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1. Introduction

Contrary to the parabolic dispersion of charge carriers in 
most materials, the quasiparticles in graphene exhibit a linear 
relation between energy and momentum, and thus behave 
as massless relativistic fermions [1]. Consequently, the low-
energy description for the quasiparticles in graphene is given 
by the massless Dirac equation, with an effective ‘speed of 
light’ of ×8 105 m s−1. This property results in a number of 
unprecedented features, such as Klein tunneling effect, spe-
cific integer and fractional quantum Hall effect, a ‘minimum’ 
conductivity of  ∼4e2/h even when the carrier concentration 
tends to zero, weak antilocalization, high mobilities of up to 

     − −10 cm V s6 2 1 1, universal transmittance expressed in terms of 
the fine-structure constant, among others [2–4].

Graphene, also shows unique mechanical properties [5]. 
Suffice it to say that graphene has an effective Young mod-
ulus of  ∼1 TPa and simultaneously, can reversibly withstand 
elastic deformations up to 25% [6]. This unusual interval of 
elastic response has opened a new opportunity to explore the 

strain-induced modifications of the its electrical, chemical 
and optical properties, and thus, to improve its technological 
functionality. For example, a band-gap opening has been 
achieved by using an uniaxial strain [7, 8]. On the other hand, 
via stretching of the supporting flexible substrate, produces 
impressive increases in the chemical reactivity of graphene 
[9]. Also, the nonlinear response of nanoelectromechanical 
graphene resonators has opened up new device applications 
[10, 11]. Very recently, the modulation of the transmittance 
for graphene under an arbitrary uniform strain has been quan-
tified [12, 13]. Moreover, from a view point of basic research, 
strained graphene provides a platform for studying exotic 
properties such as fractal spectrum [14, 15], mixed Dirac–
Schrödinger behavior [16, 17], emergent gravity [18, 19], 
topological insulator states [20, 21], among others [22].

Nevertheless, among the most interesting strain-induced 
implications one can cite the experimental observation of 
a spectrum resembling Landau levels in strained graphene  
[23, 24], which was predicted earlier by means of gauge fields 
[25, 26]. Starting from a tight-binding elasticity approach, in 
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the continuum limit, one can predict the existence of these 
strain-induced gauge fields. Thus, a nonuniform deformation 
of the lattice can be interpreted as a pseudomagnetic field, 
which has been deeply explored [27–33]. However, within the 
same theoretical framework, a time-dependent deformation 
gives rise to a pseudoelectric field but its consequences have 
been less considered [34–37].

The principal motivation of the present work is to deter-
mine the consequences of a strain wave (a time-dependent 
deformation) on electron motion in graphene. This paper is 
organized as follows. In section  2 we discuss the effective 
Dirac Hamiltonian for graphene under a strain wave whereas 
in section 3, we obtain the corresponding solutions. Section 4 
contains discussions and conclusions.

2. Graphene under a strain wave

Consider a time-dependent deformation field of the graphene 
lattice ( )u x y t, ,  described by

( ( ))ω= −u u Gy t0, cos ,0 (1)

under the condition of continuum limit where π� �u a G2 /0 0 , 
i.e. the atomic displacement u0 is much less than the unstrained 
carbon-carbon distance a0 while the wavelength π G2 /  is much 
greater than a0. This deformation wave propagates along the 
y direction with a velocity ω= ≈ ×v G/ 2 10s

4 m s−1, which 
is assumed to be equal to the sound velocity in graphene [38]. 
As illustrated in figure  1(a), we chose the arbitrary coordi-
nate system xy in such a way that it is rotated an arbitrary 
angle θ respect to the crystalline coordinate system x y0 0. For 
the latter, the x0-axis points along the zigzag direction of gra-
phene sample. Thus, for θ = 0 the deformation wave moves 
along the armchair direction of graphene lattice, whereas for 
θ π= /2, it moves along the zigzag direction.

As discussed extensively in the literature, the electronic 
consequences of a nonuniform strain can be captured by 
means of an effective gauge field A, which in the rotated frame 
xy is given by [39],

(( ) )

( ( ) )

β
θ θ

β
θ θ

= − −

= − − −

A
a

u u u

A
a

u u u

2
cos 3 2 sin 3 ,

2
2 cos 3 sin 3 ,

x xx yy xy

y xy xx yy

0

0

 (2)

where β� 3 is the electron Grüneisen parameter and 
( )= ∂ + ∂u u u /2ij i j j i  is the symmetric strain tensor. From 

the expression for the effective gauge field, it is clear that A 
exhibits a periodicity of π2 /3 in θ, which reflects the discrete 
rotational invariance, i.e. the trigonal symmetry, of the under-
lying honeycomb lattice. As is well known, in graphene there 
are two inequivalent Dirac cones, located at special points of 
high-symmetry of the reciprocal lattice and usually denoted 
by K and ′K . The fictitious field (2) has opposite signs at 
different valleys [4]. If for the valley K the effective gauge 
field is A, then for the other valley ′K  is given by −A. This 
reflects the fact that elastic deformations do not violate the 
time-reversal symmetry [40]. Here, for simplicity we will deal 

with the K valley, since the other is analog and obtainable by 
simply changing the sign of A.

For the case of the deformation field (1), from (2), the fol-
lowing effective gauge field results:

( )( )β
ω θ θ= − −A

u G

a
Gy t

2
sin cos 3 , sin 3 .0

0
 (3)

Hence the strain wave (1) gives rise to a pseudoelectro-
magnetic wave propagating along the y-axis at the velocity 
vs. Here the associated pseudomagnetic field given by 

A Ax y y x∂ − ∂  oscillates perpendicularly to the graphene 
sample (see figure  1(b)). On the other hand, the associated 
pseudoelectric field given by −∂At  oscillates in the sample 
plane but, in general, it is not perpendicular to the propaga-
tion direction of the strain wave. Let us illustrate this peculiar 
behavior. For example, for θ π π=± + n/2 2 /3, i.e. when the 
strain wave moves along the zigzag direction, the pseudoe-
lectric field oscillates along the propagation direction of the 
pseudoelectromagnetic wave. Thus, for θ π π=± + n/2 2 /3, 
the pseudoelectromagnetic wave (3) behaves more like a sort 
of longitudinal mechanical wave. Also, notice that for this case 
the pseudomagnetic field is zero. In contrast, for θ π= n /3, i.e. 
when the strain wave moves along the armchair direction, the 
pseudoelectric fields oscillates transversally to the propagation 

Figure 1. (a) Schematic representation of a sound wave in graphene 
sample. The dark regions represent zones of higher density 
of carbon atoms in graphene sample. In the inset, the relation 
between the arbitrary coordinate system xy and the crystalline 
coordinate system x y0 0 is shown. (b) Unstrained graphene under 
a pseudoelectromagnetic wave: an equivalent description to the 
problem of strain wave. The pseudoelectric field lie in graphene 
plane, whereas the pseudomagnetic field is perpendicular to the 
graphene sample.
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direction of the pseudoelectromagnetic wave, as the expected 
behavior of a real electromagnetic wave.

Then including the strain-induced gauge field via minimal 
coupling, the effective Dirac equation reads

( )σ Ψ Ψ⋅ − ∇ − = ∂� �Av i i ,tF (4)

where = ×v 8 10F
5 m s−1is the Fermi velocity and ( )σ σ σ= ,x y  

are Pauli matrices acting on sublattice space. This equa-
tion describes low-energy excitations of the electronic system 
in graphene under the strain wave.

3. Volkov-like states

From (3) one can clearly distinguish the periodicity of the 
effective gauge field A along the time direction. Therefore, 
one could think the standard use of the Floquet theory to 
analyze time-periodic Hamiltonians [41]. At the same time, 
A presents space periodicity along the y-direction, so that, 
Bloch (Floquet) theory could also be used. However, since A 
ultimately depends upon the plane phase φ ω= −Gy t of the 
wave, to solve (4), we propose a spinor wavefunction Ψ of the 
form [42]

( ) [ ( )] ( )φΨ Φ= + − �x y t k x k y Et, , exp i / ,x y (5)

and then, a Floquet analysis could be translated to the effec-
tive equation of the spinor ( )φΦ , as carried out in [43]. In rela-
tivistic mechanics, this procedure is equivalent to a jump into 
the light-cone frame of reference. In principle, E k k, ,x y are 
just parameters of the ansatz. However, to recover the solution 
for an electron in undeformed graphene, obtained as →A 00 , 

it is needed that ( )=± + −�E v k kx yF
2 2 1/2, as is done in similar 

relativistic problems [43–45].
Our ansatz (5) was firstly used by Volkov to find exact solu-

tions of the Dirac equation  for relativistic fermions under a 
plane electromagnetic wave in vacuum [42]. It is worth men-
tioning that only in the case when the electromagnetic wave 
propagates in vacuum the solutions of the Dirac equation can 
be found in a simple closed form, these are the Volkov states. 
However, when one consider the interaction with a plane wave 
propagating in a medium with an index of refraction ≠n 1m , 
the mathematical complexity of the Dirac equation is largely 
increased, and in fact, it is a problem with a long history (see 
for example [46, 47] and references therein).

Comparing our problem, given by (3) and (4), with the 
standard problem of real relativistic fermions under a plane 
electromagnetic wave in a medium with an index of refrac-
tion nm, one can recognize the following. The Fermi velocity 
vF plays the role of the speed of light in vacuum c, whereas 
the strain wave velocity vs plays the role of the electromag-
netic wave speed c/nm in a medium. From this analogy, one 
can think that our pseudoelectromagnetic wave propagates in 
a medium with effective index of refraction = >n v v/ 1m sF , 
which is a different limiting than the one considered in the 
real electromagnetic case where nm  <  1 [48]. Only in the 
hypothetical case that =v vsF , one can obtain the usual Volkov 
states [49].

Substituting (5) into (4) and taking into account �v vsF , we 
obtain the following differential system for the components of 
spinor ( )φΦ ,

( ˜ ˜ ˜ ) ˜

( ˜ ˜ ˜ ) ˜

φ
φ

φ
φ

Φ
= − − Φ − Φ

−
Φ
= + − Φ − Φ

θ

θ−

k k A E

k k A E

d

d
i e sin ,

d

d
i e sin ,

B
x y B A

A
x y A B

0
i3

0
i3

 (6)

where we define the non-dimensional parameters: 
˜ =k k G/x y x y, , , ˜ ( )β=A u a/ 20 0 0  and ˜ ( )= �E E v G/ F . This system 
can be reduced to a second-order differential equation for each 
component of spinor ( )φΦ , denoted by ΓA and ΓB. However, 
before it is appropriate to carry out a new ansatz:

( ) [ ˜ ˜ ] ( )φ φ θ φ φΦ Γ= − +k Aexp i i sin 3 cos .y 0 (7)

As a result, from (6) and (7) we obtain that the both com-
ponents ΓA and ΓB satisfy the Mathieu equation (see appendix):

( )
ζ

ζ
Γ
+ − Γ =a q

d

d
2 cos 0,A B

A B

2
,

2 , (8)

where we introduce the variable

( )       ˜ζ φ φ φ= + = k/2, with tan 2 ,x0 0 (9)

and the new parameters

˜       ˜ ( ˜ ) θ= = +a k q A k4 , and 2 1 4 cos 3 .y x
2

0
2 1/2 (10)

Therefore, the general solutions to the components ΓA and 
ΓB are linear combinations of the Mathieu cosine ( )ζC a q, ,  
and Mathieu sine ( )ζS a q, ,  functions. Nevertheless, taking 
into account that when the pseudoelectromagnetic field is 
switched out ( ˜ =A 00 ) the wavefunction Ψ must reduce to a 
free-particle wavefunction, we get

( ) ( ( ) ( ))⎜ ⎟
⎛
⎝

⎞
⎠ζ ζ ζΓ = + αN C a q S a q

s
, , i , , 1

e
,i (11)

where ( ˜ ˜ )α = k ktan /y x , N is a normalization constant and 
s 1=±  denotes the conduction and valence bands, respec-
tively. To make sure that (11) reproduces the case of unde-
formed graphene, it is enough to consider the properties of 
the Mathieu functions for q  =  0: ( ) ( )ζ ζ=C a a, 0, cos  and 
S a a, 0, sin( ) ( )ζ ζ= .

4. Discussion

As it is well documented [50], the stability of Mathieu func-
tions depends on the parameters a and q. In figure 2, the red 
regions in the (a, q)-plane are those for which the solutions 
are unstable (exponential functions) and therefore, are not 
acceptable from a quantum view point. On the other hand, 
the white regions are those for which the solutions are accept-
able wavefunctions. The boundaries between these regions are 
determined by the eigenvalues, an(q) and bn(q), corresponding 
to the π2 -periodic Mathieu functions of integer order, ( )ζce q,n  
and ( )ζce q,n , respectively [50].

J. Phys.: Condens. Matter 28 (2016) 025301
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As a consequence from the properties of Mathieu solutions 
mentioned above, a ‘band structure’ naturally emerges in our 
problem. If one take into account (10), the stability chart in 
the (a, q)-plane is translated into a chart of the allowed bands 
in the ( ˜ ˜k k,x y)-plane, as shown in figure 3(a). When the strain 
wave propagates along the zigzag, θ =cos 3 0, then q  =  0 
and therefore the quasi-wave vector ˜ ( ˜ ˜ )=k k k,x y  can take any 
value. However, from the dependence θ∼q cos 3 , one can 
conclude that for a strain wave propagating along the armchair 
direction ( θ =±cos 3 1), the band gaps in the ( ˜ ˜k k,x y)-plane are 
expanded. Just for the sake of illustration, hereafter we con-
sider θ π= n /3.

In figure 3(a), we display the allowed values of the quasi-
wave vector ˜ ( ˜ ˜ )=k k k,x y  for a strain wave of amplitude 
=u a0.10 0 and moves along the armchair direction. The most 

important result to notice in figure 3(a) is that the quasi-parti-
cles propagate preferably in the y direction, i.e. in the propa-
gation direction of the strain wave leading to a collimation 
effect of the electrons. For example, notice that if ˜ =k 0y , the 
allowed values of k̃x are practically limited to the interval 
(−q A q A/4 , /4c c0 0), where ( )≈ =b q 0.91 0c1 . In other words, 
only low energy quasi-particles propagate perpendicularly to 
the propagation direction of the strain wave. On the contrary, 
for ˜ =k 0x , ˜| |ky  can take all values except basically those of the 
form m/2, where m is a positive integer. This last result is an 
analogous condition as Bragg’s diffraction.

To end, let us point out that the forbidden values of 
the quasi-wave vector k̃ divide the Dirac cone, given by 

˜ ( ˜ ˜ )=± +E k kx y
1/2, into strips of allowed and forbidden values 

of the quasi-energy Ẽ, as illustrated in figure  3(b). Similar 
results for the band structure have been discussed in earlies 
works for the case of a spin-less particle (which obeys the 
Klein-Gordon equation) in a medium (of nm  >  1) irradiated 
with an electromagnetic plane wave [43, 44]. On the other 
hand, our results differ from those reported for graphene under 
an electromagnetic plane wave moves with the velocity of 
light in vacuum ≈c v300 F [48]. The physical reason is simple. 
In our problem, the pseudoelectromagnetic wave moves with 
the velocity of sound ≈v v /40s F .

Vaezi et al [36] reported the possibility of observing a 
nonvanishing charge current in graphene by applying a time-
dependent strain. To archive this edge charge current, it was 
assumed a mass term to provide the presence of a gap in the 
spectrum, which is an essential ingredient to get a quan-
tized response. From figure 3(b) one can be distinguished 
that graphene remains gapless. Therefore, it does not seem 
possible to archive such edge charge currents in graphene 
under the considered approximations. To achieve a gap and 
thus topological modes as happens in the electromagnetic 
case [48], this will require a much higher amplitude of the 
strain than the one considered here since intervalley mixing 
is needed.

This is a consequence that in fact, there is a crucial dif-
ference between magnetic and pseudomagnetic fields. As  
commented above, the coupling constant for pseudomagnetic 
fields has opposite signs for electrons at different valleys, 
whereas for a magnetic field is the same. Since the coupling 
constant is valley anti-symmetric, the currents at the K and 
K′ valleys flow in the opposite directions and they cancel out 
[37]. As a result, in general a pseudoelectric field does not 
cause a net electric current and thus adiabatic pumping is not 
possible as happens in the real electromagnetic fields [48]. 
Notice that in our case, the pseudomagnetic field can be con-
sidered as adiabatic since ω�GvF.

Figure 2. Stability chart as a function of the non-dimensional 
parameters a and q for Mathieu solutions. The regions of stability 
(white domains) and instability (red domains) are divided by the 
characteristic curves an(q) (solid lines) and bn(q) (dashed lines). The 
chart is symmetrical respect to the a-axis.

Figure 3. Collimation effect of electron conduction by strain-
waves. (a) Chart of the allowed bands (white regions) for the 
quasi momentum k̃ (in units of G), with ˜ =A 0.150  and the strain 
wave propagating along the armchair direction. The diagram is 
symmetrical respect to both axes. (b) Dirac cone. Red (blue) strips 
correspond to the forbidden (allowed) values of the quasi-energy 
˜( ˜ ˜ )E k k,x y  (in units of �v GF ), because of the strain wave.
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5. Conclusion

In conclusion, we studied the effects of a strain wave on elec-
tron motion in graphene. The coupling between the quasi-
particles and the strain wave are captured by means of an 
effective pseudoelectromagnetic wave. As solutions to the 
resulting effective Dirac equation, we found Volkov-type 
states, which propagates preferably in the propagation direc-
tion of deformation. Also, we reported a band structure of 
allowed and not allowed values for the quasi-momentum and 
for the quasi-energy. The form of the emergent band struc-
ture depends on the propagation direction of the strain wave 
respect to the crystalline directions of graphene lattice. This 
fact produces a collimation effect of charge carriers by strain 
waves, which should be an alternative mechanism to archive 
electron beam collimation, beyond magnetic focusing [51], 
an external periodic potential [52] or nanostructured heterodi-
mensional graphene junctions [53].
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Appendix

In this section, we present the details of the calculations to 
derive (8) from (6). Note that, the differential system (6) can 
be rewritten as

( ˜ ˜ ˜ ˜ )

˜

( ˜ ˜ ˜ ˜ )

˜

φ
θ φ θ φ

φ
θ φ θ φ

Φ
= − − − Φ

− Φ

−
Φ
= − + + Φ

− Φ

k A k A

E

k A k A

E

d

d
cos 3 sin i i sin 3 sin

,
d

d
cos 3 sin i i sin 3 sin

.

B
x y B

A

A
x y A

B

0 0

0 0

To simplify this system, one can propose that

⎡
⎣⎢

⎤
⎦⎥k A

k A

exp i i sin 3 sin d ,

exp i i sin 3 cos ,

y

y

0

0

( ) ( ˜ ) ( )

[ ˜ ] ( )

∫φ θ φ φ φ

φ θ φ φ

Φ Γ

Γ

= − −

= − +

φ
∗ ∗

and then one get the following differential system

( ˜ ˜ ) ˜

( ˜ ˜ ) ˜

φ
θ φ

φ
θ φ

Γ
= − Γ − Γ

−
Γ
= − Γ − Γ

k A E

k A E

d

d
cos 3 sin ,

d

d
cos 3 sin ,

B
x B A

A
x A B

0

0

for the components of the spinor ( )φΓ . Now, taking second 
derivate one can reduce this last system to a Hill differential 
equation for both components ΓA and ΓB:

E A k A
d

d
cos 3 cos cos 3 sin 0.A B

x A B

2
,
2

2
0 0

2
,[ ˜ ˜ ( ˜ ˜ ) ]

φ
θ φ θ φ

Γ
+ − − − Γ =

However, since in the our problem ˜ ( )β= �A u a/ 2 10 0 0 , 
the second-order terms in Ã0 can be neglected, and taking into 

account that ˜ ˜ ˜= −k E ky x
2 2 2

, then one find that

˜ ˜ ˜ ( )
⎡
⎣
⎢

⎤
⎦
⎥

φ
θ φ φ

Γ
+ − + + Γ =k A k

d

d
1 4 cos 3 cos 0.A B

y x A B

2
,
2

2
0

2
0 ,

where ˜φ = ktan 2 x0 . Finally, if one carry out the variable 

change ( )ζ φ φ= + /20  and define the parameters ˜=a k4 y
2
 

and ˜ ( ˜ ) θ= +q A k2 1 4 cos 3x0
2 1/2 , one obtain (8), which is the 

Mathieu equation.
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