Centered Honeycomb NiSe₂ Nanoribbons: Structure and Electronic Properties

J. A. Reyes-Retana,*† G. G. Naumis,‡ and Felipe Cervantes-Sodi†

†Departamento de Física-Química, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 20-364, 01000 México, Distrito Federal, México
‡Departamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, 01219, DF, México

ABSTRACT: Quasi-one-dimensional nanoribbons are excellent candidates for nanoelectronics and as electrocatalysts in hydrogen evolution reactions; therefore, we investigate by means of density functional theory the structure and electronic properties of a new kind of one-dimensional ribbons, namely, centered honeycomb NiSe₂ nanoribbons. Depending on the crystallography and atomic composition of the edges, it is shown that these ribbons can belong to one of six zigzag or two armchair families. In the zigzag families, after edge reconstruction, all the bare ribbons are metallic. Hydrogen passivation produces band gaps in two of the six families by sweeping edge states, corresponding to the stablest nanoribbons. For the armchair nanoribbons, the geometrical reconstruction leads to semiconductors with small band gap, and the hydrogen passivation of the edges increases the band gap up to ∼0.6 eV. The inclusion of the spin–orbit interaction tends to reduce the band gaps, and the systems become metallic in the bulk limit. Several mechanisms are seen to determine band structure and stability: quantum confinement, edge states, density of broken bonds, and asymmetry with respect to the central line. As a result, some terminations are stable; others present edge reconstruction while SeH₂ molecules are prone to desorb from the ribbon’s edges.

 INTRODUCTION

Two-dimensional transition-metal dichalcogenides (2D-MX₂) materials are a variation of transition-metal dichalcogenides,¹ which are three-dimensional (3D) versatile layered compounds with a wide range of electrical and optical properties of the narrow d band type. As graphite, composed of graphene layers, transition-metal dichalcogenides are composed of sandwich-type layers consisting of a sheet of hexagonal close-packed transition-metal atoms between two sheets of hexagonal close-packed chalcogen atoms.³

Bulk materials present different properties when isolated as atom thick 2D crystals.⁴,⁵ For example, layered centered honeycomb compounds present catalytic behavior higher than their bulk form and graphene, the undisputed landmark example,⁶,⁷ exhibits enhanced thermal and electrical conductivity compared with those of graphite. Recent developments in 2D materials have allowed their synthesis by mechanical exfoliation,⁹,¹⁰ chemical vapor deposition (CVD),¹⁰,¹¹ or liquid exfoliation.¹²,¹³ Furthermore, it has been shown that feasible electronics involving graphene will include the integration of materials,¹⁴ such as silicene, germanene,¹⁵ BN honeycomb sheets,¹⁶ III–V binary compounds, metallic oxides, and 2D transition-metal dichalcogenides (2D-MX₂). The main reason to use other 2D materials different from graphene is that although a pseudogap can be opened in graphene by chemical doping,¹⁷–²⁰ applying electromagnetic fields,²¹,²² or cutting it into nanoribbons, graphene does not have an intrinsic electronic bandgap.

MoS₂ and MoSe₂ single layers have been successfully isolated, attracting much attention because of their direct band gaps of 1.9⁵ and 1.55 eV,²⁴ respectively. Recent studies show that these systems could be promising for novel optoelectronics devices, such as two-dimensional light detectors and emitters.²⁵ Furthermore, Lukowski et al.⁶ and Voiry et al.⁷ have recently shown that both MoS₂ and WS₂ exfoliated nanosheets in the strained metallic centered honeycomb T structure are highly effective as electrocatalysts in the hydrogen evolution reaction. This effect is due to the high density of active sites at the edges of the nanosheets in the T structure, representing the first application of the metallic T polymorph of layered metal chalcogenides in catalysts.⁷,¹⁷ As for graphene and other 2D materials⁸ that can be cut as quasi-one-dimensional (1D) structures in the form of nanoribbons,²⁶–²⁸ some 2D-MX₂ and metal oxides also exist as 1D structures or nanoribbons.²⁹ Because of quantum confinement effects, particularly at the edges,¹⁷,²⁸ 1D compounds present properties...
The NiSe$_2$. Theoretically, 2D-NiSe$_2$ can occur in both the T and H structure. Here we focus on a representative MX$_2$ compound, NiS$_2$, NiSe$_2$, NiTe$_2$, NbS$_2$, NbSe$_2$, and NbTe$_2$ are stable in the T structure. In fact, the prediction indicates that some of them do not exist in the commonly reported H structure but only in the T structure.

To the best of our knowledge, we report the first DFT structural and electronic study of 1D-MX$_2$ ribbons with stable T structure. We focus on a representative MX$_2$ compound, the NiSe$_2$. Theoretically, 2D-NiSe$_2$ can occur in both the T and H structure, with the T structure being more favorable. Whereas NiSe$_2$ is a nonmagnetic metal in the H structure, with the T structure being a semiconductor in the T structure, making it more attractive to possible electronic applications.

In this work, we are interested in 2D-MX$_2$ nanoribbons for several reasons. The first is to study the possibility of tailoring the electronic properties either by manipulating the width or by H saturation. The second is to look for a catalytic behavior due to the possibility of having metallic/chalcogenide edges in addition to the possibility of having magnetic effects. Previous experience with other nanoribbons obtained from 2D materials has shown that interesting effects arise, so our study is also motivated by a natural curiosity about such interesting compounds, especially for centered honeycomb structures (T). The outline of this manuscript is the following. We start with the reproduction of the centered honeycomb NiSe$_2$ single layer. We demonstrate the stability of ribbons of NiSe$_2$ with widths from 9 to 35 Å. Our ribbons present six different edge terminations for zigzaglike edges and two for armchair edges. The electronic properties of these eight families are presented. All these families were hydrogen-passivated. For the semiconductor ribbons we present the variation in band gap with the ribbon width. Electron densities and specific orbitals are also analyzed.

METHODOLOGY

In this work, all ab initio calculations were performed with the Quantum ESPRESSO plane wave DFT and density functional theory (DFT) code, available under the GNU Public License. Scalar relativistic, spin polarized, and nonspin polarized calculations were performed for all the studied nanoribbons and 2D systems. The starting magnetization was randomly set to 1/2 on Ni type atoms. To include spin–orbit interaction, the same calculations were performed using the full relativistic potentials. A plane-wave basis set with a cutoff of 612 eV was used. An ultrasoft pseudopotential from the standard distribution generated using a modified RRKJ approach and the generalized gradient approximation (GGA) for the exchange-correlation functional in its PBE parametrization were used. Calculations were done for 2D structures and both nanoribbons, bare and hydrogen-passivated.

![Figure 1. Electronic density of states without spin–orbit interactions and structure for the honeycomb (H) and centered honeycomb (T) lattices. Insets (a) and (b) are the T and H structures in the xy plane, respectively. Insets (c) and (d) display the T and H structures in the xz plane, respectively. We use slightly different colors to indicate which Se atoms are in the bottom layer (light yellow) and which are in the top layer (yellow). Ni atoms are in the middle layer (blue).](image1)

![Figure 2. Nomenclature used to classify nanoribbons. Building blocks for the zigzag and armchair ribbons. For zigzag ribbons n$_1$, n$_2$, n$_3$, n$_{n-1}$, n$_{n-2}$, and n$_{n}$ could be Se or Ni and z is the total number of rows in the nanoribbon. In the armchair case, the dotted line indicates if opposite edges present the Ni-aligned-Ni or Ni-centered-Se configurations. Large (blue) and small (yellow) circles represent Ni and Se atoms.](image2)
passivated. All atomic positions and lattice parameters were optimized using the conjugate gradient method. The convergence for energy was chosen as 10^{-7} eV between two consecutive steps, and the maximum forces acting are smaller than 0.05 eV/Å. To test the reliability of this cutoff force, several structures were relaxed using forces smaller than 0.01 eV/Å; no fundamental differences with the 0.05 eV/Å cutoff were found. The stress in the periodic direction is in all cases lower than 0.01 GPa.

Rectangular supercells were built for the zigzag and armchair nanoribbons starting from the 2D T structure. The supercells were periodic in the $x-$direction, with lattice parameters $a = 3.51$ and $a = 6.08$ Å, respectively. To simulate isolated ribbons, the inplane and perpendicular distances between ribbons in adjacent supercells have to be larger than 10 Å. In the case of ribbons, the cell optimizations were just in the x-direction. The Brillouin zones of the unit cells were sampled by Monkhorst-Pack grids of the form $16 \times 16 \times 1$ for the 2D structures and $16 \times 1 \times 1$ for the 1D structures. Depending on their width, ribbons present different edge terminations, defining the ribbon families. Six possible edge terminations are found for the zigzag ribbons and two for the armchair; therefore, here we studied six zigzag families and two armchair families. All ribbons were also hydrogen-passivated.

Figure 1 shows the structure in the xy and xz planes of the T and H configurations. We classified the zigzag terminations according to the three bottom atomic lines and the three top atomic lines (Figure 2a). The ribbon with bottom $n_1n_2n_3$ atoms lines (y-direction as reference) and top $n_zn_{z-1}n_{z-2}$ atoms lines is called $n_1n_2n_3n_{z-2}n_{z-1}n_z$ ribbon, where n_1, n_2, n_3, n_{z-2}, n_{z-1}, and n_z could be Se or Ni and z is the total number of rows in the nanoribbon. Zigzag ribbons have the restriction that $n_1n_2n_3$ and $n_{z-2}n_{z-1}n_z$ occurs in the cyclic order NiSeSe because

Figure 3. Graphical representation of the six root zigzag ribbons, both bare and H-passivated. Large (blue), medium (yellow), and small (aqua) circles represent Ni, Se, and H atoms, respectively.
of the crystal periodicity. The six representative zigzag edge terminations are shown in Figure 3.

In the case of armchair nanoribbons, two representative families appear; we call them Ni-aligned-Ni and Ni-centered-Se (Figure 2b). We chose this nomenclature according to the atomic symmetry of the opposite edges with the dotted lines in Figure 2.

Eight root ribbons were built as case studies to characterize the edge structure and electronic properties of each family; six for the zigzag families and two for the armchair families (Figures 3 and 4, respectively). Throughout this work we will mainly work with these eight ribbons. After structure relaxation of the root ribbons, their electronic properties were investigated. All root nanoribbons were hydrogen passivated to satisfy the surface dangling bonds. The hydrogen-passivated ribbons were also relaxed, and their electronic properties were investigated. The semiconductor ribbons are expanded to ∼35 Å to find the variation of electronic band gap with ribbon width.

RESULTS AND DISCUSSION

Structure and Stability

To reproduce the results reported in ref 3, 2D-NiSe₂ sheets were built and geometry optimized in the T and H configurations (see Figure 1) with a total energy for the T structure 0.45 eV lower than that of the metastable H structure. In the T structure, the Ni−Se and Se−Se interatomic distances were 2.39 and 3.25 Å respectively, with a band gap of 0.11 eV. Metastable H-NiSe₂ presents Ni−Se and Se−Se interatomic distances of 2.41 and 2.63 Å, respectively, with a metallic behavior. Phonon modes for both structures were calculated to guarantee the stability. Negative frequencies were not found in either case, an indication of the stability of both structures. Without the spin−orbit interaction, all these results are in good agreement with those reported in ref 3, validating our calculations and the starting system for building our nanoribbons. The spin−orbit interaction was not considered in the report by Ataca et al., therefore, one cannot make comparisons in such cases. However, it is known that spin−orbit interaction is very important for transition-metal chalcogenide compounds in the band structure by splitting of the valence band.

The cohesive energy of T and H systems relative to free constituent atoms was calculated as $E_C[NiSe_2] = E_T[Ni] + 2E_T[Se] - E_T[NiSe_2]$, in terms of the total energy of NiSe₂, $E_T[NiSe_2]$, and total energies of free Ni and Se atoms, $E_T[Ni]$ and $E_T[Se]$, respectively. The cohesive energies are 12.51 and 12.06 eV for T and H structures, respectively, indicating a strong cohesion relative to free atoms of the constituents. A high cohesion energy is required for stability of the compound, but more important for the synthesis is the formation energy (E_f) with respect to bulk systems, calculated with the expression $E_f = E_C[NiSe_2] - E_C[Ni] - 2E_C[Se]$. Natural references for the formation energy of this compound are the corresponding Ni and Se. The formation energy for T- and H-NiSe₂ systems are 0.81 and 0.36 eV, respectively; the higher the value, the more stable the system. Formation energies were also investigated.

Table 1. Cohesive and Formation Energies for 2D Systems, Bare and H-Passivated Zigzag and Armchair Nanoribbons, with the Corresponding Electronic Gap

<table>
<thead>
<tr>
<th>family</th>
<th>system name</th>
<th>cohesive energy per atom (eV)</th>
<th>formation energy per atom (meV)</th>
<th>electronic gap (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>bare</td>
<td>passivated</td>
<td>bare</td>
</tr>
<tr>
<td>2D</td>
<td>T-NiSe₂</td>
<td>4.17</td>
<td>–</td>
<td>270.0</td>
</tr>
<tr>
<td></td>
<td>H-NiSe₂</td>
<td>4.02</td>
<td>–</td>
<td>120.0</td>
</tr>
<tr>
<td>zigzag</td>
<td>NiSeSe–seSeni</td>
<td>4.07</td>
<td>5.90</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>NiSeSe–SeNiSe</td>
<td>4.06</td>
<td>5.48</td>
<td>94.2</td>
</tr>
<tr>
<td></td>
<td>NiSe–NiSe</td>
<td>3.97</td>
<td>5.59</td>
<td>78.1</td>
</tr>
<tr>
<td></td>
<td>SeNiSe–SeNiSe</td>
<td>4.05</td>
<td>5.13</td>
<td>152.0</td>
</tr>
<tr>
<td></td>
<td>SeNiSe–NiSe</td>
<td>4.00</td>
<td>5.21</td>
<td>154.1</td>
</tr>
<tr>
<td></td>
<td>SeSeNi–NiSe</td>
<td>3.92</td>
<td>5.28</td>
<td>119.4</td>
</tr>
<tr>
<td>armchair</td>
<td>Ni-aligned-Ni</td>
<td>4.01</td>
<td>5.69</td>
<td>107.2</td>
</tr>
<tr>
<td></td>
<td>Ni-centered-Se</td>
<td>4.04</td>
<td>5.44</td>
<td>135.4</td>
</tr>
</tbody>
</table>

All these results are without spin−orbit interaction. The contribution of this interaction is about 0.011 eV in the total energy, and 2D-T-NiSe₂ becomes a metal. Band gaps in ribbons are also reduced on the order of 0.1 eV.
calculated with the experimental values of cohesive energies from ref 49 as 3.20 and 2.74 eV for T and H structures, respectively. Both E_f values are positive, implying that T-NiSe$_2$ and H-NiSe$_2$ are stable and metastable, respectively, as previously reported by Ataca et al.\(^3\)

We built our root nanoribbons by cutting them off the 2D sheet of the relaxed T-2D-NiSe$_2$ structure in the zigzag and armchair directions (Figures 3 and 4). Their E_C and E_f energies were calculated using the expressions $E_C = (nE_C[\text{Ni}] + mE_C[\text{Se}] + pE_C[\text{H}] - E_T[\text{NiSe}_2])/(n + m)$ and $E_f = (E_C[\text{NiSe}_2] - nE_C[\text{Ni}] - mE_C[\text{Se}] - pE_C[\text{H}])/(n + m)$, where n, m, and p are the number of Ni, Se, and H atoms, respectively; $p > 0$ only for H-passivated ribbons. For the E_f of hydrogen-terminated ribbons, we used our calculated binding energy for H$_2$ of 3.25 eV/atom. Bare ribbons present positive E_C ranging from 3.92 to 4.07 eV/atom, which indicates strong cohesion relative to the free constituent atoms (Table 1). The three bare root systems with lower cohesive energies are NiSeSe-NiSeSe, SeNiSe-NiSeSe, and SeNiSe-NiSeSe, all of which are characterized by two consecutive lines of semiconductor atoms at one or both of the edges. Table 1 also includes the E_f/atom for all bare ribbons. Bare SeNiSe-SeNiSe, SeNiSe-NiSeSe, and Ni-centered-Se nanoribbons present an E_f with values between the range of the T- and H-2D structures.

Relaxation of the armchair ribbon edges results in an increment of the edge Ni-Se distance of 1.67% with respect to...
that of the bulk Ni–Se distance, while the edge Se–Ni–Se angle is reduced by 24%. As mentioned before, all root ribbons were hydrogen passivated. In the T-NiSe₂ 2D structure, each Ni atom is bonded to six Se atoms and each Se atom is bonded to three Ni atoms. In contrast, ribbon edges present dangling bonds that were satisfied with hydrogens for passivation. We call natural passivation the one shown in Figure 3d–f,j–l and Figure 4c,d for zigzag and armchair ribbons, with a hydrogen atom added to the system to complete the six and three bonds for each Ni or Se edge atoms.

After H passivation and geometry relaxation of the ribbons, H−Se and H−Ni distances are ∼1.49 and ∼1.47 Å, respectively. According to Table 1, zigzag families with the terminations seen in Figure 3g,h are the only ones with a formation energy between the H and T structures. As a result, they are the most likely to be observed experimentally, as is confirmed by the fact that passivation easily sweeps edge states, leading to semiconductor nanoribbons. Such results are explained in a simple way by looking at the number of dangling bonds per unit length. To do this, it is important to keep in mind that each Ni is coordinated with six Se by p–d hybridized ionic bonds. Thus, for cases a, b, c, and i in Figure 3, in at least one of the edges, three bonds are broken per unitary cell edge, whereas in cases g and h in Figure 3, two are produced. Thus, structures with outer Ni are discouraged because many bonds are cut for each Ni. Furthermore, such cuts produce a strong charge concentration at the Ni edge sites.

Table 2. Average Binding Energy for Different H-Passivation Densities for the Six Zigzag Nanoribbons

<table>
<thead>
<tr>
<th></th>
<th>natural passivation</th>
<th>alternative passivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni₅Se₆−Se₆Ni</td>
<td>H6 3.05</td>
<td>H4 3.09</td>
</tr>
<tr>
<td>Ni₄Se₅−Se₅Ni</td>
<td>H5 3.12</td>
<td>H4 3.15</td>
</tr>
<tr>
<td>Ni₅Se₅−Ni₅Se</td>
<td>H6 3.23</td>
<td>H5 3.34</td>
</tr>
<tr>
<td>Se₅Ni₃−Se₅Ni</td>
<td>H4 3.24</td>
<td>H2-Ni 2.78</td>
</tr>
<tr>
<td>Se₄Ni₅−Se₄Ni</td>
<td>H5 3.16</td>
<td>H4 3.26</td>
</tr>
<tr>
<td>Se₂Ni₃−Ni₂Se</td>
<td>H6 3.31</td>
<td>H4 3.42</td>
</tr>
</tbody>
</table>

aNatural passivations are indicated in bold.

atom is bonded to six Se atoms and each Se atom is bonded to three Ni atoms. In contrast, ribbon edges present dangling bonds that were satisfied with hydrogens for passivation. We call natural passivation the one shown in Figure 3d–f,j–l and Figure 4c,d for zigzag and armchair ribbons, with a hydrogen atom added to the system to complete the six and three bonds for each Ni or Se edge atoms.

After H passivation and geometry relaxation of the ribbons, H–Se and H–Ni distances are ∼1.49 and ∼1.47 Å, respectively. According to Table 1, zigzag families with the terminations seen in Figure 3g,h are the only ones with a formation energy between the H and T structures. As a result, they are the most likely to be observed experimentally, as is confirmed by the fact that passivation easily sweeps edge states, leading to semiconductor nanoribbons. Such results are explained in a simple way by looking at the number of dangling bonds per unit length. To do this, it is important to keep in mind that each Ni is coordinated with six Se by p–d hybridized ionic bonds. Thus, for cases a, b, c, and i in Figure 3, in at least one of the edges, three bonds are broken per unitary cell edge, whereas in cases g and h in Figure 3, two are produced. Thus, structures with outer Ni are discouraged because many bonds are cut for each Ni. Furthermore, such cuts produce a strong charge concentration at the Ni edge sites.
which is a small change in contrast with other systems presenting corrections on the order of 0.5 eV.\ref{47,48} In particular, zigzag nanoribbons are divided into two groups according to their edge topology: (i) those with outermost Ni atomic line (NiSeSe–SeSeNi, NiSeSe–SeNiSe, and NiSeSe–NiSeSe, Figure 3a–c, and their corresponding H passivations, Figure 3d–f) and (ii) those with outermost Se atomic lines (SeNiSe–SeNiSe, SeNiSe–NiSeSe, and SeSeNi–NiSeSe, Figure 3g–i, and their corresponding passivations, Figure 3j–l).

All bare and hydrogen passivated zigzag nanoribbons of the first group were found to be metallic, as seen in Figure 5a–c, g–i, while within the group with outermost Se, H passivation causes metal–semiconductor transitions in two nanoribbons as shown in Figure 5j,k. These results and the corresponding gaps for the root systems are summarized in Table 1. According to those results, the stabelst zigzag ribbon is the SeNiSe–NiSeNi, which is found to have semiconductor behavior for all calculated widths (Figure 7). In contrast, we found that as the width of the SeNiSe–NiSeNi ribbon increases, the system presents a semiconductor–metal transition at \(\sim 23.55 \) Å.

These results point out the importance of the nanoribbon termination nature. For example, it is widely believed that semiconductor nanostructures always have a larger band gap than their bulk 2D values because of quantum confinement effects.\ref{45} However, our results (without spin–orbit interaction) and a previous report indicate that bulk T-NiSe\(_2\) is a semiconductor, while their corresponding nanoribbons are metallic. This is surprising because one would expect to recover the bulk behavior in the limit of an infinite width. This apparent paradox is explained in two ways. When the spin–orbit interaction is included, T-NiSe\(_2\) turns out to be metallic; thus, the limit is obtained in a neat way. Without spin–orbit interaction, as reported by Ataca et al.,\ref{45} such discrepancy can be easily explained by studying the nature of the states at the Fermi energy. As will be discussed below, such states are localized at the edges, as already suggested by the dispersive shape of highest valence and lowest conduction bands. Thus, as the width increases, the DOS at the Fermi energy goes to zero. Supporting our observation, we can cite that a similar situation occurs for MoSe\(_2\). From experiments and simulations, it is known that bulk 2D MoSe\(_2\) is a semiconductor whereas bare and hydrogenated zigzag nanoribbons are always metallic.\ref{29,23} NiSe\(_2\) is more complex than MoSe\(_2\) because in NiSe\(_2\) T-like structures, the geometry allows edge atoms composed of chalcogenides, i.e., an outermost Se atomic line. In cases such as these, we have found that under passivation become semiconductors.

Before finishing this section, let us explore other possible edge hydrogen passivation densities for all root zigzag ribbons. The hydrogen binding energy (\(E_h \)) was used as an indicator of higher or lower stability, see Table 2, where the notation goes as follows: The natural hydrogenation for the ribbon is obtained by passivating Ni and Se outermost atoms, satisfying all dangling bonds, as indicated in Figure 3. The corresponding natural passivations are indicated in bold in Table 2. In such cases, the label HN, where \(N = 4, 5, \) or 6, denotes the number of hydrogens in the unitary cell. Alternative passivations are obtained by removing hydrogen atoms from natural edge passivations with more than one hydrogen. In such cases, the same notation HN is used to denote the total number of hydrogens, provided that the removal of bonds is symmetric in both edges. Table 2 also includes the special case SeNiSe–NiSeNi in which either Ni or Se is unpassivated, denoted by H\(_2\)-Ni and H\(_2\)-Se respectively. This was done to understand...
why SeSeNi–NiSeSe nanoribbons returned to SeNiSe–SeNiSe by dissociation of SeH2 molecules, as explained below.

From Table 2, we can summarize the results as follows: in general, the binding energy increases as the density decreases, except for H2 SeNiSe–SeNiSe. It is worth mentioning that all metallic passivated systems remained metallic and the two semiconductors became metallic when reducing the hydrogenation densities.

Armchair Nanoribbons. All calculated root armchair bare-termination nanoribbons, without considering spin–orbit interaction, are semiconductors with a very small band gap: 0.045 and 0.061 eV for Ni-aligned-Ni and Ni-centered-Se, respectively. The spin–orbit interaction reduces the band gaps and leads to metallic nanoribbons as expected for the bulk. Bare terminated armchair ribbons were built with widths from 10 to 30 Å, and only the root ribbons are semiconductors. In this work, the largest electronic band gap is for hydrogen-passivated armchair nanoribbons with gaps of 0.59 and 0.38 eV for passivated root Ni-aligned-Ni and passivated root Ni-centered-Se nanoribbons, respectively. In Figure 7, the variation of electronic band gap for hydrogen-passivated ribbons is reported. The tendency of the band gap without spin–orbit interaction for the armchair follows the expression \(E(w) = 0.11 + ae^{-w/d} \), where \(a = 0.96 \text{ eV}, \lambda = 14.21 \text{ Å} \), and \(w \) is the ribbon width. Taking into account the spin–orbit interaction, the tendency is \(E(w) = de^{-w/\lambda_s} \), where \(d = 1.12 \text{ eV}, \lambda_s = 13.45 \text{ Å} \), and \(w \) is the ribbon width.

Overall Picture of Electronic Properties. All the electronic properties can be explained using some simple physical observations. There are three mechanisms that modulate the electronic properties of the nanoribbons when compared with those of the bulk material: (i) quantum confinement, (ii) edge topology, and (iii) interaction between edges. Quantum confinement is evident only for semiconducting nanoribbons, as was discussed previously, where the gap diminishes as the width increases. Without considering spin–orbit interaction, edge effects lead to metallic nanoribbons in an otherwise semiconducting material. This can be explained only if edge states appear inside the gap observed in the bulk but modulated by quantum confinement. Such gap filling can be understood in

Figure 10. Charge density for the corresponding root zigzag and armchair semiconductors ribbons. Red and blue electronic clouds are maximum valence and minimum conduction bands, respectively. The isovalue for the surface is taken as 0.01 electron/Å². Large (blue), medium (yellow), and small (aqua) circles are Ni, Se, and H atoms, respectively.
a rough way using the Lifshitz equation,\(^{44}\) considering that edge atoms are similar to impurities. In the present case, edge states appear because of dangling bonds. As explained in the section on stability, lines of outer Ni atoms increase the number of broken p–d hybrid bonds per unit length, as in Figure 5a–c. In Figure 5g–i, edge states are still observed, but the bands are pushed to lower energies, as expected. To confirm the nature of states around \(E_g\), we have computed the partial density of states (pDOS) at Ni and Se atoms at edges and deep inside the nanoribbons (Figure 8). The results in Figure 8d confirm the appearance of a pseudogap at \(E_g\) for Ni atoms inside the nanoribbon, whereas the pseudogap is filled for Ni at the edges (see Figure 8a). As can be seen in Figure 8a,b, edge states are made mainly from d states of the Ni with a contribution from p states of Se, as expected. For semiconducting ribbons, the states near the bandgap are also dominated by Ni d orbitals and Se p orbitals, as seen in Figure 9.

An analysis of the charge for states near \(E_g\) indicates how the interaction between edges can be very important for narrow systems. For example, in Figures 5j,k and 6a–d, we show the band structure of the semiconductor root systems with the highest occupied and the lowest unoccupied bands. The highest occupied and lowest unoccupied orbitals are also illustrated in Figure 10. The SeNiSe–SeNiSe root ribbon presents a symmetrical distribution of both orbitals with respect to the \(x\) axis. In contrast, the SeNiSe–NiSeSe system shows an accumulation of the top valence orbital on the ribbon’s bottom SeNiSe edge, whereas the bottom conduction orbital localizes on the ribbon’s top NiSeSe edge. Both systems are indirect semiconductors.

Regarding the armchair ribbons, the band structure and highest occupied and lowest unoccupied orbitals are also shown in Figure 6. In this case, all the ribbons present symmetry of the orbitals with respect to the \(x\) axis and the band gaps are indirect.

Concerning the possibility of applications, some recent studies\(^ {5,7}\) show that centered honeycomb nanostructures enhance electrocatalytic activity because of the high concentration of metallic edges. This suggests that in the present study, NiSeSe–SeSeNi will be the best candidate as a catalyst for hydrogen evolution, but NiSeSe–SeNiSe and NiSeSe–Ni SeSe will also be used for the same process.

\section*{Summary}

This work pioneers the ab initio studies of centered honeycomb nanoribbons, defining the representative ribbon’s families and opening the field to study to other systems in the T structure. In this work, we use first-principles calculations with and without spin–orbit interaction to explore the different atomic arrangements for NiSe$_2$, nanoribbons in the stable T crystalline structure. Zigzag bare-nanoribbons geometrical reconstruction leads to metallic systems, whereas just two hydrogen-passivated nanoribbons are semiconductors. NiSeSe–SeSeNi has the largest metallic edge, suggesting that this ribbon could be a possible candidate as a catalyst for hydrogen evolution. SeNi Se–SeNiSe is the stabellest zigzag nanoribbon. Studies of edge H passivation densities reveals that SeNiSe–Ni edges are prone to convert to SeNiSe by a SeH$_2$ desorption mechanism. Only thin bare armchair nanoribbons are semiconductors with a very small band gap (0.045 and 0.061 eV); thicker nanoribbons are metals. When armchair ribbons are hydrogen-passivated, the band gaps increase considerably to values up to \(\sim 0.6\) eV. The study of the variation in electronic band gap with the width was done, and we report the asymptotic tendency to T-NiSe$_2$ band gap (0.11 eV) for armchair passivated nanoribbons. All these results are explained in terms of three basic mechanisms: quantum confinement, edge topology, and, for narrow nanoribbons, by the interaction between edges because of an asymmetrical distribution of charges. Also, we found that the inclusion of the spin–orbit interaction indicates that the bulk T-NiSe$_2$ is a metal instead of a semiconductor as was reported in a previous calculation that did not include such relativistic effects.\(^ {47}\) The identification of possible nanoribbons as a catalyst suggests that more work is needed to elucidate its properties, such as the identification of Raman-active modes. Such properties will be the subject of future research.

\section*{Acknowledgments}

The authors thank DGTEC-UNAM. J.A.R.-R. acknowledges support from DGAPA-UNAM. G.G.N. acknowledges support from DGAPA-UNAM Project 102513. This work was completed under the support of FICSAC with the program Attraction of Visiting Academics 2012 and by the Physics and Mathematics Department of UIA.

\section*{References}

\begin{enumerate}
\item Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc; et al. Large-Area Synthesis of High-
\end{enumerate}

