which atoms are organized in isostatic networks to reduce
the stress [17], which is known as Boolchand’s intermediate phase
[18]. The anomalies in the LFVM can determine the glass transi-
tion temperature as function of chemical composition and thermal
relaxation properties [19,20].

Very recently, there has been a direct measurement of the
thermal conductivity as a function of rigidity for amorphous flu-
orocarbons [21], although there are not theoretical efforts in this
direction. In fact, up to our knowledge, the only modelling of the
thermal conductivity in a network glass has been made in silica
[22]. In the present work, we start to investigate the thermal con-
ductivity as a function of rigidity in network glasses. To make a
clear discussion on such effects, we decided to use a simple lattice
in which the rigidity can be controlled at will, in the same spirit
as has been recently discussed in [8,9] or in [23]. Such model is
a square lattice, in which nearest neighbor atoms are joined by
springs. If periodic boundary conditions are used, the lattice is iso-
static. Then we add a second neighbor interaction either at random
or in a ordered way, just to increase in a progressive way the rigid-
ity of the lattice. This model has the advantage that one can study
a rigidity transition in a periodic system, or in a random system. In
this work, the resulting thermal conductivities are obtained using
the Kubo–Greenwood formula [24,25], and as we will see, rigidity
has an impact on this conductivity as has been found experimen-
tally. Such effect is a consequence of the changes in the number
of LFVM and group velocities. The layout of this Letter is the fol-
lowing, in Section 2 we present the model, in Section 3 we study
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Fig. 1. (Color online.) The concentration parameter c determines the number of k1

springs distributed along the single diagonals of a square lattice. (a) If c = 0, there
are no k1 springs on the lattice. (b) For 0 < c < 1, the k1 springs are distributed at
random along the single diagonals of the lattice. (c) For c = 1, all single diagonals
are joined by k1 springs.

the periodic case, in Section 4 we investigate systems with differ-
ent concentration of diagonal springs placed at random, and the
conclusions are presented in Section 5.

2. The model

Let us consider a model which allows to understand in a trans-
parent way the effects of rigidity. Such model is a two-dimensional
square lattice made of equal masses (m) joined by springs k0 for
first neighbour interaction, using periodic boundary conditions. In
order to model a network with different degrees of rigidity, we in-
troduce a concentration parameter (c) with values between 0 and
1. This concentration determines the number of diagonals added at
random to join second nearest neighbors with springs of constant
k1. When c = 0, there are no k1 springs on the lattice and only
first neighbour interactions are considered, as shown in Fig. 1(a). If
0 < c < 1, besides the first neighbour interactions, the springs with
constant k1 are distributed in a random way along the single diag-
onals on the lattice, as shown in Fig. 1(b). For c = 1, there is a k1
spring in all single diagonals, as shown in Fig. 1(c).

Clearly, there are two paths to study this system. One is to con-
sider a lattice in which c = 1, resulting always in a periodic system,
since all diagonals are always present. For this case, when k1 = 0,
the lattice is isostatic, since the coordination of the lattice is 4, and
thus the number of constraints is Nc = 2N , which is equal to the
dimensionality of the configurational space, 2N . If k1 �= 0, the co-
ordination of the lattice is bigger than 4. As a consequence, the
number of bonds is higher than the dimension of the configura-
tional space, and the lattice becomes rigid. The other study case is
to set k1 �= 0, and move c from 0 to 1. Clearly, the limiting values
c = 0 and c = 1, correspond to an isostatic and an overconstrained
network respectively. Thus, in both study cases it is possible to
obtain an isostatic lattice in the appropriate limits. For the peri-
odic case, this happens when k1 = 0, while for the disordered case
occurs at c = 0. Although in this isostatic limit both periodic and
disordered lattices become the same, is clear that the way in which
we approach this limit is different. As a result, sometimes we will
consider the limits k1 → 0 or c → 0, depending on the study case.

In Section 3 we discuss the case of a rigidity transition in the
periodic system, using as a control parameter k1/k0 to tune the
rigidity, while in Section 4 we discuss the case of the random ap-
proach. Before this, let us briefly explain in the following section
how the thermal conductivity is calculated.

3. Hamiltonian and thermal conductivity

To understand the thermal conductivity (κ(T )), here we con-
sider the heat propagation along the x direction, i.e., κxx(T ). The
thermal conductivity can be calculated using the Kubo–Greenwood
formula [24]

καβ(T ) = −2h̄2

V πkB T 2

∞∫
dω

ω2 exp(h̄ω/kB T )

[exp(h̄ω/kB T ) − 1]2
0

× Tr
{

Aα Im
[
G(ω)

]
Aβ Im

[
G(ω)

]}
, (1)

where V is the system volume, T the temperature, kB the Boltz-
mann constant, h̄ the Planck’s constant divided by 2π , [exp(h̄ω/

kB T ) − 1]−1 is the phonon distribution function, Aα(i, j) = 1
2 (ri −

r j)αΦ(i, j) the transversal or longitudinal vibrational modes, Φ

is the dynamic matrix, α and β are Cartesian coordinates and
G(ω) = (Φ − mω2 I)−1 is the Green function which can be calcu-
lated through matrix inversion [26]. The dispersion relation can be
obtained by solving the secular equation for a site i in the lattice[

n∑
j

Φ(i, j) − mω2 I

]
ui −

n∑
j

Φ(i, j)u j = 0, (2)

where the matrix Φ(i, j) describes the interaction between sites i
and j, I is the identity matrix, ui is the displacement of the mass
m at site i around its equilibrium position, n is the number of
neighbors joined to site i.

It is worth mentioning that Eq. (1) does not consider anhar-
monic interactions. Thus, our model works only for low tempera-
tures. The concentration parameter led us to classify our systems
into two study cases, the first one being a periodic lattice where
c = 0 or c = 1, as shown in Figs. 1(a) and 1(c), and the second
study case corresponds to networks where 0 < c < 1, which are
discussed in Section 5.

4. Thermal conductivity and rigidity for the periodic lattice

Here we present how rigidity changes the thermal conductivity
by comparing results with different k1/k0 ratios, by fixing c = 1.
The reason to expect important changes on the thermal conductiv-
ity is the fact that rigidity changes the number of LFVM, which are
the main responsible of heat conduction due to their high group
velocities.

To understand this, consider the case of an isostatic network,
i.e., a pure square lattice where only first neighbour interactions
are included. By solving Eq. (2), it is easy to obtain the dispersion
relation, which has two independent branches, corresponding to
the dispersion relationship of two uncoupled linear chains

ωx(q) = 2vs

a

∣∣sin(qxa/2)
∣∣, ωy(q) = 2vs

a

∣∣sin(qya/2)
∣∣ (3)

where a is the lattice constant, qx and qy are the wave vectors, vs

the speed of sound, given by vs = a
√

k0/m. The dispersion relation
of Eq. (3) is shown in Figs. 2(a) and 2(b). The resulting density
of states ρ(ω) is similar to that observed in a one-dimensional
linear chain, and thus is a constant different from zero in the limit
ω → 0, indicating a finite amount of LFVM. The isostatic network
does not have transverse modes; instead two degenerate branches
of longitudinal modes are present.

The rigid case, including the diagonal interaction k1, yields the
dispersion relation

ω2±(q) = 1

2

[
1 ± η(q)

]
ω2

x (q) + 1

2

[
1 ∓ η(q)

]
ω2

y(q)

+ γ

2
ω2

xy(q), (4)

where γ is the ratio which controls the transition from an isostatic
to an overconstrained lattice

γ = k1

k0
, (5)

with

ω2
xy(q) = 2

vs sin
(qx + qy)a

, (6)

a 2
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Fig. 2. (Color online.) Dispersion relation for a square lattice with only first
neighbour interaction, k0 = 1 and k1 = 0. There are two independent degenerate
branches, in (a) longitudinal modes of vibration in the x direction, and (b) longitu-
dinal modes of vibration in the y direction.

and

η(q) =
√√√√1 + γ 2

[
ω2

xy(q)

ω2
x (q) − ω2

y(q)

]2

. (7)

The signs in ω2±(q) are used to denote two branches, one cor-
responding to the longitudinal and the other to the transverse
modes. The branch with plus (minus) sign is labeled as the lon-
gitudinal (transverse) branch. Both branches are depicted in Figs. 2
and 3. The case γ = 0 is shown in Fig. 2, and shows how Eq. (4)
is reduced to ωx(q) and ωx(q), corresponding to one-dimensional
lattices. Fig. 3 corresponds to a ratio of spring constants γ = 1,
showing the two branches. In the acoustic limit, the dispersion re-
lation has the following form,

ω±(q) ≈ vs√
2

f±(θ)q, (8)

where f±(θ) is the direction dependence of the speed of sound for
longitudinal (plus sign) and transverse (minus sign) modes

f 2±(θ) = [
1 + γ (1 + sin 2θ) ±

√
cos2 2θ + γ 2(1 + sin 2θ)2

]
. (9)

For γ = 1, the resulting ρ(ω) in the acoustic region goes as
ρ(ω) ∼ ω, and ρ(ω) → 0 as ω → 0, as expected for a rigid sys-
tem. When γ = 0, v2+(θ) = v2−(θ) and we recover Eq. (3), with a
finite ρ(ω) at ω → 0. As a consequence, a rigidity transition oc-
curs when γ → 0. Fig. 4 shows the Density Of States (DOS) for
both systems. The gray line corresponds to γ = 0 and the black to
γ = 1, confirming the results shown in Figs. 2 and 3. In this way,
many LFVM are eliminated when k1 �= 0. These states are the main
heat carriers and one can expect changes in the thermal conduc-
tivity, as we will see next.

Once that the rigidity transition has been established, we turn
our attention towards the thermal conductivity κxx(T ). To calculate
κxx(T ), we used a square lattice with 50 sites along each spatial
direction x and y. At this point, it is worthwhile mentioning that
throughout the whole Letter, we have performed all calculations
in lattices of sizes of 15 × 15, 20 × 20 and sometimes of 30 ×
Fig. 3. (Color online.) Dispersion relation for a square lattice with γ = 1 and c = 1.
Two branches are found in Eq. (4), (a) corresponds to the plus sign labeled as the
longitudinal branch, and (b) corresponds to the minus sign labeled as the transverse
branch.

Fig. 4. Density of states for a square lattice with only first neighbour interaction
γ = 0 (grey line), and second neighbour interaction γ = 1 (black line), both are
periodic systems with c = 1. Notice how the number of LFVM changes with γ .

30 sites. In all cases, we will show the obtained data for systems
of 50 × 50 sites, since we are using periodic boundary conditions,
and the size effects are not so important as the results show a
good convergence. The convergence is weaker as the isostatic limit
is approached, basically because the lattices become closer to a
set of independent linear chains. Thus, a lattice of 50 × 50 sites
behaves as a degenerate system of 50 chains of 50 sites, which is
certainly small for a linear system. In these cases, we considered
bigger chains to verify the validity of our results. However, in this
limit we have the analytical solution for the problem, and thus the
scaling effects are easy to understand.

The Green function was obtained through matrix inversion and
by using Eq. (1). The inset in Fig. 5 shows κxx(T ) in the low
temperature region for different values of the γ ratio. The black,
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Fig. 5. (Color online.) Thermal conductivity states for a square lattice of 2500 sites
with c = 1 at a low temperature, T = 0.2. Each lattice has 50 × 50 sites. In the in-
set, we show κxx(T ) for different γ = k1/k0 ratios. γ = 0.1 (red circles), γ = 0.3
(green circles) and γ = 1.0 (gray circles) ratios. The thermal conductivity system-
atically diminishes as function of the γ ratio. The highest κxx(T ) is obtained for a
concentration γ = 0.

Fig. 6. (Color online.) Thermal conductivity for periodic square lattices at a high
temperature, T = 4.0. Each lattice has 50 × 50 sites When the ratio γ is in the
range 0 < γ < 0.4, the thermal conductivity falls because there are less LFVM. For
0.4 < γ < 1.0, the phonon group velocity is increased, which in turn increases the
thermal conductivity as well. It is worth mentioning that anharmonic interactions
are not considered in this model. In the inset, we present the behavior of κxx(T ) in
a wide range of temperatures for γ = 0 (black circles), γ = 0.1 (red circles), γ = 0.3
(green circles) and γ = 1.0 (gray circles). Again, the highest κxx(T ) is found for the
system with γ = 0.

red, green and gray lines correspond to γ = 0.0,0.1, 0.3 and
1.0 respectively. Notice that the lower thermal conductivity cor-
responds to the γ = 1 ratio, while the best thermal conductivity is
obtained for the γ = 0 ratio. When γ → 0, κxx(T ) grows system-
atically for fixed T . To see this, Fig. 5 shows the typical behavior of
κxx(T ) for a given temperature (in this case T = 0.2) as a function
of the γ ratio. A diminishing κxx(T ) can be observed with γ .

An analysis of the high temperature regimen is shown in Fig. 6.
Notice that in real systems, such limit cannot be obtained from
the sole use of the harmonic Hamiltonian, since non-linear effects
appear. However, for the sake of completeness, here we present the
corresponding results. The inset in Fig. 6 shows the same curves
as in Fig. 5, for a wider range of temperatures. Notice how κxx(T )

diminishes immediately as the ratio γ becomes different from 0,
as shown by the red curve (γ = 0.1) and the green curve (γ =
0.3). The behavior of κxx(T ) is clear in Fig. 6, where the plot shows
κxx(T ) for a given high temperature T = 4, versus the γ ratio. The
lowest thermal conductivity seems to be for the ratio value γ =
0.4, then κxx(T ) starts to grow as shown in Fig. 6, and by the gray
curves (γ = 1) in the inset of Fig. 6.

Let us now explain in detail why a rigidity transition has an ex-
pected effect on the thermal conductivity. Within the framework of
the kinetic theory of gases, the thermal conductivity can be writ-
ten as an integral in the reciprocal q-space [27]

κxx(T ) =
∫

1st B Z

dq τq v2
qx

Cq, (10)

where Cq is the heat capacity, vqx = ∂ω(q)/∂qx is the x component
of the phonon group velocity, and τq is the relaxation time. In our
case, we do not consider phonon scattering, so τq is a constant
mean free path τ in all cases. Using the Bose–Einstein statistics,
Cq is given by

Cq = d

dT

[
h̄ω(q)

eh̄ω(q)/kB T − 1

]
. (11)

Since LFVM have the highest group velocities, we can consider that
ω±(q) ≈ v±(θ)q and vqx = ∇qω±(q) · êx . It follows that

κxx(T )

≈ 4τ

Ω

h̄2 v4
s

kB T 2

×
∑
±

[ π/4∫
0

π
a cos θ∫
0

+
π/2∫

π/4

π
a sin θ∫
0

]
[ f±(θ) cos θ − f ′±(θ) sin θ]2

(eh̄vs f±(θ)q/
√

2kB T − 1)2

× eh̄vs f±(θ)q/
√

2kB T f 2±(θ)q3 dq dθ, (12)

where the sum is carried over the longitudinal and transversal
mode branches, and Ω is a proper normalization for the number
of states for an unitary area Ω = (2π)2. Usually, for low temper-
atures, the Bose–Einstein factor can be replaced by a decreasing
exponential, which has a maximum for LFVM. This explains the
importance of such modes for low temperatures. Furthermore, this
allows to obtain the Debye law in which Cq ∝ (Θ/T )d where Θ

is the Debye temperature. Although this is correct for γ ≈ 1, the
usual procedure of letting T → 0 and transform the integrals using
infinite as a boundary condition, cannot be used in such a simple
way in Eq. (12) when γ → 0, since Θ depends on the angle θ . So
for example, Θ can be nearly zero in a certain directions. Such be-
havior leads to the required changes of Cq with the dimensionality
as γ → 0. In particular, Eq. (12) can be written as

κxx(T ) ≈ α(γ )T 2 + β(γ )T , (13)

where a(γ ) and b(γ ) are given in Appendix A. Two very important
limiting cases are easily worked out. For γ = 0, and a system of
N × N , the conductivity corresponds to a one-dimensional system

κxx(T ) ≈ Nk2
B

2π�
T (14)

while for γ = 1

κxx(T ) ≈ 3Nak3
B

2 2
T 2. (15)
2π vs�
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Fig. 7. Square group velocity integrated in the first Brillouin zone for square lat-
tices with c = 1 as function of the γ ratio, obtained from the dispersion relation of
Eq. (4). The behavior is the same as the high temperature thermal conductivity in
Fig. 6.

This result is fully two-dimensional, showing that the rigidity tran-
sition basically produces a change in the dimensionality of the
problem, since for periodic systems κxx(T ) ∝ T d .

For real systems in the high temperature regime, anharmonic
effects are important. However, in our case it can serve as an addi-
tional test for the simulations. Therefore, in this limit, each mode
contribute with

Cq = kB

2
(16)

and κxx(T ) is

κxx(T ) = kBτ

2

∫
1st B Z

dq v2
qx

. (17)

An analytical result for previous integral can be readily ob-
tained from Eqs. (3) and (4). It can also be obtained through
numerical differentiation from the dispersion relation, as the one
shown in Figs. 2 and 3 for the different γ ratios. Fig. 7 shows
that the behavior of v2

k is similar to that for κxx(T ) in the
high temperature region, when compared with Fig. 6, as ex-
pected.

The behavior of the thermal conductivity for network glasses
modeled by square lattices with different values of concentration
is discussed in the next section.

5. Lattices with different concentration

In this section, we discuss the behavior of κxx(T ) as a func-
tion of the concentration (c). Fig. 8 shows κxx(T ) for various con-
centrations of diagonals, c = 1.0 (black circles), c = 0.8 (green
circles) and c = 0.2 (red circles) for different γ ratios, in (a)
γ = 1, (b) γ = 0.5 and (c) γ = 0.1. In all of these plots, we
include an inset presenting an amplification of the low tempera-
ture region. All computations were made for lattices of 50 × 50
sites.

First we observe that in Fig. 8(a), corresponding to γ = 1, the
behavior is determined by c. At high temperatures, κxx(T ) has
a minimum saturation value as a function of c. So for exam-
ple, the cases c = 0.2 and c = 0.8 have almost the same κxx(T ).
The cases c = 1.0 and c = 0.0 are just the limiting cases that
Fig. 8. (Color online.) The behavior of κxx(T ) for square lattices with different con-
centrations c of diagonals placed at random, for different γ = k1/k0 ratios. (a)
k1/k0 = 1, (b) k1/k0 = 0.5 and (c) k1/k0 = 0.1. The insets are amplifications of the
low temperature region.

coincide with the periodic lattices, for which we know that for
c = 1.0, κxx(T ) is a little bit smaller than for the c = 0.0 case
(see Fig. 6). For low temperatures, as seen in the inset of Fig. 8(a),
the behavior is reversed. In Fig. 8(b) there is a mixing of c and
γ effects, but the overall behavior is similar to that observed in
Fig. 8(a), although the values of κxx(T ) come closer to each other.
Finally in Fig. 8(c), the effects of the concentration are minimal,
since γ is small so the results are similar to those of the iso-
static network, as expected. We can understand these trends as
follows. The general effect of the concentration is to modify the
number of constraints, group velocities and localization proper-
ties for high frequency modes, above the mobility edge known
as Ishii limit [20]. Therefore, when c is small there are more
LFVM and κxx(T ) can grow if these effects are more important
than the changes in the group velocities, since localization effects
are not so important for acoustic modes. This effect can be ob-
served in the inset of each figure, where the thermal conductivity
is shown for the low temperature region. The case c = 0.2 (red
circles) has the best thermal conductivity and the range where
κxx(T ) is higher is a function of γ . Particularly, when c and γ
are both small, the thermal conductivity is higher than for the
periodic case with c = 1 along the whole range of temperatures,
as shown in Fig. 8(c). In the high temperature limit, the bal-
ance is subtle. All modes contribute the same, and κxx(T ) de-
pends on localization and group velocities. Maximal disorder oc-
curs for c = 0.5, while the group velocities depend on the Ishii
limit [20].
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6. Conclusions

In this Letter, the effects of rigidity in the thermal conduc-
tivity were studied by means of the Kubo–Greenwood formula.
The rigidity is determined by two parameters, the springs con-
stant γ = k1/k0 ratio, and the concentration c of second neighbour
springs. Both parameters modify the number of LFVM and the
phonon group velocity. For periodic lattices, the results are the fol-
lowing.

1) At low T , the behavior is dominated by the heat capacity.
The reason is that only LFVM are excited. Rigidity plays a fun-
damental role since it determines the specific heat through the
number of LFVM. As a result, κxx(T ) ∼ T for the isostatic lattice,
while κxx(T ) ∼ T 2 for overconstrained networks.

2) At high T , all modes are excited with the same energy, so the
conductivity is dominated by the integral of the group velocity in
the first Brillouin zone. We obtained that there is a minimum for
such integral at γ ≈ 0.4, which coincides with the minimum ob-
tained from κxx(T ) using the Kubo–Greenwood formula. However,
here we do not consider non-linear effects which are fundamental
in such regimen.

The reason for this change comes from the fact that here, the
isostatic lattice is equivalent to a set of linear chains, since there
is no coupling between displacements in perpendicular directions.
Then we recover case of a linear chain in which κxx(T ) ∼ T . When
the such couplings are turned on, the chains interact between
them and thus the system behaves as a two-dimensional system
in which κxx(T ) ∼ T 2.

For disordered lattices, the situation is more complex.
1) At low T , for a given γ ratio, there is a crossover of κxx(T )

as a function of the concentration of disorder. In general, again iso-
static lattices have a larger κxx(T ) than overconstrained. This is a
consequence of the fact that acoustic modes have mainly the same
localization properties, even in the presence of disorder [20]. The
excess of LFVM for isostatic lattices determines this better thermal
conductivity, as in periodic lattices.

2) At high T , the heat capacity does not play a role. Here the
group velocities and the Ishii limit are the main driving factors
[20] which determine κxx(T ). However, since here we do not con-
sider non-linear effects, the calculation of κxx(T ) is only a first step
towards the complete answer.

Finally, although it could be worth to show some comparison
with experimental data of flexible and rigid systems, still there
are not available systematic experimental data of κxx(T ) consider-
ing average coordination and temperature. There are some experi-
ments for the average coordination and the minimal κxx(T ), which
seem to be in good agreement with the idea of deplete bonds on
rigid lattices [21].
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Appendix A

Starting from Eq. (4), if γ �= 0, then f±(θ) is only zero at the
origin. Then we can replace the Bose–Einstein factor with a pure
exponential for low enough temperatures. Thus, Eq. (12) can be
written as

κxx(T ) ≈ τ

Ω

h̄2 v4
s

kB T 2

∑
±

[ π/4∫ π
a cos θ∫

+
π/2∫ π

a sin θ∫ ]
R±(θ)
0 0 π/4 0
× f 4±(θ)e−c±qq3 dq dθ, (A.1)

where

R±(θ) =
[

cos θ − f ′±(θ)

f±(θ)
sin θ

]2

, (A.2)

and

c± = h̄vs f±(θ)√
2kB T

. (A.3)

Then we integrate over the q coordinate to get

κxx(T ) ≈ τ

Ω

k3
B

h̄2
T 2

∑
±

[ π/2∫
0

R±(θ)dθ −
π/4∫
0

R±(θ)H1(θ, T )dθ

−
π/2∫

π/4

R±(θ)H2(θ, T )dθ

]
(A.4)

where the functions Hn(θ, T ) are defined as

Hn(θ, T ) ≡ e−c±xn(θ)
{

6 + 6c±xn(θ) + 3c2±x2
n(θ) + c3±x3

n(θ)
}

(A.5)

with

x1(θ) = π

a cos θ
, x2(θ) = π

a sin θ
. (A.6)

Notice that in Eq. (A.4), the leading contribution is the conductivity
of a two-dimensional lattice, with an angle averaged group veloc-
ity. The correction terms have an exponential which in principle
goes to zero as T → 0. Such condition is equivalent to

c±xn(θ) = h̄vs f±(θ)√
2kB T

xn(θ) � 1. (A.7)

However, when γ � 1, in certain directions the opposite behavior
turns out to be true

c±xn(θ) � 1

since f±(θ) can be nearly zero. We can incorporate both behaviors
in Eq. (A.5) as follows. For c±xn(θ) � 1, the exponential term is
zero, while for c±xn(θ) � 1, we can use an angle θM such that
f±(θM) is a minimum, and expand f±(θ) in a Taylor series

f±(θ) ≈ f±(θM) + ∣∣ f ′′±(θM)
∣∣ (θ − θM)2

2
. (A.8)

For this case, in Eq. (A.5) we only retain the zero and first order
terms in c±xn(θM) and the exponential factor is nearly one. As a
result, κxx(T ) can be written as

κxx(T ) ≈ α(γ )T 2 + β(γ )T , (A.9)

where a(γ ) and β(γ ) are given by

a(γ ) ≈ 6N

π2

ak3
B

vsh̄2

∑
±

[ π/2∫
0

R±(θ)

× {
1 − e

− h̄vs√
2kB T

| f ′′±(θM )| (θ−θM )2

2
}

dθ

]
, (A.10)

and
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β(γ ) ≈ − 6N√
2π

k2
B

h̄

∑
±

{ π/4∫
0

R±(θ)

cos θ

[
f±(θM)

+ ∣∣ f ′′±(θM)
∣∣ (θ − θM)2

2

]
dθ

+
π/2∫

π/4

R±(θ)

sin θ

[
f±(θM) + ∣∣ f ′′±(θM)

∣∣ (θ − θM)2

2

]
dθ

}
.

(A.11)

In the previous approximation, it was used that τ ≈ Na/vs . No-
tice that in principle, if in Eq. (A.5) we use the term that goes as
(c±xn(θ))3, there is a 1/T divergence. In fact, such divergence is an
artifact due to the approximation, i.e., if such term is enough im-
portant to be considered, then e−c±xn(θ) is small enough to kill the
divergence.
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