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Abstract. Although power laws have been used to fit rank distributions in many
different contexts, they usually fail at the tail. Here we show that many different
data in rank laws, like in granular materials, codons, author impact in scientific
journals, etc are very well fitted by aβ-like function ({a, b} distribution). Since
this distribution is indeed ubiquitous, it is reasonable to associate it with some
kind of general mechanism. In particular, we have found that the macrostates
of the product of discrete probability distributions imply stretched exponential-
like frequency-rank functions, which qualitatively and quantitatively can be fitted
with the{a,b} distribution in the limit of many random variables. We show this
by transforming the problem into an algebraic one: finding the rank of successive
products of a given set of numbers.

Power-laws in rank distribution frequencies seem to be ubiquitous in physics, biology,
geography, economics, linguistics, etc [1, 2]. For example, the frequency of words in different
languages obey the Zipf power law [1]. In physics, we can cite the rank distribution of stick-slip
events in sheared granular media [3], earthquakes (known in the field as the Gutenberg–Richter
law [3]), radionuclides half-life time and nuclides mass number [4]. Other complex systems
like networks [5], biological clocks [6] and metabolic networks [7] share as well the same
phenomenology. Zipf discovered his rank law by analyzing manually the frequencies of words
in the novel ‘Ulysses’ by James Joyce. It contains a vocabulary of 29 899 different word types.
However, when larger corpora are used a deviation from a power law is observed for larger
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Figure 1. Impact factor as a function of the rank for physics, computer science
and agroscience. Fits using theβ-like function are shown as solid lines. Inset:
values ofa andb. The size of the symbols is proportional to the error.

ranks [8]. Such deviation is also found in many physical systems [9] and is known as the tail
of the distribution [10]. As a matter of fact, when the highest rank of the data is finite, the
power law is cut and finite size effects should be present. Usually, for each case a different
ad hoc fitting function is proposed [3]. Another path is to construct a rank-size distribution
from the cumulative distribution [10], by which method others have fitted the probability
distributions with stretched exponential [9] and log-normal distributions [11]. However, for low
ranks deviations are also observed, and unfortunately all of the previous expressions do not fit
the data atboth ending tails, at which different kinds of processes are set in once a crossover
region is reached. Thus, multiscaling physical modeling seems to be a key issue as in turbulence,
where Kolmogorov’s power law is observed only in the inertial regimen. In one tail (small length
scales) energy dissipation plays the main role, while energy injection dominates at big scales.
One can conjecture that similar ideas are behind many other complex physical systems, since we
report that many rank laws are extremely well parametrized, with a two exponentβ function-like
formula with parameters{a, b},

f (r ) = K
(R− r + 1)b

r a
, (1)

wherea andb are fitted from the data,r is the rank andR is the maximalr . If f (r ) is normalized
to 1, thenK ≡ 1/

∑R
r =1 (R− r + 1)b/r a . For R � 1, K can be transformed into an integral

that yieldsK ≈ 0(b− a + 2)/0(1− a)0(1 +b). We will show that f (r ) is related to a kind of
central limit theorem. In fact, Moyanoet al [12] have commented that the rather ubiquitous
presence of the Tsallisq-distributions is maybe due to aq-generalized central limit theorem for
a class of non independent, correlated, product of probability distributions [13].

As an example of the phenomenology that we have found in rank laws, here we present
three representative results. Figure1shows a semilog plot of the impact factor against the rank of
scientific journals, taken from a recent study [14], compared with the fits given by equation (1).
The fits are excellent, all with correlation coefficients above 0.98. Notice that we use a semilog
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Figure 2. Frequency of codons (normalized to 1000) as a function of the rank for
the genome of four different species, with their correponding fits shown as solid
lines. Inset: values of aa andb used for the fits in the beta-like distribution.

plot instead of the usual log–log plot representation due to the fact that in such a way, the tails
are easily observed since the ranks are treated in a linear fashion. A usual plot in the log–log
representation will also reveal a significant deviation from the power law at the tails, as can be
observed in several works [1]–[3].

Similar excellent fits are also obtained for codon usage in genomes, as shown in figure2,
where we plot the logarithm of the frequency of codons (normalized to 1000) as a function of
the rank for different representative organisms, taken from a well known genome database [15].
Using equation (1), we have made similar plots for at least 10 organisms with a correlation
parameter bigger than 0.99.

In figure3, we show the rank-ordered distribution of stick-slip events in a slowly sheared
granular media taken from [3], fitted using equation (1). Although a modified power law was
proposed in [3] to explain the results, the present fit gives a better correlation coefficient.
We have verified that equation (1) can be used with excellent results in order to correct the
Gutenberg–Richter law, Bénard convection cells and in many different fields, like architecture,
population, music or roads [16].

As the {a, b} distribution is indeed ubiquitous, it is reasonable to try to associate it
with the product of correlated probability distributions [12]. We have not found such a class;
however, here we will show that the product of discrete probability distributions imply stretched
exponential-like frequency-rank functions, that qualitatively and quantitatively can be fitted very
well with the{a, b} distribution.

In the dynamics of scientific journal impact factor there are many important issues: the
ability to select a good problem for investigation, the gift for writing clear papers, etc. Similar
comments would be valid for the dynamics of granular media. Perhaps, the presence of all these
factors implies products of probabilities which obey the conditions of the hypothetical central
limit theorem for the product of correlated probability distributions [12, 17]. To be concrete, let
us proceed in the same spirit of the central limit theorem, in which a given observable is just the
result of many different random processes. Each realization of an observable, is determined by

New Journal of Physics 9 (2007) 286 (http://www.njp.org/)

http://www.njp.org/


4

Figure 3. Rank-ordered distribution of stick-slip events in a slowly sheared
granular media. Circles are data taken from [3], and the solid line is a fit using
equation (1), with a = 1.08 andb = 0.40.

the actual values taken by the random variables in the involved random processes. For example,
the distribution of heights in a population is determined by genetics, aliments, health care, etc,
but the height of a particular person is just a realization with certain values of the random
variables in each related processes. A similar thing happens in multiplicative processes, an
observable is built from realizations made in each process. As in the case of the central limit
theorem, each process has a different probability distribution. However, when many random
variables are considered, only the first moments of these distributions turn out to be important,
and as a consequence, a Gaussian appears with or without different probability distribution
functions. Thus, in order to simplify the problem, here we will only consider the case ofN
processes that are identical, where each of them can haves different states with probabilityp j

with j = 1, . . . , s. WhenN such processes are composed, the full state space may be considered
to consist of allsN possible strings of lengthN, and there aresNpossible states of the whole
system. One can reduce the probability of each of these states to just(N + s− 1)!/(s− 1)!(N)!
different values that we call thereduced probabilities xN(n1, n2, . . . , ns). The multiplicity of
the states is given by a multinomial coefficientN!/(n1!n2!n3! . . . ns!), wheren j is the number
of subsystems in the statej . The probability of an observable for the whole system is,

PN(n1, n2, . . . , ns) =
N!

n1!n2!n3! . . . ns!
xN(n1, n2, . . . , ns), (2)

with n1 + n2 + n3 + · · · + ns = N. However, we are interested in therank of the different values
of the resulting observable, not in the probability distribution. To tackle this problem, we notice
that each different value ofxN(n1, n2, . . . , ns) corresponds to adifferent observable, since if
one assumes that a certain observable (X) is a one to one function ofn1, n2, . . . , ns, then
each value ofX(n1, n2, . . . , ns) can be mapped toxN(n1, n2, . . . , ns) andX(n1, n2, . . . , ns) =

X(xN(n1, n2, . . . , ns)). From the previous considerations, it is clear that any rank hierarchy of
xN(n1, n2, . . . , ns) will be inherited toX(n1, n2, . . . , ns) in most physical cases, where one can
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Figure 4. Normalized logarithm of numbers obtained after 40 iterations of
succesive multiplication, as a function of the rank (also normalized) for 3
numbers withp1 ∼ p2 � p3, p1 � p2 ∼ p3 and p1 ∼ p2 ∼ p3 (with label ‘3
numbers’). We also plot the case of an initial set of 4 numbers. Equations (1), (9)
and (10) are indicated as solid lines. Notice how equations (9) and (10) dominate
at the tails.

suppose thatX(xN(n1, n2, . . . , ns)) can be expressed as a power series inxN(n1, n2, . . . , ns),

X(xN(n1, n2, . . . , ns)) = X0 + X1xN(n1, n2, . . . , ns) + · · · , (3)

whereX0 andX1 are constants. Up to first order, this assumption means thatX is proportional
to xN(n1, n2, . . . , ns). The rank features are thus reduced to study the hierarchy present in
xN(n1, n2, . . . , ns). In the general case of interacting processes, the addition of a new one
leads to a relationship of the typexN+1(n1, n2, . . . , ns) = f (xN(n1, n2, . . . , ns)), while for
independent processes,

xN(n1, n2, . . . , ns) = pn1
1 pn2

2 pn3
3 . . . pns

s . (4)

For the last case, the rank structure can be reduced to the following algebraic problem: takes
numbersp1, p2, . . . , ps at random (normalization can be imposed at the end of the process),
labeled in such a way thatp1 > p2 > · · · > ps, and multiply each number by all the other
ones. With these resulting numbers, repeat the processN times, to obtain a set of numbers that
have the formpn1

1 pn2
2 pn3

3 . . . pns
s , with the restrictionn1 + n2 + · · · + ns = N. If the resulting set is

arranged in decreasing order, we can assign a rank (r ) to each one according to its order in the
hierarchy. The rankr = 1 is assigned to the numberpN

1 , while the lowestr = R corresponds to
pN

s . For example, choose three random numbersp1, p2 andp3 and then form all of the possible
products:p2

1, p1 p2, p1 p3, p2
2, p2 p3, p2

3, then repeat the procedure. In figure4 we present a plot
of logxN(n1, n2, n3) as a function ofr for N = 40. Surprisingly, as shown in the figure, the
resulting ranks are well fitted by the same two parameterβ-like function. The message from
this numerical experiment is simple: if this product is seen as a multiplicative process where
each number is the probability of making a certain choice in during the process, the result has a
well determined hierarchy.
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The problem that remains is how to calculatexN(n1, n2, . . . , ns) in terms of the rank. One
can think of each set of values(n1, n2, . . . , ns) as coordinates in ans-dimensional lattice, that
live on a subspace of dimension [18] s− 1, and the rank is a parametrization of a path between
the lattice points in such a way that lnxN(n1, n2, . . . , ns) decreases in each step,

ln xN(r ) = n1(r ) ln p1 + n2(r ) ln p2 + . . . + ns(r ) ln ps, (5)

where the starting point is always(N, 0, . . . , 0) and the end is at(0, 0, . . . , N). For s = 2, the
solution is easy to find. Using thatn1 + n2 = N, it follows that,

xN(r ) = pN
1

(
p2

p1

)r −1

= pN
1 e−C(r −1), (6)

with C = |ln(p2/p1)|. Equation (6) shows that the numbers decay in a pure exponential way.
The cases = 3 can be easily visualized as a trajectory in a triangle. The solution for any

set p1, p2, p3 is complicated, since the paths are usually complex. However, one can work out
the casesp1 ∼ p2 � p3 and p1 � p2 ∼ p3; these cases provide the clue to solve others.

Consider the limit p1 ∼ p2 � p3, and δ2
21 � δ31, where we defineδi j ≡ pi /p j . This

rank sequence is similar to an odometer with an increased range after each turn due to the
hierarchy 1> δ21 > δ2

21 > δ31 > δ21δ31 > δ2
31 > · · · > δN

31. For example, whenN = 2 this leads
to the following table that contains the numberxN(r ) as a function of the rank and the
corresponding path,

xN(r ) n2 n3 r n2M(r )

p2
1 0 0 1 –

p2
1δ21 1 0 2 –

p2
1δ

2
21 2 0 3 2

p2
1δ31 0 1 4 –

p2
1δ21δ31 1 1 5 1

p2
1δ

2
31 0 2 6 0

The sequence of the path goes as follows, firstn2(r ) is increased one by one asn3(r )

remains constant, until it reaches a maximal value calledn2M(r ) which in fact determines the
basic shape of the curvexN(r ), sinceδ31 only produces small jumps (see figure4). Oncen2(r )

increases from zero ton2M(r ), a new cycle begins withn2(r ) = 0 andn3(r + 1) = n3(r ) + 1. As
a result, after a large number of steps,

R− r =

n2M (r )∑
j =1

j =
n2M(r )(n2M(r ) + 1)

2
, (7)

where R is the maximal rank. Then, by solving the resulting quadratic equation and since
1 � N � R, we get thatn2M(r ) ≈ N(R− r + 1)1/2. The corresponding value ofn3(r ) can be
obtained from the conditionn2(r ) + n3(r )6 N. Finally, the number as a function of the rank is
given by,

xN(r ) ≈

[
p1

(
p2

p1

)(1−r −1/R)1/2 (
p3

p1

)1−(1−r −1/R)1/2]N

. (8)
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Furthermore, equation (8) can be written as an stretched exponential as follows,

xN(r ) ≈ pN
3 exp

[
D

(
1−

r − 1

R

)1/2
]

, (9)

with D = N|ln(p2/p3)|. This curve shows an excellent agreement with the numerical results
(see figure4). Notice in figure4 how this formula works better as the rank approachesR. The
casep1 � p2 ∼ p3 can be tackled in a similar way. The result is,

xN(r ) ≈ pN
1 exp

[
−E

( r

R

)1/2
]

, (10)

with E = N|ln(p1/p3) − ln(p2/p3)|. The comparison with the numerical results is also
excellent (see figure4).

In the general case, whenp1, p2 and p3 have the same order of magnitude, as for example
in figure4, there are two tails forr → 1 andr → R. The tail at lowr is basically produced by
the hierarchy in the biggest probabilities, i.e. by numbers wheren1 ∼ N in which equation (10)
gives the upward curvature. In a similar way, the tail forr nearR is produced by the lowest
probability hierarchy,n3 ∼ N, controlled basically by equation (9). The main effect upon these
tails whenp1 ∼ p2 ∼ p3 is that the sequence of ordering is not uniform [18], and there is a
change in the exponent 1/2 that appears in the stretched exponential. Equation (10) is thus
transformed into,

xN(r ) ≈ pN
1 exp

[
−Es

( r

R

)α]
, (11)

whereα < 1/2 and Es is a constant that depends ons. In a similar way, the exponent 1/2
in equation (9) is replaced by an exponentβ < 1/2. Furthermore, these generic exponents for
the tails also appear fors > 3 since from the polynomial equivalent to equation (7) one gets
β ≈ 1/(s− 1). These changes are the result of the increasing number of cycles in the ‘odometer’
that we have discussed, as is also clear from the change in the exponents that transform from 1 to
1/2 ass goes froms = 2 to s = 3. A simple procedure to combine each of the tails represented
by equations (9) and (10) is obtained by making the observation that only one of the exponentials
dominates at a given tail, while the other tends toward a constant, i.e. the logarithm derivative
of equation (10),(

d lnxN(r )

dr

)
= −

αEs

R

( r

R

)α−1
, (12)

is nearly zero ifr → R for R � 1. Analyzing the limit r → R gives a similar result for
equation (9). From these considerations, a simple way to produce a function with the required
tails at both ends whenr → R andr → 1 is the following,

xN(r ) ≈ C1 exp

[
Ds

(
1−

r − 1

R

)β
]

exp
[
−Es

( r

R

)α]
, (13)

whereC1 is a constant andDs is another constant that depends ons. Finally, equation (13) can
be simplified when many processes are present, sinces � 1 and as a consequenceα → 0 and
β → 0. For this limit, in the logarithm derivative equation (12) one can neglectα with respect
to 1 and lnxN(r ) ≈ −αEsln(r/R). A similar procedure can be done in the tailr → 1, in which
β is neglected with respect to 1. Combining both tails in a sole expression, we get the fitting
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function used in this work:xN(r ) = K (R− r + 1)b/r a, where

b = βDs and a = αEs, (14)

and K can be obtained by self-consistency. The previous law is the limiting form of two
stretched exponentials when the number of states of processes involved is big, as can be
confirmed by comparing the cases with 3 and 4 numbers in figure4. In conclusion, we have
shown a simple formula that allows to fit many different rank phenomena which arises as a
limiting case for products of random variables. A task that remains is how to get the coefficients
a and b from physical principles, using for example master equations and the concept of
multiscaling modeling. A key observation for such a study is that for expansion-modification
algorithms in DNA models,a > b if the expansion probability of the genetic code is bigger than
the mutation rate [19]. Thus,a andb represent the relative influence of two general mechanisms,
where each of them dominate at a given tail. According to some preliminary results,a seems to
be related to a certain funnel type of energy landscape, as in protein folding, which leads to a
certain deterministic sequence, whileb is associated with a many valley landscape, as seen in
spin glasses. This last opposite effect provides much more variability in the sequence of results.
Such correlation is consistent with associatingb to the stochastic component of the dynamics
anda with the most deterministic features [19]. In a forthcoming paper, we will analyze specific
trends ina andb for different classes or systems.
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