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Using molecular dynamics, we study the relationship between the excess of low-frequency vibrational
modes �Boson peak, BP� and the glass transition for a bidispersive glass interacting through a truncated
Lennard-Jones potential. The evolution of the BP with increasing temperature is correlated with the average
coordination, as predicted by rigidity theory. This is due to a lack of atomic “contacts,” as is confirmed by
taking a crystal with broken bonds. We show how the quadratic mean displacement ��u2�� is enhanced by the
BP. When �u2� is obtained on short time scales or measured on inherent structures, the glass transition tem-
perature Tg is determined by the position and height of the BP. Between the melting temperature Tm and Tg, the
nature of the relaxation processes exhibit phase separation, where the backbone increases its rigidity while the
smaller atoms diffuse away to form separate crystals.
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I. INTRODUCTION

The process of glass formation �or avoidance of phase
separation and crystallization� is still controversial,1,2 for ex-
ample, the nature of the relaxation processes between Tm and
Tg.3–5 Even when a glass is already formed, some questions
remain open in the sense that there is no consensus on what
is the “right answer.” For example, almost all glasses present
a large “soft” excess of low-frequency vibrational modes
�LFVM� when compared with crystals.6 One type of excess
is a broad maximum called the Boson peak �BP�, which ap-
pears at frequencies ��� on the order of a terahertz. The other
is the presence of floppy modes in network glasses. While
there is no consensus about the nature of the BP,7 the appear-
ance of floppy modes can be very successfully explained by
the Phillips-Thorpe rigidity theory �RT�.8,9 Usually both
anomalies are considered as different phenomena, but as we
will show here, there is a certain commonality between both
phenomena.

In RT, atomic bonds are considered as mechanical
constraints,8 i.e., as structural hinges and rods. Floppy modes
are due to the low coordination of the system because the
number of constraints �Nc� is less than the number of con-
figurational degrees of freedom8,9 �3N, where N is the num-
ber of atoms�. As a result, there are not enough constraints to
avoid particle displacements and make the system rigid.8,9

Rigid systems where Nc=3N−6 are known as isostatic.
Some glasses can even self-organize in isostatic networks to
reduce stress.10–12 Indeed, the lack of constraints has been
recognized as a relevant aspect in many other fields, such as
colloids, granular matter, foams, jamming transition,13–19 and
there are some hints that the BP has it origins in such lack of
constraints.13

LFVM anomalies are present in the specific heats almost
all glasses,6 but only recently this observation has been taken
into account in the understanding of glass formation. In a
series of previous papers,20–22 we have shown that floppy
modes can determine Tg and relaxation properties. Here we

employ RT to establish the relationship between BP and Tg.
Within RT, the average connectivity of the network,8 usually
described by the average coordination number ��Z��, plays a
key role. Here we show how the BP is correlated with �Z� in
a binary Lennard-Jones glass. Then Tg can be obtained from
the excess of LFVM by looking at the mean quadratic dis-
placement ��u2�T��� and the Lindemann criteria20 for Tm and
Tg�2Tm /3. The evolution of �Z� also sheds light on the
nature of the relaxation processes between Tg and Tm. There
are two keys aspects to obtain the present results: the use of
a finite-range potential in order to be able to define unam-
biguously what is a bond �constraint� between atoms,23 and
progressive heating of the glass, instead of supercooling, as
almost all other works do.

II. GLASS MODEL AND MOLECULAR
DYNAMICS DETAILS

As our glass model we used the standard binary mixture
of particles A and B, all having the same mass m. The inter-
actions between particles are given by a purely repulsive
potential,23

����rij� = �4��������

rij
	12

− ����

rij
	6
 + ��� if rij � r��

c

0 in any other case
� ,

�1�

where rij is the interparticle distance, ��� is a constant en-
ergy, and r��

c =21/6��� is the cut-off radius. The parameters
��� and ��� were chosen as follows:23 �AA=1.0, �AA=1.0,
�AB=0.88, �AB=1.5, �BB=0.8, and �BB=0.5, which inhibits
crystallization. The simulations were made using molecular
dynamics at constant volume and temperature. The units of
mass, length, time, pressure, and temperature are m, �AA, 	
=�AA

�m /�AA, �AA /�AA
3 , and �AA /kB, respectively, with kB be-

ing Boltzmann’s constant. The simulations were performed
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with N=864 particles. We used a 80:20 mixture of A and B
particles. The glass was produced by supercooling following
standard procedures:23 we heated a doped crystal up to fluid
state, and then we cooled it at velocity 
=dT /dt=0.2 until it
was in a solid amorphous state. Once the glass was obtained,
the initial configuration was heated at three different heating
rates 
0=0.005, 
1=0.02, and 
2=0.1.

III. RESULTS

Figure 1 shows �U� as a function of T using 
1 as the
heating rate �similar results are obtained for 
0 and 
2�. Us-
ing Fig. 1, as well as the radial distribution function g�r��
and diffusion constant �D�, we can identify a glassy phase
from T=0 up to Tg�1.1. Above Tg there is a trough in �U�
up to the melting point Tm=2.48, where a discontinuity sig-
nals a first-order transition. The insets of Fig. 1 show the
separate contributions from A-A, A-B, and B-B bonds.
Clearly, �UBB� increases for T�Tg, which means that B par-
ticles are getting closer. They have a high D as shown by the
red circles presented in Fig. 2. Most A particles begin to

crystallize for T�Tg, since a second peak in g�r� appears at
roughly24 r��2 which is a typical mark of the second-
nearest neighbors in a fcc crystal. Thus, the nature of the
dynamics for Tm�T�Tg is basically a relaxation toward
phase separation, in which B particles leave the cages inside
the glass by diffusive processes, while at the same time, the
rigid backbone of A sites begins to crystallize with abrupt
shocks.25

We can connect these processes with the BP and the ri-
gidity of the network. Figure 3 shows the evolution of �Z� for
each atomic species and kind of bonds, obtained from,

�Z��� = �
0

r��
c

4�r2g��
�r�dr . �2�

It is important to remark that here we integrate using the
cut-off given by ����rij�. This is a critical fact, since it al-
lows to define what is a contact in the sense of RT. Notice
that here we do not consider angular constraints due to the
radial nature of the potential, although there is a certain
amount of indirect angular constraints for some configura-
tions due to geometrical hindrance.18 The main reason to not
consider such effect is the temperature dependence of the
corresponding constraints, since they are broken at much
lower temperatures18 than Tg. In principle, all active con-
straints at a given temperature can be counted using a ther-
modynamical integration procedure.26,27

In Fig. 3�a�, the number of A nearest neighbors of A in-
creases when T�Tg while Fig. 3�b� shows how �ZBB� also
increases in spite of a higher mobility while �ZAB� decreases.
This indicates phase separation, since A and B particles tend
to form separate crystals, increasing their respective coordi-
nation with atoms of the same type.

According to RT, changes in coordination are reflected in
the presence of LFVM. To test this, we obtained the vibra-
tional density of states g���, calculated always in metastable
states,24 using the Fourier transform of the velocity autocor-
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FIG. 1. �Color online� Total internal energy �U�= �UAA�
+ �UBB�+ �UAB� versus temperature T. Insets: �a� energy of A-A
bonds, �b� B-B bonds, and �c� A and B bonds.
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FIG. 3. �Color online� Nearest neighbors �Z� of �a� type A
around A, �b� type B around B, and �c� type B around A. We can see
an increase in �ZAA� above Tg. A similar behavior is shown in �b�,
however, B spheres have more mobility, like in a fluid. A decrease is
observed in �ZAB� indicating phase separation.
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relation function.28 Figure 4 shows the reduced density of
vibrational modes g��� /�2 for different T. For the glass, two
peaks appear in the low-frequency region, one at �=0,
known as the quasielastic peak,28 due to the motion outside
the range of the potential. The other one is the BP.28 With
color curves indicated by arrows, we show the evolution of
the BP with increasing T, and in the inset of Fig. 4�a�, the
evolution of the integral �g��� /�2d����−2� �at low fre-
quencies� over the same temperatures. ��−2� grows from T
=0 to T�1, which correlates well with the decrease in the
coordination numbers �ZAA� and �ZBB�, Fig. 4�b�. �ZAB� also
grows but the number of such bonds is much smaller than the
number of A-A bonds.

The rise of the BP leads to decreased mechanical stability.
For T�Tg, the height of the BP is dramatically reduce, for
example at T=1.3, as shown in Fig. 4, while at the same time
�ZAA� and �ZBB� rise. This is caused by phase separation and
a tendency for crystallization, as can be seen when we com-
pare with a pure fcc of pure A particles �Fig. 4�. On average
the mixture has more contacts above Tg and as a conse-
quence, the BP is smaller. The reduction in BP height for T
=1.3�Tg is about 40%, when compared to the peak at Tg.
Another important feature is the change in position of the BP
with temperature, in agreement whit experiment.29 Because
of the phase-separation values of BP for T�1.3 are not at-
tainable by heating. However, it appears that ��−2� extrapo-
lates to a small value near the onset of B atom diffusivity
near T=1.5 �Fig. 2�.

The BP can be connected to the coordination number by
starting a fcc made from pure A atoms near T=0. Choose
atoms at random with a given concentration �x� and reduce
the size of the chosen atoms to make them B atoms. To avoid
energetic effects due to different bonds, set �AA=�BB=�AB.
Figure 5 shows g��� /�2 for small concentrations x of B
atoms. The height of the BP and its frequency increase with
x, in agreement with experiment.30 Figure 5�b� shows a lin-

ear relationship between the value ��−2� at low frequencies
and the coordination number �ZAA�. When the lattice is softer
�lower coordination� low-frequency modes appear, seen as a
peak in g��� /�2. Thus, the lack of contacts is important in
both the crystal or glass. The position and height of the re-
sulting BP can be estimated using perturbation theory for the
Greens’s function G0�k ,�� in a fcc lattice with bond
defects.24 The results show that the BP consists of resonant
states, with a width which goes as �k4 �where k is the
wave vector�, in agreement with the Rayleigh scattering for
the phonon inverse mean free path for BP states.31

The connection of Tg with the BP and rigidity can be
obtained through �u2�T��. For a solid in a given inherent
structure, the system can be described by a harmonic
Hamiltonian.32 In that case,

�u2�T��R �
�u2�T��

a2 � �2/33kBT

�m� �0

� g���
�2 d� , �3�

where the value of a is obtained from the position of the first
peak of gAB�r�, m the mass, and � the density. Due to the
1 /�2 factor in Eq. �3�, any enhancement of g��� in the low-
frequency region leads to a larger �u2�T��.

Figure 6 shows �u2�T��R as a function of T, calculated
using different techniques. First we calculated �u2�T��R di-
rectly form the particle positions at short times �1200 com-
puter steps�, and on short times at inherent structures, ob-
tained through a maximal gradient technique. The almost
linear dependence of T indicates that the system behaves as a
harmonic system for short times, as predicted by the T de-
pendence in Eq. �3�. Second, from Eq. �3� it seems that the
excess of LFVM can produce an increased �u2�T��R with
respect to a crystal. To test this hypothesis, let us calculate
�u2�T��R from g��� /�2 by using Eq. �3� with g��� calculated
from the simulations �see Fig. 6�. The result can be seen in
Fig. 6 with red diamonds for the mixture and blue triangles
for A spheres. There is good agreement between �u2�T��R
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obtained from the particle trajectories and those obtained
from g���, specially if only the rigid backbone of sites A is
considered.

Now that we have shown that Eq. �3� is a good approxi-
mation for �u2�T��R we can understand how the excess of
modes is related to Tg. From experiments and simulations, it
is known that Tg can be estimated from the Lindemann
criteria,20,32,33 which establishes that the glass transition hap-
pens at ��u2�Tg�� /a2�0.15. From this criteria and Eq. �3� Tg
is given by Tg�0.05�m� /�2/3kB�0

�g��� /�2d�. Thus, Fig. 6
can be used to estimate Tg from the vibrational properties via
g���. We only need to look at the temperature where
��u2�T��R�0.15. Using Fig. 6, it follows that Tg�1.0 if
g��� is used. When gA��� is considered, Tg is given by 1.1.
In both cases, the agreement is excellent with the Tg obtained
from the thermodynamical behavior. Thus, the BP has an

impact in Tg through a softening of the vibrational modes,
which leads to an increased displacement of the atoms. The
present results are connected to the glass viscosity ��� and
fragility, since there is an almost universal scaling4 of
�u2�T��R with �.

IV. CONCLUSIONS

In network glasses constraint theory identifies the BP
floppy modes and predicts their dependence on �Z� in good
agreement with neutron-scattering experiment.34–37 Network
glasses with noncentral forces are not easily simulated on
computationally accessible time scales, so here we have
tasted these ideas on popular bidispersive spherical �central
force� glasses. By heating the solids spherical glass trough Tg
we have demonstrated a correlation between �Z� and the evo-
lution of the BP, showing that the BP is not caused merely by
randomness-induced redistribution of vibrational frequen-
cies, as has been suggested recently.38 Moreover, it appears
that these �Z� correlations are likely to be a universal prop-
erty of all good glass formers, contrary to the suggestion that
“there is nothing universal about the temperatures depen-
dence of the specific heat in glass formers.”39 The softening
of the vibrational modes leads to increased mean quadratic
displacements, and Tg can be estimated from such softening.
Finally, it is worthwhile mentioning that although our simu-
lations were performed under constant volume conditions,
almost all experiments are conducted under constant pressure
conditions. Under such realistic conditions, the average con-
nectivity is changed, and thus a shift of the Boson peak and
Tg can be expected.
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