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Simple solvable energy-landscape model that shows a thermodynamic phase transition
and a glass transition
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When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet,
this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two
key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are
considered as in two level system models. However, their multiplicity and topology allows a phase transition in
the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving
the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a
function of the distribution of metastable states.
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Humankind has been using glassy materials since the
dawn of civilization. However, their process of formation still
poses many questions [1–8]. Glasses do not have long range
order and are formed out of thermal equilibrium, resulting
in a limited use of the traditional tools of the trade in
solid state and statistical mechanics. Moreover, numerical
simulations are not able to provide definitive answers, since
cooling speeds achieved in numerical simulations are orders
of magnitude higher than in real cases [9]. One of the main
issues is the nature of the glass transition [10]; for example,
is it a purely dynamical effect or there is an underlying
thermodynamical singularity? The answer to this question has
practical implications, such as how to calculate the minimal
cooling speed depending on the chemical composition in
order to form a glass, or why some chemical compounds
form glasses while others will never reach such a state [11].
Concerning this relationship between chemical composition
and minimal cooling speed, Phillips [11] observed that for
several chalcogenides (which are benchmark tool glasses
obtained by doping group VI elements, such as AsxSe1−x or
GexSe1−x), this minimal speed is a function of rigidity. This
initial observation was the ignition spark for the extensive
investigation on rigidity of glasses [12–19], yet this basic
observation has not been quantitatively obtained in glass
models.

On the other hand, the energy landscape has been a useful
picture to understand glass transition [10]. However, due to
its complicate high dimensional topology, it is difficult to
obtain closed analytical results. It is not even clear how a
phase transition is related with the topology of the landscape,
i.e., why a global minimum leads to singularities in the
thermodynamical behavior. Clearly, there is a lack of a minimal
simple solvable model of landscape that can display a phase
and a glass transition depending on the cooling rate. Here
we present such a model by combining the two most basic
ingredients that are believed to be fundamental in the problem.
Furthermore, the model allows us to get a glimpse on the
connection between minimal cooling speed, energy land-
scapes, rigidity, and Boolchand intermediate phases [20,21].
Boolchand intermediate phases are very interesting in the sense
that they represent a kind of ideal glass transition due to
minimal aging, self-organized stress, and zero nonreversing

heat flow in modulated differential scanning calorimetry [22].
Thus, they are believed to have simple energy landscapes that
will help to clarify many issues of the glass transition [22].

Our work is based in a previous model studied by Huse
et al. [23] and Langer et al. [24–26]. This model is based in
a well known fact: Glasses are trapped in metastable states,
while crystals are global minimums in the landscape. Thus
one can simplify the physical picture through the use of a two
level system (TLS). If the glassy metastable state has energy
E1 and the crystalline global minimum an energy E0 = 0,
the system is trapped in the glassy state due to an energy
barrier V measured from E1, as seen in Fig. 1. However, as
we will see below, this model alone does not predict a phase
transition at slow cooling, which is a basic feature that any glass
theory must reproduce. Here we will show that by adding the
energy-landscape complexity, i.e., a distribution of metastable
states, one can have a phase or a glass transition depending on
the cooling speed.

Let us first briefly summarize the results by Huse et al. [23]
and Langer et al. [24–26], who described the residual popu-
lation of the metastable state for a TLS at zero temperature.
Using the landscape presented in Fig. 1, the cooling process
can be described by a master equation in which the probability
p(t) of finding the system in the metastable state, assuming
that the system is in contact with a bath at temperature T ,
is [24]

dp(t)

dt
= −�↑↓p(t) + �↓↑ [1 − p(t)] , (1)

where �↑↓ is the transition rate from the upper well to the lower,
and the transitions from the lower to the upper take place at
rate �↓↑ = e−E1/T �↑↓. If quantum mechanical tunneling is
neglected, �↑↓ = �0e

−V/T , where �0 is a small frequency of
oscillation at the bottom of the walls.

Equation (1) describes the relaxation towards p0(T ), the
population at thermal equilibrium obtained from the stationary
condition, as can be seen by rewriting Eq. (1) as [24]

dp(t)

dt
= �↑↓(1 + e−E1/T )[p0(T ) − p(t)], (2)
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FIG. 1. The two level system energy landscape, showing the
barrier height V and the asymmetry E1 between the two levels. The
population of the upper well is p(t).

where p0(T ) is given by

p0(T ) = e−E1/T

1 + e−E1/T
. (3)

When the system is cooled by a given protocol T = T (t), it
can be proved that at zero temperature there is a probability
p(T = 0) for the system to be in the metastable state, which
is indicative of a glassy behavior [25,27].

The model by Huse et al. [23] and Langer et al. [24–26]
is very appealing and can be used to explain low temperature
anomalies in glasses [28,29]. However, an important part of the
physics is missing in the original model: The system does not
present a phase transition at low cooling speeds. To achieve
this goal, in this work we introduce a key element to the
TLS landscape topology: the multiplicity of states (related
with the complexity of the landscape). Again, there is a
common agreement that the number of metastable states is
much bigger than their crystalline counterparts. Now let us feed
this information into the model. Assume that the energy E1 has
a degeneracy g1, while the ground energy E0 has degeneracy
g0; thus Eq. (1) needs to be modified to take into account
transitions between different states that are in the low and
upper wells. Call p↑s(t) the population of one of these g1 in
the upper states, and p↓s(t) the population of one of these g0

in the low states. Equation (1) becomes

dp↑s(t)

dt
= −

g1−1∑
l �=s

�sl
↑↑p↑s(t) −

g0∑
m

�sm
↑↓p↑s(t) (4)

+
g1∑
l �=s

�ls
↑↑p↑l(t) +

g0∑
m

�ms
↓↑p↓m(t), (5)

where �sl
↑↑ denotes the transition rate from state s to l, both

in the upper well. The notation for the other transition rates
is similar, and an equivalent expression can be written for
dp↓s(t)/dt . To formulate the model, we use the simplest
topology; i.e., all metastable states are connected within them
with the same transition rate; i.e., �sl

↑↑ ≡ �↑↑. A similar
situation holds for the crystalline states �sl

↓↓ ≡ �↓↓. Transitions
between up and lower states have also the same probability
�sl

↑↓ ≡ �↑↓ and �sl
↓↑ = �↓↑. Under such simple landscape

topology, the previous master equation can be reduced to

dp(t)

dt
= −g0�↑↓p(t) + g1�↓↑ [1 − p(t)] , (6)

where p(t) = ∑g1
s=1p↑s(t) is the total probability of finding

the system with energy E1. Let us show how Eq. (6) can give a
phase transition under thermal equilibrium conditions. In that
case, dp(t)/dt = 0 and

p0(T ) = g1�↓↑
g0�↑↓ + g1�↓↑

= (g1/g0)e−E1/T

1 + (g1/g0)e−E1/T
. (7)

A phase transition can occur if (g1/g0)e−E1/T becomes
discontinuous in the thermodynamical limit. The most simple
example is the following. Suppose that we have N particles,
and the potential is such that the crystalline state is unique
(g0 = 1), with energy E0 = 0, and assume that the number of
metastable states grows exponentially with N , as is the case
in many glassy systems [9] where g1 = eN ln �(E1). �(E1) is
a measure of the landscape complexity [10]. Also, the only
way to make 〈E〉 an intensive quantity with only one energy
is to have E1 = Nε, where ε is an energy per particle. As
an example, this behavior can be readily obtained when two
particles, confined in cells, interact with neighboring cells as
in nearly one dimensional models of magnetic walls [30]. For
this particular case, g1 = 2N and g0 = 1. Using the previous
general considerations, p0(T ) can be written as

p0(T ) = e[ln �(E1)−ε/T ]N

1 + e[ln �(E1)−ε/T ]N
= zN

1 + zN
(8)

with z = exp[ln �(E1) − ε/T ]. In the thermodynamic limit
N → ∞, the function f (z) = zN develops a discontinuity at
z = 1, and it is easy to see that there is a phase transition at
temperature

Tc = ε

ln �(E1)
(9)

with a discontinuous specific heat

c ≡ ε
dp0(T )

dT
=

{
0 if T �= Tc,

∞ if T = Tc.

Now the model is able to produce a phase transition under
thermal equilibrium at a finite temperature, a feature that was
not available in the original one [23–26]. This can be clearly
seen in Fig. 2 for g1 = 2N and g0 = 1, where we plot Eq. (8)
for different values of N using dotted lines. Notice how the
phase transition is built by a progressive sharpening of the
jump in p0(T ) as N grows. According to Eq. (10), the specific
heat is just the derivative of p0(T ); thus the sharpening leads
to the singularity in the thermodynamical limit.

We will show that a glassy behavior is obtained for fast
enough cooling. To solve Eq. (6), one needs to specify the
cooling protocol T = T (t), and write the master equation
in terms of a dimensionless cooling rate. Two kinds of
protocols are useful [24,25]; one is the linear cooling T =
T0 − rt , used mainly in experiments, and the hyperbolic one
T = T0/(1 + Rt), which allows a simple handling of the
asymptotics involved. For the hyperbolic case, the master
equation can be written as

δ
dp(x)

dx
= −g1x

μ + (g0 + g1x
μ)p(x), (11)

where x = exp(−V/T ) and δ = RV/�0T0. The parameter
μ = E1/V measures the asymmetry of the well. The linear
case also follows Eq. (11), since one can rescale the boundary
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FIG. 2. (Color online) Population as a function of the temperature
using a linear cooling for different number of particles N = 2,4, and
8, with V = 1.0, ε = 1, R = 1.4 and T0/Tc = 72, g1 = 2N , g0 = 1
obtained by solving the master equation. The equilibrium population
obtained for δ → 0 is also shown, as indicated in the inset. Notice
how the phase transition is built by a progressive sharpening of the
jump in p(T ) as N grows.

layer [25] that appears in Eq. (11), leading to the same
hyperbolic equation with δ = r/�0V . Equation (11) can be
solved to give

p(x) = exp

[
1

δ

(
g0x + g1x

1+μ

1 + μ

)]

×
{
p(0) − g1

δ

∫ x

0
yμ exp

[
− 1

δ

(
g0y + g1y

1+μ

1 + μ

)]}
.

As an example, Fig. 2 shows p(x) for different cooling rates
and system sizes, using a linear cooling and g1 = 2N , g0 = 1,
compared with the equilibrium distribution that develops a
phase transition at Tc. Notice in Fig. 2 that p(0) is the residual
population at T = 0, indicative of a glassy behavior. Also,
the slope of dp(T )/dT does not tend to infinity, and the
corresponding specific heat c is no longer discontinuous, as
in real glass transitions.

We can obtain the analytical value of p(0) by assuming
that the system was at thermal equilibrium before being
cooled at a temperature T0 
 Tc. In that case x → 1, and the
population is given by the equilibrium distribution, p0(x0) =
(g1/g0)xμ

0 /[(g1/g0)xμ

0 + 1], where x0 = exp(−V/T0). From
Eq. ((11) ), we obtain a general expression for p(0),

p(0) = x
μ

0

x
μ

0 + (g0/g1)
exp

[
− 1

δ

(
g0x0 + g1x

1+μ

0

1 + μ

)]

+ g1

δ

∫ x0

0
yμ exp

[
−1

δ

(
g0y + g1y

1+μ

1 + μ

)]
dy.

Zero population is only achieved if both terms in Eq. (15) are
zero, as is the case for δ → 0. Then we recover the phase
transition, a fact that makes us confident in the result. To
understand more deeply Eq. (13), let us study the particular
case g1 = eN ln �(E1) and g0 = 1, with E1 = Nε. The second in-
tegral contains the term g1y

1+μ ≈ exp{[ln �(E1) − ε/T ]N},
which can be 0 or ∞ in the thermodynamical limit depending
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FIG. 3. (Color online) Residual population at T = 0 as a func-
tion of the cooling speed for different number of particles N =
10, 15, 20, 25, and 30, with V = 0.5, ε = 1, R = 1.4, g1 = 2N ,
g0 = 1, and T0/Tc = 72.

on whether y < xc or y � xc, where,

xc ≡ exp(−V/Tc) = �(E1)−V/ε. (14)

If V does not scale with N , for big N Eq. (13) can be written
as

p(0) ≈ 1

1 + (g0/g1)
exp

[
− g1

δμ

]
+ g1γ (1 + μ,xc/δ)δμ.

(15)

Here γ is the lower incomplete gamma function, and x0 ≈ 1.
The evolution of the residual population given by Eq. (15) is
shown in Fig. 3 as a function of the cooling speed and system
size. As a general trend, the cooling speed required to make
a glass with fixed p(0) increases with the system size. Also,
it is possible to observe a crossover which separates different
behaviors of p(0). For example, in Fig. 3, if N = 4,5,6, and
7, p(0) begins to increase for a high δ after it reaches a plateau
that begins around δ ≈ 1. The same increase is observed for
N = 9 and 10, although shifted to the right in such a way that
it does not appear in the current plot. This crossover is due
to the different growing speeds in Eq. (15). The first term of
Eq. (15) goes to zero if

δ � �(E1)N

N

V

ε
≡ δ2(N ), (16a)

which defines a speed δ2(N ). For δ > δ2(N ), p(0) is dominated
by the first term in Eq. (15). The remaining term in Eq. (15)
regulates the residual population for lower speeds δ < δ2(N ).
This term produces the plateau at a saturating value of p(0),

p(0) ≈ 1

1 + (Nε/V )
≡ ps(0), (17)

which starts at

δ1(N ) ≡ 1

[�N (E1)γ (1 + μ,xc/δ)]1/μ
≈ 1. (18)
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For a finite N , this implies that there are two kinds of glassy
phases, one obtained for intermediate cooling rates δ2(N ) >

δ > δ1(N ) in which p(0) reaches a limiting value. The other
kind is obtained for δ > δ2(N ).

For δ ≈ δ1(N ), we obtain the critical rate to make a glass
for finite systems,

R1 ≈ �0T0/V, (19)

while in the thermodynamical limit, this leads to a
critical R2,

R2 ≈ �(E1)N

N

(
T0

ε

)
�0. (20)

It is surprising that R2 does not depend on V ; this is a result of
the assumption that V does not scale with N . If this is the case,
the term g1x

1+μ

0 in Eq. (13) can determine whether g0x0 plays
a role in the first exponential, leading to a critical speed that
depends on V . Notice that the result is in agreement with the
remarkable observation made by Phillips concerning chemical
composition and minimal cooling speed required to make
glasses [11], since R2 depends on the number of metastable
states. Rigidity provides such an indirect count of metastable
and stable states [31,32]. Finally, the minimal cooling speed
R1 can be estimated for real systems, since �0 is given by
low frequency harmonic vibrations (usually in the terahertz
region). We thus expect a critical hyperbolic cooling rate of
order R1 ∼ 1012 K/s. Assuming that δ is of the same order for
linear cooling, we get r ∼ 1012 K/s, which is much higher than
the usual 106 K/s. Such discrepancy is due to the fact that in
these results, the energy barrier V does not scale with size as E1

does; thus the probability of trapping the system in metastable
states decreases with the system size, making the cooling speed
much higher, as reflected in R2. This problem can be readily
fixed as explained before, although the results are not as clear
as the considered case. A further comparison with real cooling
speeds requires the identification of the effective parameters
of the model, such as energy barriers, metastable states, and
landscape complexity. It is worthwhile mentioning that there
is an important body of work in these long-standing “energy
landscape” types of efforts which are closely related, in which
transitions between states are identified with excitations in
real glasses. As an example, we can cite Angell’s bond

lattice model [33,34] or equivalently Stillinger’s elementary
excitation model [35]. In the bond model, broken bonds or
smeared-out versions of interstitial defects can be taken as
excitations, and thus provide a clue of the possible energy
values for metastable states [33] (these kinds of models are also
in agreement with a rigidity approach to the Boson peak and
glass transition [36,37]). However, to our knowledge, in those
models the question of a critical cooling speed has not been
addressed.
In conclusion, we have introduced the topology of the energy
landscape in a two level model of glass. As a result, we
have a solvable model that has a thermodynamic phase
transition for low cooling rates and a glass transition for
fast cooling. Finally, an interesting point is how the model
can be compared with realistic landscape topologies. It is
known that Gaussian landscapes are able to give good fits
to simulation data of realistic systems [38–41]. For example,
here neither the crystal nor amorphous states have a finite
heat capacity, and this is what the Gaussian approach tries
to fix [41]. Again, such situation arises because our model
simplifies the landscape in such a way that all metastable
states and barriers between them have the same energy,
resulting in similar transition rates in the master equation.
This simplification allows us to solve the master equation
although at the price of having zero specific heat. A more
realistic case can be obtained by considering the vibrational
component on each energy basin and a distribution of barriers.
Yet, our critical temperature given by Eq. (9) is akin to the ideal
glass transition temperature found in Gaussian landscapes (see
for example Eq. (19) in Ref. [42]). Furthermore, the present
model can be used as a starting point to study the effects
of cooling rates in such realistic landscapes. However, it is
more natural to mix the present approach with connectivity
graphs, in which transition paths between metastable states
and energy barriers are coded in a kind of map [43–46]. In
future works, we will pursue this point using more realistic
landscapes.
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