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Using rigidity (constraint) theory of glasses, the effects of low-frequency vibrational modes
anomalies in the glass transition are studied. It is discussed how the possibility of tailoring
by chemical doping the number of low-frequency modes gives clues about how to
determine the glass transition temperature and glass formation ability. In particular, we
present the effects of floppy modes in the specific heat, entropy, internal energy below
glass transition, as well as a discussion of the thermodynamical effects above the glass
transition. All the previous results can be extended to include the Boson peak, since
it can also be understood from a rigidity point of view as a dilution of bonds in an
over-constrained network. Finally, we discuss how a new subject is emerging: floppy
modes effects in the electronic properties of flexible systems. Such relationship provides
a natural connection with topological insulators and two dimensional materials like
graphene.

Keywords: glasses, boson peak, floppy modes

Although in many senses, we have achieved several milestones in the understanding of glass tran-
sition (Jackle, 1984; Elliot, 1990), still there are many open questions and technological challenges
to be tackled. At the same time, there are many competing theories looking for consensus among
researchers (Debenedetti, 1998; Debenedetti and Stillinger, 2000; Egami et al., 2007), hence a vast
amount of literature is devoted to provide a description of key experiments and relevant theories
(Elliot, 1990; Debenedetti, 1998; Debenedetti and Stillinger, 2000). The aim of this article is to
highlight the importance of topology in this field via rigidity theory. Thus, a map of the subject is
provided. As amatter of fact, topology has an increased importance in solid state physics, since it is a
powerful unifying concept that brings out robust and fundamental features of physical phenomena.
For example, in the quantum Hall and spin quantum Hall effects, topologically protected states are
immune to disorder. As a result, the conductance is universal even for different materials or degrees
of disorder. Furthermore, topology brings out powerful analogies in fields that seem to be far away
from glasses, increasing cross-fertilization between different disciplines. As an example, here we will
discuss why the same exponents of the stretched exponentials observed in glass relaxation appear in
the network of scientific citations.
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In particular, there are several important questions to be solved
by any suitable theory of glass transition,

1. What is fast enough? In other words, provide the minimal
amount of cooling in order to form a glass.

2. What chemical factors determine glass transition?
3. How relaxation is achieved?
4. What is the origin of the low-frequency vibrational modes

(LFVMs) anomalies, like the Boson peak, in glasses?

In a general sense, we have a partial understanding of all
these questions (Elliot, 1990; Debenedetti, 1998; Debenedetti and
Stillinger, 2000), yet we are not able to integrate all of them into
a single, coherent, and solid body of knowledge. In this article,
we will argue that rigidity, also known as rigidity (also known as
constraint) theory (RT), introduced by Phillips (1979) to under-
stand question number one, gives a remarkable key to integrate
all of these questions into a single framework providing not only
a nice concatenation of facts, but providing a powerful tool to
develop real glasses (Gupta and Mauro, 2009; Mauro et al., 2009;
Smedskjaer et al., 2010). Furthermore, it allows one to integrate
many other open questions in the field of soft-matter, like in
colloids, granular matter, and gels (Moukarzel, 1998; Huerta and
Naumis, 2003a; Naumis, 2005b; Kraemer and Naumis, 2008).

The key provided by rigidity theory lies in the fact that, on the
one hand, it gives a definitive answer to the origin of the floppy
mode peak (Thorpe, 1983), which is a kind of low-frequency
mode anomaly. By chemical doping, the fraction of floppy modes
can be changed at will (Thorpe, 1983). At the same time, a huge
amount of work has beenmade in order to determine the resulting
physical properties as a function of chemical doping (Gupta and
Mauro, 2009). Thus, we are able to compare how these anomalies
affect the physical properties.

The outline of this paper is the following. In the first section,
we present a brief introduction to rigidity theory (RT) and floppy
modes. Then, we devote a section to showhow the Boson peak can
be included inside the same picture. In the last sections, we discuss
the effects on the thermodynamical properties, glass transition,
and relaxation of glasses when the Boson and floppy mode peaks
are present. Finally, a section on electronic properties and floppy
modes is presented, and the conclusions are given.

Rigidity (Constraint) Theory in a Nutshell

Rigidity theory was used first in glasses by Phillips (1979) to
understand a general experimental observation: best network
glass formers have an average coordination (< r> ) equal to
< r>= 2.4. Here, best network glass formersmeans that the cool-
ing speed is minimal in order to form the glass (Phillips, 1979).
This special < r>= 2.4 coordination is obtained via chemical
doping.

Why this magical number? The answer lies in a topological
phase transition between a flexible to a rigid network (Thorpe,
1983). By considering each bond between any of the N atoms as
a mechanical constraint, one can ask the question of how many
bonds are needed to make the system rigid. If the number of
constraints is bigger than the dimension of the configurational
space, given by 3N, then the system is rigid. When the constraints

are equal to 3N, the network is isostatic and has very special
properties (Selvanathan et al., 2000; Wang et al., 2001). Otherwise
is flexible.

WhenNc is the number of constraints of a 3 dimensional system
(3D), then a fraction (3N–Nc)/3N of the 3N configurational coor-
dinates are cyclic, since the energy of the system does not depend
on such variables (Thorpe, 1983). Thus, f is also the fraction of
vibrational modes with zero frequency (f ), called floppy modes.

Such fraction can be found using a mean-field approximation
known as the Maxwell counting (Thorpe, 1983). This counting
goes as follows: each of the r bonds in a site is shared by two sites.
There are r/2 constraints due to distance fixing between neighbors.
Angular forces also give constraints for directional bonding, and
in 3D there are (2r− 3) constraints to give,

f = 3N− Nc
3N = 1 −

∑
r

[r/2 + (2r− 3)] xr
3 = 2 − 5

6 ⟨r⟩ ,

when f = 0 the network passes from a floppy network to a rigid
one. In 3D, the mean-field approach predicts the transition at the
critical value ⟨rc⟩= 2.4 if all angular constraints are present.

Rigidity Theory at Finite Temperature

Notice that rigidity percolation theory was made for zero tem-
perature (Thorpe, 1983). However, the original idea of Phillips’s
RT was to explain the minimal cooling speeds to form glasses of
a liquid supercooled melt (Phillips, 1979). Why a T= 0 theory
works for the melt? This question is still in the process of being
answered, and is a very active field of research. However, some
preliminary conclusions are available, depending upon whether
T is bigger or lower than Tg, where Tg is the glass transition
temperature.

Below Tg
For T<Tg, the glass can be described as a harmonic solid when
long-time relaxation can be neglected (Naumis, 2000a; Flores-
Ruiz and Naumis, 2012). For long times, we need to average over
meta-basins in the energy landscape, or consider stretched expo-
nential relaxation in traps. Under the harmonic approximation,
floppy modes present a blue-shifted peak due to residual Van
deer Waals forces (Kamitakahara et al., 1991), around a frequency
ω0 with weight f. Then, there is an important contribution to
the entropy (S(T,V,N)) due to floppy modes, since they represent
low-energy reaction coordinates in the energy landscape. If Van
deer Waals forces are neglected, floppy modes provide channels
in configurational spaces, giving lots of entropy (Naumis, 2000b,
2005a). In general, under the harmonic approximation, S(T,V,N)
is given by Naumis (2005a, 2006c),

S(T,V,N) = kBln

3N(1−f)∏
j=1

(
1
ωj

)(
12πkBT

h

)3N(1−f)


+ 3NfkBln
(

12πkBT
Nhω0

)
.

whereωj are the frequencies of the non-floppy normalmodes. The
last term is the contribution from floppy modes. Also, there is
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a source of extra entropy due to the different ways in which the
constraints can be arranged in a lattice (Naumis, 2005a). Con-
cerning other thermodynamical quantities, only for temperatures
T< ~ω0/kB it is possible to obtain anomalous behaviors for the
thermal conductivity (Romero-Arias et al., 2009; Naumis and
Salazar, 2011) as well as for the internal energy and specific heat
(Naumis, 2000a).

To understand this two last points, consider the internal energy
per particle (U(T,N)/N) of the system, given in the harmonic
approximation as a sum over all modes of the Bose–Einsten factor,

U(T,N)
N =

∫ ∞

0

ρ(ω)~ωdω
e~ω/kBT − 1

(1)

where ρ(ω) is the vibrational density of states. Let usmake a simple
model for ρ(ω) by using a combination of an Einstein model that
puts a spectral weight f to the floppy mode peaks at frequencyω0.
Notice that in ideal rigidity, ω0 = 0 since floppy modes do not
store elastic energy. As explained before, in real systems, residual
forces produce a blue shift with a non-zero ω0, as confirmed by
neutron scattering (Kamitakahara et al., 1991). The rest (1–f ) of
the spectral weight is carried by a density ρR(ω),

ρ(ω) =

{
(1 − f)ρR(ω) + 3fδ(ω − ω0), if ω ≤ ωD

0 if ω > ωD
(2)

where ωD is a cut-off frequency. Using this model for a flexible
system, we get the internal heat as,

U(T,N)
N ≈ (1 − f)

∫ ∞

0

ρR(ω)~ωdω
e~ω/kBT − 1

+ 3f ~ω0

e~ω0/kBT − 1
(3)

Now, we define a floppy-mode-temperature as Tf = ~ω0/kB. Such
temperature is akin to the Einstein or Debye temperature in those
models. Basically, it defines a crossover between the classical limit,
dominated by entropy via the thermal energy kBT, and quantum
effects, determined by the energy of the floppy mode quantum,
given by ~ω0. For low temperatures, i.e., below TD, there is a
specific heat that is a combination of the Einstein one-frequency
oscillator model, plus a T3 Debye contribution,

cv
kB

= (1 − f)12π
4

5

(
T
TD

)3
+3f

(Tf

T

)2
e−(Tf/T) (4)

where the parameter TD is obtained by normalizing the non-
floppy component. Notice that if the temperature is lowered below
Tf, all floppy modes are frozen since the thermal energy is not
enough to excite their quanta. As a result, cν follows the Debye
model, but with a smaller value due to the reduced spectral
weight of non-floppy modes. For high temperatures T>>TD, the
Dulong-Petit law cν(T)= 3kB is recovered from equation (4). For
this, the floppy-mode blue shift is paramount. A finite number of
zero frequencymodeswill imply a violation sincewithout this blue
shift, cν(T)= 3(1–f )kB.

Above Tg
One of the most important questions in the field is why RT
works to understand the supercooled liquid and non-equilibrium
processes.

Initially, to answer this question, numerical simulations were
performed on simple models of association leading to some pre-
liminary conclusions (Huerta and Naumis, 2002a,b, 2003a,b).
The advantage of these models is the possibility of defining
in a clear-cut fashion the concept of active constraint, since
short-range potentials are used. Then, if atoms are within
a certain distance, the constraint is active. For example, it
is clear that even in non-covalent bondings systems, like in
disks and gels, dynamical arrest was related with a RT transi-
tion (Huerta and Naumis, 2002b, 2003a; Kraemer and Naumis,
2008).

The concept of temperature-broken constraints (Gupta and
Mauro, 2009; Mauro et al., 2009; Bauchy and Micoulaut, 2015)
has proved to be very important in the understanding of vis-
cosity and relaxation, as has been confirmed in numerical sim-
ulations of real glasses (Smedskjaer et al., 2010; Bauchy and
Micoulaut, 2011, 2015). The idea is that by heating, constraints
are broken. The number of broken constants can be estimated
through a Boltzmann factor (Gupta and Mauro, 2009). Notice
that in a sense, the transition from a gas or liquid to a solid
is just a problem of adding constraints. The problem is how to
define an active constraint in realistic cases. However, recent
work by Micoulaut’s group has provided a clear definition on
how to determine active or broken constraints (Bauchy and
Micoulaut, 2011, 2015), and thus solved a major open problem in
the field.

From a more abstract point of view, the complexity of the
energy landscape, determined by a distribution of metastable
basins (Flores-Ruiz and Naumis, 2012), determines the minimal
cooling speed, as can be explained by a simple solvable model
that present a glass and a phase transition to a crystal depending
on the cooling rate (Naumis, 2012). RT is, in fact, a clever way
to estimate the fractal dimension of the “mountain” landscape
(Naumis, 2005b).

Low-Frequency Mode Anomalies in
Glasses: From Floppy Modes to
the Boson Peak

All glasses present an excess of low-frequency vibrational modes
(LVFMs) relative to the Debye crystal model, like the Boson
peak (BP) or floppy modes (FM). They are in the THz range of
frequencies (Buchenau et al., 1984; Elliot, 1990;Hehlen et al., 2000;
Binder and Kob, 2005). Crystals can also present a Boson peak
under pressure, like in SiO2 (Nakayama, 2002), where the rigid
SiO4 tetrahedra units are connected by flexible bonds (Trachenko
et al., 2004). In glasses, the nature of the Bosonpeak is still debated,
while floppy modes are well understood.

During the last years, it has become clear that the Boson peak
can also be explained as a consequence of rigidity. To understand
this, suppose that we have an over-constrained network in which
Nc > 3N, as shown in Figure 1. If bonds are removed at random,
for example, by dilution, eventually Nc = 3N. At this point, the
lattice becomes isostatic, see Figure 1. If we further dilute the
lattice, eventually Nc < 3N and 3N–Nc zero frequency modes will
appear. But what happens when we dilute the lattice starting from
Nc < 3N?.
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ω

ρ (ω)
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r r
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FIGURE 1 | Evolution of the reduced density of states for a diluted
bond network, starting from an over-constrained network (upper
network) and from an isostatic lattice (lower network). The dotted lines
indicate diluted bonds, while solid bars indicate intact bonds. The position of
the Boson peak evolves as

√
< r > −rc. For the isostatic lattice, < r>= rc

and the Boson peak has zero frequency, i.e., it becomes a floppy mode. As
dilution continues, the floppy peak, indicated by an f, has an increasing
weight.

This question can be answered first by studying random bond
dilution in periodic lattices (Flores-Ruiz and Naumis, 2011),
then a Boson peak appears at a frequency ΩBP. It can appear
at most at one-third of the Debye frequency (Flores-Ruiz and
Naumis, 2011) ωD, while for example in almost all glasses (Ruf-
flé et al., 2008) ΩBP = 0.1ωD. In addition, the position of the
peak scales as (Flores-Ruiz and Naumis, 2011)

√
< r > −rc,

where < r> is the coordination of the network and rc is the
critical coordination of the isostatic lattice. For disordered lat-
tices, one can extend this approach by using perturbation the-
ory or by performing numerical simulations (Flores-Ruiz et al.,
2010).

Furthermore, the peak has an almost transverse mode nature
and can be related with a Van Hove singularity occurring
in the glass (Flores-Ruiz and Naumis, 2013). Recent evi-
dence suggests that the Boson Peak in glasses is equivalent
to the transverse acoustic van Hove singularity in crystals
(Chumakov et al., 2011), supporting the analytical and com-
puter model (Flores-Ruiz and Naumis, 2013). The shift of the
Boson peak due to pressure effects (Monaco et al., 2006) can
also be understood as an increase in the number of contacts
(Flores-Ruiz and Naumis, 2013).

Thus, a new picture emerges by the process of bond dilution.
The Boson peak is due to a diluted connectivity in an over-
constrained network. As < r> goes to a critical rc, an isostatic
lattice is reached. The Boson peaks reach a zero frequency and if

dilution is performed again, floppymodes are obtained. Both low-
frequency modes anomalies are due to a reduced connectivity of
the network.

For example, in SiO2 under pressure a blue shift of the LFVM
anomalies is observed (Trachenko et al., 2004). Such effect can be
understood as a departure from isostaticity by an increased num-
ber of atomic contacts due to pressure. Below a pressure of 3GPa,
constraint counting in SiO2 reveals an isostatic network due to the
connection of rigid unitmodes (RUM)made fromSiO4 tetrahedra
with flexible bonds. Pressure leads to the formation of defects with
an increased coordination number (Trachenko et al., 2004).

Notice that in real glasses, floppy modes, and the Boson peak
can coexist since regions with different elastic properties can
coexist (Bhosle et al., 2011).

In the next section, we will discuss the importance of low-
frequency modes for the glass transition.

Low-Frequency Modes and
Glass Transition

Do low-frequency modes anomalies influence glass transition?
There are several arguments against this. For example, within
the energy landscape picture (Debenedetti and Stillinger, 2000),
if a glass relax into a floppy mode channel reaction coordi-
nate, eventually it will reach a new basin in which the floppy
coordinates are different. Observe that floppy modes are impor-
tant for fast relaxation. Long-time scale relaxation (α) does
not retain memory of the almost instantaneous configuration
of a floppy mode. However, energy landscape basins are in
fact very similar (Flores-Ruiz and Naumis, 2012). Even in pro-
tein folding, an analysis of the landscape leads to the conclu-
sion that the similarity of the minima is behind the remark-
able phenomena of relaxation along soft coordinates (Pontiggia
et al., 2007). For protein G, slow modes display a very mild
dependence on the trajectory duration in the landscape. This
originates from a striking self-similarity of the free-energy land-
scape embodied by the consistency of the principal directions
of the local minima (Pontiggia et al., 2007), where the system
dwells for several nanoseconds, and of the virtual jumps connect-
ing them. Incidentally, proteins also have a boson peak (Cilib-
erti et al., 2006). Recently, a careful study of the short-time
behavior distribution of normal modes on different meta-basins
in Lennard-Jones binary glasses leads to the same conclusion
(Flores-Ruiz and Naumis, 2012). In fact, such a remarkable result
is behind another puzzling question, why short-time dynam-
ics provides information about long-time dynamics in glasses
(Dyre et al., 2006).

At the same time, there is a clear indication that low-frequency
modes are paramount to the thermodynamical stability of a sys-
tem. At this point, we will use an opposite approach to that used
bymost people. Instead of looking at melt cooling, herewe assume
that a glass was already formed, and has a temperature T lower than
Tg. Then the glass is heated, until reach Tg.

Mechanical rigidity provides a clue on the thermodynamical
stability of a system that contains a delicate balance between
dimensionality and low-frequency vibrational modes. In partic-
ular, stability can be tested by looking at long-range correlations
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of the quadratic displacement u2(rj) of atom j at position rj,⟨∥∥u(ri)− u(rj)
∥∥2
⟩
/2 =

⟨
u2(T)

⟩
−
⟨
u(ri) · u(ri + Rij)

⟩
.

where Rij is the vector Rij = rj – ri that joins atom i with j, and the
bracket ⟨⟩ denotes average at temperature T and over all atoms.
For a laboratory timescale, a glass is in a metastable state. Thus,
we can suppose that the glass can be represented as an harmonic
Hamiltonian in thermal equilibrium. Under this approximation,
it is easy to prove that,

⟨
u2(T)

⟩
≈ 3kBT

⟨m⟩

∞∫
0

ρ(ω)

ω2 dω. (5)

where<m> is the average mass. An excess of LFVM is enhanced
by the 1/ω2 inside the integral in equation (5). LFVMs lead to an
increased ⟨u2(T)⟩ of the glass when compared with the crystal.
Dimensionality (d) is also important for the crystal and glass. For
crystals, the Debye model indicates that ρ(ω)=Cωd–1. Only for
d= 3 the integral is convergent for non-zero T.

Summarizing, the stability of a solid is mainly contained in the
factor ρ(ω)/ω2. Any excess of low-frequency modes will decrease
the stability of the system.

Let us now further develop the previous arguments to show
how LFVM can determine Tg. At low T, the system is trapped
in an energy landscape basin (Debenedetti and Stillinger, 2000).
As the system is heated, it can visit new basins. Following density
functional theory, we look for transition states between basins,
using the ansatz that atoms travel the least motion path between
adjacentminima (Hall andWolynes, 1987). The viscosity η(T) can
be estimated as (Hall and Wolynes, 1987),

ln(η(T)/η0) ≈
3R2

0
4 ⟨u2(T)⟩ , (6)

where η0 is the typical value of the melt viscosity, R0 is a constant
related with the range of the inter-atomic potential. The mean
quadratic displacement ⟨u2(T)⟩ should be taken as measured by
Mossbäuer scattering, since ⟨u2(T)⟩ will diverge for long-time
scales. Since Tg corresponds to the temperature where η0≈1013

Poise, from equation (6) we get,⟨
u2(Tg)

⟩
R2

0
≈ 3

4(13 − y)ln10 ≈ 0.325
13 − y , (7)

where y is an exponent defined by η= 10y Poise. For typical fluids
(Hall and Wolynes, 1987) y≈ 3. Also, for typical inter-atomic
potentials (Hall and Wolynes, 1987) 0.3σ <R0 < 0.5σ (where σ is
the atomic size). Thus, we obtain the following bounds,

0.0080 <

⟨
u2(Tg)

⟩
σ2 < 0.0081, (8)

The maximal quadratic displacement allowed for the system to be
solid is determined by,√

⟨u2(Tg)⟩ < 0.9σ. (9)

Since σ is of the order of the inter-atomic distance, it turns out
that we just obtained for glasses the well known Lindemann
criterion, i.e., for crystals melting occurs when the mean atomic
displacement

√
⟨u2(T)⟩ is around 10% of the atomic spacing a

(Tabor, 1996). In fact, this criterion is valid for many glasses
(Buchenau et al., 1984; Buchenau and Zorn, 1992). At this point,
the fundamental role of low-frequencymodes to determineTg and
Tm is clear, since we can separate the problem in two time scales.

Using equation (5) and that
√

⟨u2(Tg)⟩ ≈ 0.01σ, Tg is given by,

Tg ≈ 0.001

3ρ2/3kB
⟨m⟩

∞∫
0

ρ(ω)

ω2 dω.

−1

(10)

The previous analysis can be combined with RT to estimateTg as a
function of chemical doping (Naumis, 2006a,b). Using the simple
model of ρ(ω) described in equation (2) to feed equations (5) and
(10), we get that

Tg(⟨r⟩) ≈ Tg(< r >= 2.0)/ (1 − γ(⟨r⟩ − 2)) . (11)

where γ a constant determined by ρR(ω) (the density of states
when f = 0) and ω0,

γ ≡

ω2
0

∞∫
0

ρR(ω)

ω2 dω

−1

− 1. (12)

This functional form deduced here for Tg as a function of ⟨r⟩
has been observed experimentally by many groups (Tatsumisago
et al., 1990; Sreeram et al., 1991), and is called the empirically
modified Gibbs-DiMarzio law (Naumis and Kerner, 1998; Kerner
and Naumis, 2000).

Relaxation: From Glasses to Citations
Networks and Turbulence

Here, we discuss recent progress in two fields: strain and thermal
relaxation in glasses. In glasses, quenching produces defects with
some residual internal stress. Such stress relaxation is known to
be described experimentally by stretched exponentials (Phillips,
2006; Welch et al., 2013),

I(t) ≈ exp[−(t/τ)β ] (13)

The relaxation parameters τ and β have been usually fitted from
experimental data. Not so much work has been done on the the-
oretical side to understand a fundamental issue: how to get these
parameters from a theory. Eventually, by considering defects as
traps and a diffusion model, stretched relaxation theory (Phillips,
2006) (SER)was able to predict that in d dimensionsβ= d/(d+ 2),
giving the magic number β= 3/5 for d= 3. Later on, it was
recognized that long-range forces can have an important effect
in certain kind of glasses (Naumis and Phillips, 2012a,b), and
the previous formula is modified by an effective dimensionality
β= d*/(d*+ 2), with d*= fd, and f = 1/2. This produces another
magic number (Naumis and Phillips, 2012a,b), β= 3/7.

Frontiers in Materials | www.frontiersin.org June 2015 | Volume 2 | Article 445

http://www.frontiersin.org/Materials
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Naumis Low-frequency vibrational modes anomalies and rigidity

In real glasses, the accurate predictions of SER theory have been
confirmed in a beautiful experiment by using a big homogeneous
glass plate (Welch et al., 2013). Surprisingly, the same magic num-
ber appears in a study of twentieth century citations, involving
25 million papers (Wallace et al., 2009; Naumis and Phillips,
2012b). If papers are ranked by citations, then the ranking does
not follow a power law. Instead, a stretched exponential is followed
(Wallace et al., 2009). Before 1960, the number of citations has
an exponent β= 3/5. After 1960, β= 3/7. The transition can be
explained by the jet age, which increased the connectivity of the
network (Naumis and Phillips, 2012b). The similarity with glasses
is not coincidental, it is just the result of combining relaxation
and topology, leading to a new exciting field. In fact, stretched
exponentials lead to the modified beta rank law (Naumis and
Cocho, 2008), which has many applications in biology, social
sciences, soft-matter, physics, etc., i.e., when network topology
matters (Naumis and Cocho, 2007).

Finally, we will discuss how thermal relaxation is modified
by the rigid or flexible nature of the system. This is important
for glass formation ability, since, for example, a fast relaxation
will enhance crystallization. As an example, it has been observed
that for metallic glasses, Tg is related with the chemical com-
position through the thermal conductivity (Louzguine-Luzgin
et al., 2008). Also, the inclusion of group IV impurities leads to
an enhanced glass formation ability (Reyes-Retana and Naumis,
2014, 2015).

The thermal conductivity for low temperatures of diluted flex-
ible systems has been studied under the harmonic approxima-
tion, revealing also anomalies (Romero-Arias et al., 2009). For
higher temperatures, the problem requires the study of non-
linear Hamiltonians, which is a topic that even in one dimen-
sional periodic case has many open questions (Campbell et al.,
2004).

In fact, the study of thermal relaxation started with the well
known Fermi–Pasta–Ulam (FPU) problem (Fermi et al., 1965;
Campbell et al., 2004). They tried to solve the paradox that from
a pure theoretical point of view, harmonic solids can never reach
energy equipartition since there is no sharing of energy between
normal modes. Fermi–Pasta–Ulam proposed a simple model to
understand the problem. The model is a linear chain with equal
masses and non-linear springs (Fermi et al., 1965; Campbell et al.,
2004). The dynamical equations were solved using one of the
first computers. The results were difficult to understand at that
time, since equipartition did not appear as expected. After years
of research, it is now clear that relaxation depends upon low-
frequency vibrational modes (Ford, 1961; Reigada et al., 2001;
Ponno, 2005), due to their quasi-resonant nature (Ford, 1961;
Cerón et al., 2005; Ponno, 2005). As a result, they share energy
in an efficient way (Ponno, 2005) when compared with high-
frequency modes.

The FPU model can be modified to include rigidity (Romero-
Arias and Naumis, 2008) by adding second-neighbor non-linear
bonds in the original FPU model (Romero-Arias and Naumis,
2008). Constraints bonds are added at random or in a peri-
odic way.

The relaxation from an initial temperature T to zero tempera-
ture can be studied in the following two steps (Reigada et al., 2002):

a thermal bath is applied until thermal equilibrium is reached,
then the bath is retired and a damping term is added at both ends
of the chains. For long times, relaxation is always slower when the
number of LFVMs is reduced. The relaxation of high-frequency
modes requires a transference of energy to LFVMs (Reigada et al.,
2001). Such a phenomenon is akin to turbulence (Ponno, 2005),
in which energy is injected at large scales, and transferred via a
cascade of self-similar eddies to a small scale, where energy is
finally dissipated.

The study of relaxation in two and three dimensional systems
using non-linear terms is still an open field since even for the
original FPU model the work is scarce.

Electronic Properties and Floppy Modes:
From Graphene to Topological Insulators

One of the less studied problems is how rigidity theory enters
inside the electronic properties picture. At first sight, all
vibrational modes affects electron scattering, and thus their
effects are hidden inside the thermal noise. However, after the
discovery of graphene and other pure bi-dimensional materials
(Geim and Novoselov, 2007), there is a growing interest in
the subject. Graphene, which is a 2D crystal with a one-atom
thickness, can be considered as a flexible membrane. In such case,
floppy modes are called flexural modes, since they correspond
to vibrations in a perpendicular direction to the graphene’s plane
(Geim and Novoselov, 2007). Note that there are predictions
concerning the possibility of finding amorphous graphene, which
is proposed to be as a simple realization of Zachariasen’s glass
(Kumar et al., 2012).

Let us consider a simple example of the effects of floppy
modes. For simplicity, we focus on a system described with a one-
orbital nearest-neighbor tight-binding Hamiltonian, as happens
in graphene (Geim and Novoselov, 2007),

H = −
∑
x′,n

t′nc†x′cx′+δ′n
+ H.c., (14)

where x′ runs over all sites of the distorted lattice due to a floppy
mode. Here, c†x′ is the creation operator for an electron at site x′
and cx′+δ′n

is the annihilation operator at site x′ + δ′n. The vectors
δ′n point in the direction of each nearest-neighbor for a given
atom. The nearest-neighbor hopping parameters t′n are usually
modified by deformations, since they depend on the inter-atomic
distances. For carbon, they fulfill an exponential decay (Oliva-
Leyva and Naumis, 2013), t′n = texp[−β(|δ′n|/a − 1)], where t is
the equilibrium hopping parameter.

Suppose the system is distorted by a floppy mode. Since
bond lengths are not modified, the parameters t′n are invariant
(although in many systems, angular effects can induce changes
depending of the orbital overlaps. For graphene, this effect is
negligible for π orbitals). Under our approximation, the Hamil-
tonian matrix remains the same for floppy mode deformations.
Thus, the eigenvalues are invariant under such distortion, and
the electronic density of states also remains invariant. However,
the electron’s speeds are modified. To see this in a simple way,
consider a periodic system with an elastic deformation field u(x).
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The position of the atoms in the undeformed (x) and deformed
lattices (x′) are related by,

x′ = x+ u(x) (15)

with an associated strain tensor,

∈̄ij = (∂iuj(x) + ∂jui(x))/2 (16)

that here we assume that is uniform, i.e., without a spatial depen-
dence. Replacing the creation/annihilation operators with their
Fourier expansions, the Hamiltonian in momentum space is
(Oliva-Leyva and Naumis, 2013)

H = −
∑
k,n

t′ne−ik·(̄I+ϵ̄)·δnc
†
kck + H.c., (17)

and therefore, the dispersion relation is,

E(k) = ±

∣∣∣∣∣∑
n

t′ne−ik·(̄I+ϵ̄)·δn

∣∣∣∣∣ . (18)

It is easy to see that the spectrum is the same as in the undeformed
system, as expected from the eigenvalues of the Hamiltonian
matrix. However, the dispersion relationship is distorted through
a deformation of the reciprocal space. For strained or rippled
graphene, this effect produces a deformation of the Dirac cone
(Oliva-Leyva and Naumis, 2013).

Floppy modes in graphene are not only important for elec-
tron scattering. When boundaries or impurities appear, a fraction
of the electronic modes have zero energy (with respect to the
Fermi level). Such states are known as Dirac modes in graphene
(Barrios-Vargas and Naumis, 2013), but appears in other bipartite
lattices as confined states. For example, they have been observed in
quasiperiodic systems (Naumis et al., 1994) and in random binary

alloys (Naumis et al., 2002). Such modes can be described in
terms of a mechanical instability when isostaticity appears (Kane
and Lubensky, 2014). They are similar to the protected electronic
boundary modes that occur in the quantum Hall effect and in
topological insulators (Kane and Lubensky, 2014). Recently, Kane
and Lubensky (2014) established the connection between the
topological mechanical modes and the topological band theory
of electronic systems, predicting new topological bulk mechanical
phases.

These topological “floppy modes” are, in fact, behind the
remarkable metal-insulator transition in doped graphene, which
transforms graphene in a narrow-gap semiconductor with an
enormous technological potential (Naumis, 2007; Barrios-Vargas
and Naumis, 2011). They are also fundamental in graphene’s
magnetic properties (Barrios-Vargas and Naumis, 2013).

Conclusion

Rigidity theory allows one to understand, via chemical modifi-
cation, how low-frequency modes anomalies play an important
role in glass transition. The Boson peak can also be included
in the theory by considering bond dilution of over-constrained
networks. When relaxation is combined with topology, stretched
exponentials with magical β exponents are obtained. The ideas
of rigidity can also be extended to study the electronic properties
of solids, providing bridges between glasses and new topics in
material science like graphene and quantum topological phases.
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