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The relevance of the strain-induced Dirac point shift to obtain the appropriate anisotropic Fermi velocity 
of strained graphene is demonstrated. Then a critical revision of the available effective Dirac Hamiltonians 
is made by studying in detail the limiting case of a uniform strain. An effective Dirac Hamiltonian for 
nonuniform strain is thus reported, which takes into account all strain-induced effects: changes in the 
nearest-neighbor hopping parameters, the reciprocal lattice deformation and the true shift of the Dirac 
point. Pseudomagnetic fields are thus explained by means of position-dependent Dirac cones, whereas 
complex gauge fields appear as a consequence of a position-dependent Fermi velocity. Also, position-
dependent Fermi velocity effects on the spinor wavefunction are considered for interesting cases of 
deformations such as flexural modes.
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1. Introduction

Since its discovery [1], graphene has been subject of many the-
oretical and experimental studies due to the unique array of its 
physical properties [2,3]. In particular, the peculiar relation be-
tween its electronic and its mechanical properties has attracted 
growing interest [4–7]. The unusual long interval of elastic re-
sponse [8] makes it possible observable changes in the electronic 
structure, such as the opening of a bandgap [9,10] or the merg-
ing of Dirac cones [11,12]. The strategy is to use strain engineering 
as a possibility to guide the electrical transport in graphene-based 
devices [13–17].

In the literature there are different theoretical approaches for 
studying the influence of lattice deformations over the electronic 
properties of graphene. A quantum field theoretical approach in 
curved spaces has been alternatively used to predict electronic 
implications due to out-of-plane deformations [18–20]. Also, meth-
ods based solely on symmetry considerations have been applied 
to several problems of strained graphene [21–24]. In particular, 
using group theory techniques, a symmetry analysis has been per-
formed to construct all the possible terms in the low-energy effec-
tive Hamiltonian for graphene in presence of a nonuniform strain 
[24]. More recently, a formulation based on concepts from dis-
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crete differential geometry has shown how the atomistic structure 
of two-dimensional crystalline membranes dictates their mechan-
ical, electronic, and chemical properties [25–28]. Some particular 
analytical results are available for the case of uniaxial strain. For 
periodic strain, a complex fractal spectrum with gaps, localization 
transitions and topological states are obtained [29].

Nevertheless, the most popular theoretical framework for ex-
ploring the concept of strain engineering combines a nearest-
neighbor tight-binding (TB) model and linear elasticity theory 
[4,5]. As is well known, this TB-elasticity approach, in the con-
tinuum limit, predicts the existence of strain-induced pseudomag-
netic fields. These pseudomagnetic fields are described by means 
of a pseudovector potential A which is related to the strain tensor 
ε̄ by [5]

Ax = β

2a
(ε̄xx − ε̄yy), A y = − β

2a
(2ε̄xy), (1)

where a is the unstrained carbon–carbon distance and β is the 
electron Grüneisen parameter. Thus, nonuniform local deforma-
tions of the lattice can be interpreted as a pseudomagnetic field, 
given by B = ∇ × A (in units of h̄/e) and perpendicular to the 
graphene sample [30–34]. Scanning tunneling microscopy stud-
ies in graphene nanobubbles have reported pseudo Landau lev-
els, which are signatures of strain-induced pseudomagnetic fields 
[35,36].

A discussion on the pseudomagnetic field theory was reacti-
vated due to the explicit inclusion of the local lattice vectors de-
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formation [37]. Initially, this lattice correction was supposed to 
produce an extra pseudovector potential (K 0-dependent), but later 
on it was shown its physical irrelevance [38–40]. Particularly, in 
Ref. [26] the absence of the extra pseudovector potential proposed 
in the theory was demonstrated in an explicit manner. Also, the 
consideration of the actual atomic positions in the TB Hamiltonian 
resulted in a more complete analysis on the position-dependent 
Fermi velocity for strained graphene [39]. More recently, another 
correction has been identified as important in the derivation of the 
effective low-energy Hamiltonian for deformed graphene, by point-
ing out that the effective Hamiltonian should be expanded around 
the true Dirac point and not around the unperturbed one [41–44].

The principal motivation of the present work is to determine 
the implications of the strain-induced Dirac point shift in the 
derivation of the appropriate anisotropic Fermi velocity. Moreover, 
we discuss a possible generalization of the effective Dirac Hamil-
tonian for nonuniform in-plane deformations. For that end, we lay 
out our discussion on a basic principle: the theory for graphene un-
der nonuniform strain should describe the particular case of a uniform 
strain.

The paper is organized as follows. In Section 2 we discuss the 
effective Dirac Hamiltonian for graphene under a uniform in-plane 
strain. By comparing with other approaches available in the liter-
ature, we demonstrate the relevance of the expansion around of 
the true Dirac point. In Section 3 we report a generalized effec-
tive Dirac Hamiltonian for graphene under a nonuniform in-plane 
strain, which reproduces the case of a uniform strain. In Section 4
we summarize the results of our work.

2. Dirac equation for uniformly strained graphene: critical 
revision

To illustrate the derivation of the effective Dirac Hamiltonian 
in presence of strain, we first consider graphene under a uniform 
strain. We use this particular case as a benchmark to identify the 
goodness of any effective Dirac Hamiltonian for strained graphene, 
even if the deformation is nonuniform. In the case of a uniform 
strain, if a represents a general vector in the unstrained graphene 
lattice, its strained counterpart is given by the transformation

a′ = ( Ī + ε̄) · a, (2)

where Ī is the 2 × 2 identity matrix and ε̄ is the position-
independent strain tensor. As an import example, one can quote 
the deformation of the three nearest-neighbor vectors. Selecting 
the x axis along the graphene zigzag direction, the unstrained 
nearest-neighbor vectors are,

δ1 = a

2
(
√

3,1), δ2 = a

2
(−√

3,1), δ3 = a(0,−1), (3)

whereas the strained nearest-neighbor vectors can be obtained 
from δ′

n = ( Ī + ε̄) · δn , see Fig. 1(a).
On the other hand, a uniform strain distorts the reciprocal 

space as well. From Eq. (2) follows that if b represents a vector 
of the unstrained reciprocal lattice, its deformed counterpart re-
sults b′ = ( Ī + ε̄)−1 · b � ( Ī − ε̄) · b (see Fig. 1(b)). However, the 
high-symmetry points of the Brillouin zone are modified differ-
ently. For example, the high-symmetry point of the unstrained 
Brillouin zone K 0 = ( 4π

3
√

3a
, 0) moves to the new position K =

4π
3
√

3a
(1 − ε̄xx/2 − ε̄yy/2, −2ε̄xy) under a uniform strain [9].

For computing the effective Dirac Hamiltonian we start from 
the nearest-neighbor TB Hamiltonian,

H = −
∑

′
t′
na†

x′bx′+δ′
n
+ H.c., (4)
x ,n
Fig. 1. (Color online.) (a) Uniaxial stretching along the zigzag direction of a graphene 
sample. The zoom of the honeycomb lattice shows the unstrained δi (black, dashed) 
and strained δ′

i (red, solid) three nearest-neighbor vectors. (b) Unstrained (black, 
dashed) and strained (red, solid) first Brillouin zone for the same uniaxial zigzag 
strain. Note how the reciprocal lattice is contracted along the direction where the 
lattice is stretched.

where x′ runs over all sites of the deformed A sublattice, a†
x′ is 

the creation operator for an electron on the A sublattice at site 
x′ and bx′+δ′

n
is the annihilation operator for an electron on the B 

sublattice at site x′ + δ′
n . The nearest-neighbor hopping parameters 

t′
n are modified due to the changes in intercarbon distance and 

fulfill an exponential decay, t′
n = t exp[−β(|δ′

n|/a − 1)], where t is 
the equilibrium hopping parameter [4,45].

Replacing the creation/annihilation operators with their Fourier 
expansions [46], we obtain that the Hamiltonian in momentum 
space is given by

H = −
∑
k,n

t′
ne−ik·( Ī+ε̄)·δn a†

kbk + H.c., (5)

and therefore, the closed dispersion relation for uniformly strained 
graphene is

E(k) = ±
∣∣∣∣∣
∑

n

t′
ne−ik·( Ī+ε̄)·δn

∣∣∣∣∣ . (6)

As has been documented in other works [9,42], the positions 
of the minimum of energy, i.e., the K D Dirac points (E(K D) = 0) 
obtained from the previous equation, do not coincide with the K
(K 0) high-symmetry points of the strained (unstrained) Brillouin 
zone. This is illustrated in Fig. 2.

Eqs. (5) and (6) are the main ingredients of the available ef-
fective Dirac Hamiltonians. As we will discuss below, the main 
differences come out from the reciprocal-space points used for the 
approximations. This is also illustrated in Fig. 2, where the idea is 
to understand how the Dirac cone moves and deforms as strain is 
applied.

To be more precise, if one considers momenta close to the arbi-
trary reciprocal-space point G , i.e. k = G + q, the Hamiltonian (5)
can be casted as

HG = −
3∑

n=1

t′
n

(
0 e−i(G+q)·( Ī+ε̄)·δn

ei(G+q)·( Ī+ε̄)·δn 0

)
, (7)

and expanding to first order in q and ε̄ , as will be used throughout 
the rest of the paper, we obtain
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Fig. 2. (Color online.) Sketch of the Dirac cone (red cone) movement as graphene 
is stretched along the zigzag direction. Three important points are indicated in the 
reciprocal space, the original Dirac point K 0, the high-symmetry point K of the 
strained reciprocal lattice and the true Dirac point K D . The gray Dirac cone is the 
image of the red Dirac cone for unstrained graphene. The unstrained reciprocal lat-
tice is pictured with black dots.

HG � −
3∑

n=1

t′
n

(
0 e−iG ·δn

eiG ·δn 0

)
(1 + iσzq · ( Ī + ε̄) · δn)

× (1 + iσz G · ε̄ · δn), (8)

with σz being the diagonal Pauli matrix. In the literature, one can 
find two kinds of expansions by making G = K 0 or G = K D . This 
leads to two different effective Dirac Hamiltonians, as will be dis-
cussed in the following subsections.

It is worth mentioning that such Hamiltonians are in fact try-
ing to describe the deformation and movement of the Dirac cone 
from different points, as explained in Fig. 2. Clearly, if one chooses 
a point which is not the true Dirac point of the strained system, 
the Hamiltonian will not display the proper symmetries associated 
with it. Furthermore, one cannot pass from one Hamiltonian to the 
other by using a simple renormalization of the momentum since the Tay-
lor expansions used around each point are different. The Fermi velocity 
will be used to test these ideas.

2.1. Effective Hamiltonian around K 0

The most popular expansion in the literature is to consider 
momenta close to the high-symmetry points of the unstrained Bril-
louin zone, G = K 0 [38–40]. In this case, Hamiltonian (8) can be 
written as

H K 0 � −
3∑

n=1

t′
n

(
0 e−i K 0·δn

ei K 0·δn 0

)
(1 + iσzq · ( Ī + ε̄) · δn)

× (1 + iσz K 0 · ε̄ · δn). (9)

Using the following identity [20,39](
0 e−i K 0·δn

ei K 0·δn 0

)
= i

σ · δn

a
σz, (10)

where σ = (σx, σy) are the non-diagonal Pauli matrices, and writ-
ing the three nearest-neighbor hopping parameters t′

n as

t′
n � t

(
1 − β

a2
δn · ε̄ · δn

)
, (11)

the Hamiltonian (9) becomes (see Appendix A)

H K 0 � h̄v F σ ·
(

Ī + ε̄ − β

4
(2ε̄ + Tr(ε̄) Ī)

)
· q − h̄v F σ · A

+ h̄v F σ · (a

2
K 0 · ε̄ · σ ′) · q + h̄v F σ · ε̄ · K 0, (12)

where v F = 3ta/2h̄ is the Fermi velocity for unstrained graphene 
and σ ′ = (−σz, σx). Here the A vector is given by Eq. (1) and 
as mentioned, is interpreted as a pseudomagnetic vector poten-
tial when the strain is nonuniform. It is worth pointing out that 
the expression (1) was derived by taking the x axis parallel to the 
zigzag direction of the graphene lattice and considering a valley 
(K 0) with index +1. In the following, we assume these conditions, 
unless stated otherwise.

Hamiltonian H K 0 contains a problem that is very easy to spot. 
Let us consider a simple isotropic stretching of the lattice, which 
can be written as ε̄ = ε Ī . This strain is just a renormalization of 
the distance between carbons. As a result, the new carbon–carbon 
distance under isotropic strain is a′ = a(1 + ε) and the new hop-
ping parameter to first order in strain is t′ = t(1 − βε). Thus, 
the new Fermi velocity obtained straight away from the nearest-
neighbor TB Hamiltonian is v ′

F = 3t′a′/2h̄ � v F (1 − βε + ε) and 
therefore, the effective Dirac Hamiltonian is h̄v ′

F σ · q, which can-
not be obtained from Eq. (12) to an isotropic strain. This trivial 
test confirms that H K 0 is not appropriate to describe graphene 
under a uniform strain. Consequently, expansions around the high-
symmetry points of the unstrained Brillouin zone lead to unsuit-
able effective Hamiltonians for strained graphene [44].

2.2. Effective Dirac Hamiltonian around K D

A second option is to derive an effective Dirac Hamiltonian by 
expanding (5) around the true Dirac points [41,42,44]. In other 
words, to make G = K D . As reported in previous work [42], the 
actual positions of the K D Dirac points to the K 0 point is given 
by

K D � ( Ī + ε̄)−1 · K 0 + A, (13)

as shown in Fig. 2. The previous equation confirms the remark that 
K D coincides with K only for isotropic strain.

Using Eq. (13) it is possible to obtain the proper effective Dirac 
Hamiltonian by developing Eq. (5) around the Dirac points, k =
K D + q. Following this approach one can derive that [42]

H = h̄v F σ · ( Ī + ε̄ − βε̄) · q, (14)

where two strain-induced contributions can be recognized. The 
β-independent term, h̄v F σ · ε̄ · q, is purely a geometric conse-
quence due to lattice deformation and does not depend of the 
material as long as it has the same topology. On the other hand, 
the β-dependent term, −h̄v F βσ · ε̄ · q, is owing to the strain-
induced changes in the hopping parameters and its contribution 
depends of the material since β varies depending on the material. 
For graphene, both contributions have the same order of magni-
tude.

From Eq. (14) one can identify that the appropriate Fermi ve-
locity tensor is given by

v̄ = v F ( Ī + ε̄ − βε̄), (15)

which consistently reproduces the anisotropic transport for uni-
formly strained graphene [47,48]. For example, Eq. (15) yields the 
correct result v F (1 − βε + ε) Ī when the strain is isotropic, ε̄ = ε Ī . 
Also, for the case of an uniaxial stretching,

ε̄ = ε

(
1 0
0 −ν

)
, (16)

with ν being the Poisson ratio, from Eq. (15) one immediately ob-
tains the known result [9,49]

v̄ = v F

(
1 + (1 − β)ε 0

0 1 − (1 − β)εν

)
, (17)

for the anisotropic Fermi velocity. This expression has been used 
to calculate and explain the experimentally observed modulation 
of the transmittance of strained graphene with respect to the po-
larization direction of the incoming light [49–51].
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3. Generalized Dirac Hamiltonian for nonuniformly strained 
graphene

As mentioned in Section 1, we base our discussion for nonuni-
formly strained graphene on the following basic principle: the the-
ory for graphene under nonuniform strain must describe the particular 
case of a uniform strain. Therefore, one would expect that the effec-
tive Dirac Hamiltonian for nonuniformly strained graphene should 
reduce to the effective Dirac Hamiltonian for the case of a spatially 
uniform strain. However, none of the effective Dirac Hamiltonian 
reported in the literature for the case of a nonuniform strain re-
duce to Eq. (14). This is an inconsistency in the theory of the 
strain-induced pseudomagnetic field, which is owing to expansions 
around points which are not the true Dirac points for strained 
graphene. Below, we give a proposal to solve the problem.

Unlike the case of uniform strain, a nonuniform strain breaks 
the crystal periodicity. This delicate issue depends upon the physi-
cal considered limit. For example, if the strain is periodic but with 
a wavelength comparable to the interatomic displacement, in cer-
tain cases one needs an infinite number of reciprocal vetors to 
build the wavefunction, so the present approach cannot be made 
[29]. Here we will assume that the strain modulation wavelength 
is much bigger than the interatomic distance, as well as the ampli-
tude. Under such approximation, the problem is usually solved by 
starting from the uniform Hamiltonian and changing ε̄ to ε̄(r).

The problem lies in the fact that now the Fermi velocity v̄(r)

depends upon the position, and thus the term v̄ i jqk breaks the her-
miticity of resulting Hamiltonian. To assure hermiticity, the proce-
dure made in previous works to generalize the Dirac Hamiltonian 
around the unstrained Dirac point K 0, using the replacement [20,
39–41],

v̄ i jqk → v̄ i j(r)

(
−i

∂

∂rk

)
− i

2

∂ v̄ i j(r)

∂rk
. (18)

However, as we discussed previously, the strain-induced Dirac 
point shift must be considered in the derivation of the appropriate 
Fermi velocity. This issue can be solved by starting from the uni-
form Hamiltonian around the true Dirac point in the momentum 
space, and going to real space by means of the replacement [44]

v̄ i jqk → v̄ i j(r)
(

−i
∂

∂rk
− K D

k (r)
)

− i

2

∂ v̄ i j(r)

∂rk
, (19)

where now we have introduced the explicit position-dependence 
of the Dirac point by denoting it as K D

k (r). This approach corre-
sponds to the general scheme of emergence of gravity and gauge 
fields in the vicinity of the Weyl, Dirac or Majorana points in the 
energy spectrum [52–54].

Thus, according to Eq. (19) and taking into consideration lo-
cal rotations (see Appendix B), the effective Dirac Hamiltonian for 
nonuniform in-plane strain can be written as

H = h̄σ · v̄(r) · (−i∇ − K D(r)) − h̄v F σ · �, (20)

where the position-dependent Fermi velocity tensor v̄(r) is given 
by

v̄(r) = v F
(

Ī + ε̄(r) − βε̄(r)
)
, (21)

the Dirac point K D(r) by,

K D(r) = (
Ī − ε̄(r) + ω̄(r)

) · K 0 + A(r), (22)

and the vector field � as

�i = i

2v F

∂ v̄ i j(r)

∂r j
= i(1 − β)

2

∂ε̄i j(r)

∂r j
, (23)

with an implicit sum over repeated indices.
Let us make some important remarks about our effective 
Hamiltonian (20). First of all, one can see that Eq. (20) reproduces 
the limiting case of a uniform strain in a consistent manner. This 
is the principal merit of Hamiltonian (20) with respect to previ-
ous effective Hamiltonians. At the same time, one can recognize 
a new position-dependent Fermi velocity tensor (Eq. (21)) as the 
main difference. This is a very important result because enables 
a more appropriate prediction of spatially-varying Fermi velocity. 
Nowadays, such effect of strain has been confirmed by experiments 
using scanning tunneling microscopy and spectroscopy [55,56].

In the approach carried out, the position-dependent Dirac point 
generates the pseudomagnetic fields. This fact can be seen by tak-
ing the rotational of the effective potential that appears in Eq. (20)
which leads to the pseudomagnetic field,

B = ∇ × K D(r), (24)

but since ∇ × ((ε̄(r) − ω̄(r)) · K 0) = 0, the term (ε̄(r) − ω̄(r)) ·
K 0 does not contribute to the pseudomagnetic field. Therefore, the 
value of the pseudomagnetic field is given by

B = ∇ × A(r), (25)

which is exactly the same pseudomagnetic field that appears in 
other derivations [20,39–41]. Note that, the inclusion of the local 
rotations tensor ω̄(r) was necessary to demonstrate the physical 
irrelevance of the K 0-dependent pseudovector potential.

On the other hand, the complex gauge field � is owing to a 
position-dependent Fermi velocity and its presence guarantees the 
hermiticity of the Hamiltonian (20). Unlike A , � is a purely imag-
inary. Thus � cannot be interpreted as a gauge field and will not 
give rise to Landau levels in the density of states [39]. However, it 
may have other physical consequences, such as pseudospin preces-
sion, i.e., electronic transitions between the two sublattices [39]. At 
present, the experimental signatures of such complex gauge field �
are open questions.

3.1. Inclusion of out-of-plane deformations

It is worth mentioning that a second check can be made 
to Eq. (20) by adapting an independent approach developed by 
Volovik and Zubkov in Ref. [44] for out-of-plane deformations. 
Volovik et al. [44] found a similar Hamiltonian, but they used a 
parametrization thought for curved graphene, where the in-plane 
coordinates of atoms are identical to their coordinates in the un-
perturbed honeycomb lattice. The reason is that they were mainly 
interested in a differential geometry interpretation. Here we used 
the reference laboratory frame, which is more suitable to compare 
with experiments, because one must use this frame to describe the 
interaction with external probes or fields [39]. However, once the 
equations of Volovik and Zubkov are written in the reference labo-
ratory frame, Eq. (20) for in-plane deformations can be recovered.

Likewise, one can take advantage of both approaches and to 
write a generalized effective Dirac Hamiltonian. For this end, in 
β-dependent terms of Eq. (20) one must replace the strain tensor 
ε̄ with the generalized strain tensor

ε̃i j = 1

2

(
∂ui

∂r j
+ ∂u j

∂ri
+ ∂h

∂ri

∂h

∂r j

)

= ε̄i j + 1

2

∂h

∂ri

∂h

∂r j
, (26)

where u(r) and h(r) are in- and out-of-plane displacements re-
spectively. Thus, finally, the generalized effective Dirac Hamiltonian 
can be written as

H = −ih̄σ · v̄(r) · ∇ − h̄v F σ · A − h̄v F σ · �, (27)
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where now the generalized position-dependent Fermi velocity ten-
sor v̄(r) results

v̄(r) = v F
(

Ī + ε̄(r) − βε̃(r)
)
, (28)

with the corresponding complex vector field,

�i = i

2v F

∂ v̄ i j(r)

∂r j
= i

2

∂ε̄i j(r)

∂r j
− iβ

2

∂ε̃i j(r)

∂r j
, (29)

whereas the pseudovector potential A is given by

Ax = β

2a
(ε̃xx − ε̃yy), A y = − β

2a
(2ε̃xy). (30)

A simple exploration shows that our generalized Hamilto-
nian (27) reproduces our Hamiltonian for in-plane deformations 
(Eq. (20)) as well as the equations of Volovik and Zubkov [44], 
for out-of-plane displacements. Note that, we ignored the term (

Ī − ε̄(r) + ω̄(r)
) · K 0 due to its demonstrated irrelevance. Conse-

quently, the generalized Hamiltonian (27) describes the particular 
case of a uniform strain which resolves an inconsistency of previ-
ous effective Hamiltonians.

3.2. Effects of position-dependent Fermi velocity on the spinor 
wavefunction

Finally, let us now consider the effects of a position-dependent 
Fermi velocity tensor on the spinor wavefunction of charge car-
riers. For this purpose, we consider the case of an out-of-plane 
deformation along the x axis given by h(x). Then from Eq. (26) it 
follows that the generalized strain tensor is,

ε̃xx(x) = 1

2
(∂xh(x))2 ≡ f (x)/β, ε̃yy = ε̃xy = 0, (31)

thus, one immediately obtains that A = ( f (x)/(2a), 0), whereas

v̄(x) = v F

(
1 − f (x) 0

0 1

)
, � = (−i f ′(x)/2,0). (32)

Taking into consideration that the resulting pseudomagnetic 
field is zero (B = ∂x A y − ∂y Ax), from Eq. (27) one can write the 
corresponding stationary Dirac equation for the spinor wavefunc-
tion 	 as

(−i(1 − f (x))∂x − ∂y + i f ′(x)/2
)
ψ2 = εψ1,(−i(1 − f (x))∂x + ∂y + i f ′(x)/2

)
ψ1 = εψ2, (33)

where the parameter ε is defined as ε ≡ E/(h̄v F ), and E is the 
energy. If now one supposes that the spinor wavefunction is of the 
form 	 = exp(iky y)�(x) then the following differential equation 
system is obtained,

(
(1 − f (x))∂x + ky − f ′(x)/2

)
φ2 = iεφ1,(

(1 − f (x))∂x − ky − f ′(x)/2
)
φ1 = iεφ2. (34)

In order to recover the case of flat graphene in the appropriate 
limit one can cast the following ansatz:

�(x) = exp
[ x∫

ikx + f ′(x̃)/2

1 − f (x̃)
dx̃

](
c1
c2

)
, (35)

where c1 and c2 are constants. Consequently, the differential sys-
tem (34) becomes the algebraic system

(ikx + ky)c2 = iεc1,

(ikx + ky)c1 = iεc2, (36)
which has infinite solutions if ε = ±(k2
x + k2

y)
1/2. Therefore, finally 

we find that the stationary Dirac equation (33) has as solution the 
spinor wavefunction

	(r) = A exp
[

iky y +
x∫

ikx + f ′(x̃)/2

1 − f (x̃)
dx̃

](
1

seiθ

)
, (37)

where eiθ = (kx + iky)/|ε|, A is a normalization constant and s =
±1 denotes the conduction band and valence bands, respectively.

A remarkable result follows from our solution (37):

|	|2 ∼ (1 − f (x))−1 (38)

i.e. a position-dependent Fermi velocity induces an inhomogeneity 
in the carrier probability density. For example, in the interesting 
case of a flexural mode given by h(x) = h0 cos(Gx), from Eq. (38)
one get |	|2 ∼ (1 − h̃ sin2(Gx))−1, where h̃ = βh2

0G2/2. So that, the 
carrier probability density is minimum at the valleys and at the 
crests of the flexural mode. To end, let us point out that our find-
ings can be easily extended to the case of an in-plane deformation 
(along the x) replacing β by β − 1.

4. Conclusions

In this work we revisited the effective Dirac Hamiltonian for 
graphene under a uniform strain, starting from a tight-binding de-
scription. We simultaneously considered three fundamental strain-
induced contributions: the changes in the nearest-neighbor hopping 
parameters, the reciprocal lattice deformation and the true shift of the 
Dirac point. In particular, the Dirac point did not coincide with 
the high-symmetry points of the strained reciprocal lattice. A de-
tailed discussion about this last strain-induced effect demonstrates 
its relevance to obtain the appropriate Fermi velocity. Finally, we 
presented a generalized effective Dirac Hamiltonian for the case 
of a nonuniform deformations. This new Hamiltonian reproduces 
the case of uniform strain in the corresponding limit, which was a 
missing issue in previous approaches. Within the approach carried 
out, the strain-induced pseudomagnetic fields were obtained ow-
ing to the floating character of the Dirac point K D(r), whereas 
complex gauge fields appeared as a consequence of a position-
dependent Fermi velocity. Our expression (28) for the generalized 
position-dependent Fermi velocity tensor is the main result in this 
paper. Also, we found closed analytical solutions for the spinor 
wavefunctions in cases of practical interest on which the Fermi 
velocity depends on the position.
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Appendix A

In this section, the details of the calculations to derive the effec-
tive Hamiltonian around K 0 are presented. Substituting Eqs. (10)
and (11) into Eq. (9) we get

H K 0 � −t
3∑

n=1

(1 − β

a2
δn · ε̄ · δn)(i

σ · δn

a
σz)

× (1 + iσzq · ( Ī + ε̄) · δn)(1 + iσz K 0 · ε̄ · δn),
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and expanding to first order in strain, H K 0 can be written as

H K 0 � −t
3∑

n=1

(i
σ · δn

a
σz)

(
1 + iσzq · ( Ī + ε̄) · δn

− β

a2
δn · ε̄ · δn − β

a2
δn · ε̄ · δn(iσzq · δn)

+ iσz K 0 · ε̄ · δn − (K 0 · ε̄ · δn)(q · δn)
)
. (A.1)

Now we collect the contribution of each term of this expression,

−t
3∑

n=1

(i
σ · δn

a
σz) = 0, (A.2)

−t
3∑

n=1

(i
σ · δn

a
σz)(iσzq · ( Ī + ε̄) · δn)

= h̄v F σ · ( Ī + ε̄) · q, (A.3)

t
3∑

n=1

(i
σ · δn

a
σz)(

β

a2
δn · ε̄ · δn) = −h̄v F σ · A, (A.4)

t
3∑

n=1

(i
σ · δn

a
σz)(

β

a2
δn · ε̄ · δn)(iσzq · δn)

= −h̄v F
β

4
σ · (2ε̄ + Tr(ε̄) Ī) · q, (A.5)

−t
3∑

n=1

(i
σ · δn

a
σz)(iσz K 0 · ε̄ · δn) = h̄v F σ · ε̄ · K 0, (A.6)

t
3∑

n=1

(i
σ · δn

a
σz)(K 0 · ε̄ · δn)(q · δn)

= h̄v F σ · (a

2
K 0 · ε̄ · σ ′) · q, (A.7)

where σ ′ = (−σz, σx) and the A vector is given by Eq. (1) if the 
x axis is selected parallel to the zigzag direction of the graphene 
lattice. Finally, taking into account the contribution of each term 
in Eq. (A.1), given by Eqs. (A.2)–(A.7), the effective Hamiltonian 
around K0 has the form of our Eq. (12).

Appendix B

In this section, we include the local rotations in the problem 
of strained graphene. Note that, under an atomic displacement 
field u(r), the strained nearest-neighbor vectors are given approx-
imately by [38]

δ′
n � ( Ī + ∇u) · δn, (B.1)

where ∇u is the displacement gradient tensor:

[∇u]i j = ∂ui

∂r j
= 1

2

(
∂ui

∂r j
+ ∂u j

∂ri

)
+ 1

2

(
∂ui

∂r j
− ∂u j

∂ri

)

= ε̄i j(r) + ω̄i j(r), (B.2)

with ω̄(r) being the rotation tensor, which is antisymmetric. 
A position-dependent rotation tensor ω̄(r) describes the local ro-
tations associated to the displacement field, while if ω̄ is indepen-
dent on the position, it represents a lattice global rotation which 
does not have physical implications.

Unlike the strained nearest-neighbor vectors, the three nearest-
neighbor hopping parameters t′

n do not dependent on the ω̄(r)

tensor,
t′
n � t

(
1 − β

a2
δn · ∇u · δn

)

� t

(
1 − β

a2
δn · ε̄(r) · δn

)
, (B.3)

which is an expected result since the rotations do not affect the 
module of the nearest-neighbor vectors. Thus, one should expect 
that the ω̄(r) tensor only appears in β-independent terms, i.e., in 
terms of purely geometric origin.

For our purpose to include the local rotations, let us start with 
the Hamiltonian of strained graphene in k-momentum space [40],

H = −
3∑

n=1

t′
n

(
0 e−ik·( Ī+∇u)·δn

eik·( Ī+∇u)·δn 0

)
, (B.4)

where ε̄ and ω̄ are considered position-independent. In order to 
obtain the effective Dirac Hamiltonian one must consider momen-
tum close to the Dirac point, k = K D + q. In this case K D can be 
casted as

K D =
[
( Ī + ∇u)


]−1 · (K 0 + A)

� ( Ī − ε̄ + ω̄) · K 0 + A, (B.5)

which is a generalization of Eq. (13). Substituting Eq. (B.5) into 
Eq. (B.4) and consistently expanding to first order in strain and q
results in,

H = −
3∑

n=1

t′
n

(
0 e−i(K 0·δn+q·( Ī+∇u)·δn+A·δn)

ei(K 0·δn+q·( Ī+∇u)·δn+A·δn) 0

)

= −
3∑

n=1

t′
n

(
0 e−i K 0·δn

ei K 0·δn 0

)

× (1 + iσzq · ( Ī + ∇u) · δn)(1 + iσz A · δn). (B.6)

Using once again the identity (10) and replacing t′
n with the 

expression (B.3) the Hamiltonian (B.6) becomes

H = −t
3∑

n=1

(i
σ · δn

a
σz)

(
1 + iσzq · ( Ī + ∇u) · δn

− β

a2
δn · ε̄ · δn(iσzq · δn) − (A · δn)(q · δn)

− β

a2
δn · ε̄ · δn + iσz A · δn

)
. (B.7)

The contribution of each term in the last equation is given by 
Eqs. (A.2), (A.4), (A.5) and

−t
3∑

n=1

(i
σ · δn

a
σz)(iσzq · ( Ī + ∇u) · δn)

= −t
3∑

n=1

(i
σ · δn

a
σz)(iσzq∗ · δn)

= h̄v F σ · q∗, with q∗ = ( Ī + ∇u
) · q

= h̄v F σ · ( Ī + ∇u
) · q, (B.8)

t
3∑

n=1

(i
σ · δn

a
σz)(A · δn)(q · δn)

= −h̄v F
β

4
σ · (2ε̄ − Tr(ε̄) Ī) · q, (B.9)

−t
3∑

(i
σ · δn

a
σz)(iσz A · δn) = h̄v F σ · A, (B.10)
n=1
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where it is worth mentioning that the contributions of the last two 
terms in Eq. (B.7), Eqs. (A.4) and (B.10), cancel.

After looking the contributions of each term, Eq. (B.7) can be 
written as

H = h̄v F σ · ( Ī + ∇u
 − βε̄) · q, (B.11)

where ∇u
 = ε̄ − ω̄. Hamiltonian (B.11) can be considered as the 
generalization of Eq. (14).

Now to extend Eq. (B.11) to the case of a nonuniform strain we 
assume that ε̄(r) and ω̄(r) are position-dependent and pass to real 
space by means of the rule [44]

v̄ i jqk → v̄ i j(r)
(

−i
∂

∂rk
− K D

k (r)
)

− i

2

∂ v̄ i j(r)

∂rk
. (B.12)

In consequence, we obtain that the effective Dirac Hamiltonian 
for nonuniform in-plane strain is given by

H = h̄σ · v̄(r) · (−i∇ − K D(r)) − h̄v F σ · �, (B.13)

where

v̄(r) = v F
(

Ī + ε̄(r) − ω̄(r) − βε̄(r)
)
, (B.14)

K D(r) = (
Ī − ε̄(r) + ω̄(r)

) · K 0 + A(r), (B.15)

and

�i = i

2v F

∂ v̄ i j(r)

∂r j
= i(1 − β)

2

∂ε̄i j(r)

∂r j
− i

2

∂ω̄i j(r)

∂r j
, (B.16)

with an implicit sum over repeated indices. Finally, we remove the 
dependence on ω̄ from Eqs. (B.14) and (B.16) carrying out the fol-
lowing local rotation of the pseudospinor

ψ → exp(
i

2
ω̄xyσ3)ψ � ψ + i

2
ω̄xyσ3ψ, (B.17)

and as a consequence, Eq. (B.13) takes the form of our Eq. (20).
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