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Understanding electron behavior in strained graphene as a reciprocal space distortion
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The behavior of electrons in strained graphene is usually described using effective pseudomagnetic fields in a
Dirac equation. Here we consider the particular case of a spatially constant strain. Our results indicate that lattice
corrections are easily understood using a strained reciprocal space, in which the whole energy dispersion is simply
shifted and deformed. This leads to a directional-dependent Fermi velocity without producing pseudomagnetic
fields. The corrections due to atomic wave function overlap changes tend to compensate such effects. Also, the
analytical expressions for the shift of the Dirac points, which do not coincide with the K points of the renormalized
reciprocal lattice, as well as the corresponding Dirac equation are found. In view of the former results, we discuss
the range of applicability of the usual approach of considering pseudomagnetic fields in a Dirac equation derived
from the old Dirac points of the unstrained lattice or around the K points of the renormalized reciprocal lattice.
Such considerations are important if a comparison is desired with experiments or numerical simulations.
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I. INTRODUCTION

Since the experimental observation of graphene,1 a two-
dimensional form of carbon, there have been many theoretical
and experimental studies to understand and take advantage of
its surprising properties.2–5 Among its most interesting fea-
tures, one can cite the peculiar interplay between its electronic
and its mechanical properties. Graphene can withstand elastic
deformations up to 20%, much more than in any other crystal.6

Needless to say, this long interval of elastic response results in
strong changes in the electronic structure, which offers a new
direction of exploration in electronics: strain engineering.7–10

The prospect is to explore mechanical deformations as a
tool for controlling electrical transport in graphene devices: a
technological challenge owing to the counterintuitive behavior
of electrons as massless Dirac fermions.11

The most popular model proposed in the literature for
studying the concept of strain engineering is based on
a combination of a tight-binding (TB) description of the
electrons and linear elasticity theory.12–15 In this approach,
where the absence of electron-electron interactions is assumed,
the electronic implications of lattice deformations are captured
by means of a pseudovector potential A, which is related to
the strain tensor ε by15

Ax = β

2a
(εxx − εyy), Ay = − β

2a
(2εxy), (1)

where a ≈ 1.42 Å is the unstrained carbon-carbon distance
[see Fig. 1(a)] and β ≈ 3 modulates the variation of the
hopping energy t of the TB model with the changes in
the intercarbon distance due to lattice deformations.4,7 Note
that the x axis is selected parallel to the zigzag direction.
This β-dependent pseudovector potential gives a coupling of
the pseudomagnetic field (B = ∇ × A) with the electronic
density. The idea of pseudomagnetic fields has been key in
the understanding of the pseudo-Landau-level experimental
observations made in strained graphene, which had been
theoretically predicted earlier.16,17

In recent work, the standard description of the strain-
induced vector field has been supplemented with the explicit

inclusion of the local deformation of the lattice vectors.18–22

After accounting for the actual atomic positions to the TB
Hamiltonian, Kitt et al. proposed an extra pseudovector
potential which is β independent and different at each of the
strained Dirac points.18 The possible physical relevance of the
extra β-independent term, predicted in the work of Kitt et al.,
was discussed by de Juan et al. within the TB approach.19 They
also obtained an extra β-independent pseudovector potential
but with zero curl. Therefore, they concluded that in strained
graphene no β-independent pseudomagnetic field exists.19,20

The controversy created by Kitt et al. has also been solved
in Refs. 21 and 22, where the concept of renormalization of
the reciprocal space was a core and novel idea developed
to meet that end. However, as has been documented in
Ref. 7, the positions of the energy minima and maxima (Dirac
points) do not coincide with the high-symmetry points at
the corners of the renormalized Brillouin zone [e.g., the K
point in Fig. 1(c)]. This last statement motivates us to seek
the effective Hamiltonian around the Dirac points using such
renormalization, since, as shown here, this is essential to
understand the experimental data.

In this paper we analyze the most simple case, a spatially
uniform strain. The reason is that such a case must be contained
as a limiting case in any of the general theories, and at the
same time, as shown here, it can be solved exactly. Thus, it
is an important benchmark tool to compare and discriminate
the goodness of previous approaches. For example, this leads
to a simple explanation for the lattice correction terms and
direction-dependent Fermi velocity, since both are due to the
effects of strain in reciprocal space. Hopefully, this will help to
derive the consequences of lattice corrections of flexural modes
or curved graphene. The layout of this work is the following.
In Sec. II we present the model and find the corresponding
energy dispersion surface. In Sec. III, we discuss the properties
of the energy dispersion and find the analytical expressions
for the shift of the Dirac points and the strained Dirac
Hamiltonian. Section IV deals with the problem of how
the usual pseudomagnetic-field approach needs to be added
with some requirements in order to compare experiments and
simulations. Finally, in Sec. V, our conclusions are given.
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II. MODEL: ELASTICITY AND TIGHT BINDING

We are interested in uniform planar strain situations; i.e., the
components of two-dimensional strain tensor ε are assumed to
be position independent. In this case, the displacement vector
u(x) is given by u(x) = ε · x, and therefore, the actual position
of an atom x′ = x + u(x) can be written as x′ = (I + ε) · x,
I being the 2 × 2 identity matrix. In general, if r represents a
general vector in the unstrained graphene lattice, its strained
counterpart is given by the relationship r ′ = (I + ε) · r .

We investigate the electronic implications of strain by
means of the nearest-neighbor TB Hamiltonian,

H = −
∑
x′,n

tx′,na
†
x′bx′+δ′

n
+ H.c., (2)

where x′ runs over all sites of the deformed A sublattice and
δ′

n are the three nearest-neighbor vectors. The operators a
†
x′

and bx′+δ′
n

correspond to creating and annihilating electrons
on sublattices A and B, at sites x′ and x′ + δ′

n, respectively.
The dispersion relation arises upon writing Eq. (2) in the
momentum space. For this purpose, we replace the cre-
ation/annihilation operators with their Fourier expansions,23

a
†
x′ = 1√

N

∑
k1

eik1·(x+u(x))a
†
k1

, (3a)

bx′+δ′
n

= 1√
N

∑
k2

e−ik2·(x+δn+u(x+δn))bk2 , (3b)

where N is the number of elementary cells. In Eq. (2) we have
written the hopping integral tx′,n as position dependent, but in
the considered case (uniform strain), it does not depend on the
position, only on the direction: tx′,n = tn.

Under these considerations, calculation of the Hamiltonian
in k space is fairly straightforward; H becomes

H = −
∑
k,n

tne
−ik·(I+ε)·δna

†
kbk + H.c. (4)

From this equation, it follows that the dispersion relation
of graphene under spatially uniform strain is

E(k) = ±
∣∣∣∣∣
∑

n

tne
−ik·(I+ε)·δn

∣∣∣∣∣, (5)

which is a closed expression for the energy. This equation
provides a benchmark tool case for testing any Hamiltonian
concerning strain in graphene and suggests the procedure that
is developed in the following section. If in Eq. (5), we define
an auxiliary reciprocal vector k∗ = (I + ε) · k, the dispersion
relationship is almost equal to the case in unstrained graphene,
except for the different values of tn as a function of n. When
such hopping changes are not considered, as explained in the
following section, one gets that

E(k) = ±
∣∣∣∣∣
∑

n

t0e
−ik∗·δn

∣∣∣∣∣, (6)

which is exactly the same Hamiltonian as for unstrained
graphene, but now with k replaced with k∗. Here, no
approximations are used and the spectrum can be obtained

for all values of k∗. If this Hamiltonian develops around the
corresponding Dirac point, it is obvious that the same Dirac
Hamiltonian observed in unstrained graphene will appear
(see below), with k replaced with k∗. This suggests doing
a renormalization of the reciprocal space as performed in
the next section, a result that was also found in Refs. 21
and 22. Furthermore, Eq. (5) can be numerically evaluated to
test any effective Hamiltonian obtained by developing around
particular points in k space.

It is important to remark that in the general case of a nonuni-
form strain, δ′

n are not given by δ′
n = (I + ε) · δn. In this case,

ε(x) needs to be replaced by the displacement gradient tensor
∇u.20,24 See in Ref. 20 how the use of δ′

n = (I + ∇u) · δn

allowed Kitt et al. to solve the controversy concerning whether
or not lattice corrections produce pseudovector potentials.

III. ENERGY SPECTRUM OF STRAINED GRAPHENE

The variation of the hopping energy tn with the
changes in the intercarbon distance fulfills a physically
accurate exponential decay tn = t0 exp[−β(|δ′

n|/a − 1)],
with t0 � 2.7 eV being the equilibrium hopping energy.4,25

Nevertheless, for the sake of comparison with previous work,
we consider first order in strain,

tn � t0

(
1 − β

a2
δn · ε · δn

)
. (7)

Defining the three nearest-neighbor vectors as depicted in
Fig. 1,

δ1 = a

2
(
√

3,1), δ2 = a

2
(
√

3,1), δ3 = a(0, − 1), (8)

FIG. 1. (Color online) (a) Unstrained graphene lattice showing
the vectors δi that point to the neighbors of type A sites, (b) the
same lattice under a uniform stress, and (c) the first Brillouin zone
of the reciprocal lattice for unstrained (dashed lines) and strained
(solid lines) graphene. Note how the reciprocal lattice is contracted
in the direction where the lattice is stretched, and the change of the
K 0 symmetry point into K . (d) How the distortion of the reciprocal
lattice transforms the original Dirac cone (left) into a distorted one
(right) with a directional-dependent Fermi velocity.
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and plugging Eq. (7) into Eq. (5), one gets the following
expression for the dispersion relation,

E(k) = ±t0
√

3 + f (k∗) − β(3Tr(ε) + fε(k∗)) + β2fε2 (k∗),

(9)

where f (k∗) has exactly the same functional form as its
unstrained graphene counterpart,4

f (k∗) = 2 cos(
√

3k∗
xa) + 4 cos

(√
3k∗

xa

2

)
cos

(
3k∗

ya

2

)
,

(10)

but now evaluated at different points of reciprocal space, since
here k∗ = (k∗

x ,k
∗
y ) is given by the transformation,

k∗ = (I + ε) · k. (11)

This last equation is very important. It provides a mapping
of the original reciprocal space into a new distorted one. As
we will see, this mapping and the fact that f (k∗) is equal to its
undistorted counterpart lead to pure geometrical effects that
only very recently have been identified.18–22 The other terms
depend on the same distortion but contain hopping corrections.
These terms are explicitly detailed in Appendix A. fε(k∗)
contains the modification of the spectrum due to first order in
β, while fε2 (k∗) is the second-order correction in β.

A. Hypothetical case: β = 0

Several important consequences follow from these equa-
tions. First, one can observe that in the case of deforming the
lattice without changing the hopping parameters, i.e., if one
deforms the lattice keeping β = 0, E(k) is simplified to

E(k) = ±t0
√

3 + f (k∗). (12)

This corresponds to the same dispersion relationship ob-
served in graphene, but now with different reciprocal vectors,
which are obtained by applying strain to the original reciprocal
vectors. In other words, the space is strained, while the
eigenvalues remain the same. As a consequence, the Dirac cone
changes its shape due to this lattice deformation, as illustrated
in Fig. 1. This is exactly the result that we would obtain if a
diagonalization of the TB Hamiltonian were performed using
a computer. Since β = 0 and the connectivity of the lattice is
not changed, the eigenvalues of the Hamiltonian must remain
equal to the undistorted case. Only when a plot is made against
the wave vectors does the cone turn out to be distorted, as
shown in Fig. 1(d). For example, the brick wall lattice has the
same connectivity as graphene, and thus the spectrum must
be the same. However, only when the spectrum is plotted
in reciprocal space does the energy-momentum relationship
appear distorted.

Also, the case β = 0 allows us to appreciate a subtle point.
Since the spectrum is the same as in unstrained graphene, it is
easy to see that the K symmetry points of the distorted lattice
coincide with the Dirac point of the new relationship given
by Eq. (12). In other words, the condition E(KD) = 0, which
defines the KD Dirac points, corresponds to KD = K , where
K is the image of point K 0 under the mapping K = (I +
ε)−1 · K 0. Thus, for β = 0 it makes sense to develop the TB
Hamiltonian around the original Dirac points, as k = KD + q,

with |q| � |KD|. It is easy to show that the pure geometrical
distortion allows us to write the Dirac Hamiltonian as (see
Appendix B)

H = v0σ · (I + ε) · q = v0σ
′ · q, (13)

q being the momentum measured relative to the Dirac points;
v0 = 3t0a/2, the Fermi velocity for the undeformed lattice;
σ = (σx,σy), the two Pauli matrices; and σ ′ = (I + ε) · σ

turns out to be the spinorial connection.26 From this equation
follows a direction-dependent Fermi velocity for strained
graphene, which has also been found in other work.7,19

Furthermore, a direction-dependent velocity appears simply
by looking at the isoenergetic curves of Eq. (12) around K . In
this case one obtains

E(K + q)2 = (v0σ · (I + ε) · q)2, (14)

therefore, the isoenergetic curves around K are rotated
ellipses, as depicted in Fig. 2(b). This figure was made for
a zigzag uniaxial strain of 5%, i.e., εxx = 0.05,εxy = 0, and
εyy = −νεxx , ν being the Poisson ratio, which is very low
for graphene, ν ∼ 0.1–0.15, according to some theoretical
estimations.27,28

At this point, one can conclude that the basic mechanism
behind the anisotropic Fermi velocity is the distortion of the
reciprocal space. This distortion gives a simple interpretation
to the resulting geometric crystal frame terms that appears in
the covariant version of the equations.19 Clearly, there are not
associated pseudomagnetic fields.7,19

B. Actual case: β �= 0

Let us now consider the case in which the space is distorted
and the hopping is changed, i.e., β 	= 0. Here, we have two
effects. Again, one has the pure geometrical distortion due
to the strain of the reciprocal space, but at the same time,
there is a change in the spectrum. The latter effect is the only
one observed when a diagonalization of the Hamiltonian is
performed in a computer for a finite number of atoms.

In Fig. 2, a comparison of case β = 0 versus case β 	= 0 is
presented for E(k). As can be seen, the effect of β 	= 0 is to
distort the β = 0 case in such a way that it tends to compensate
the strain of the reciprocal space; i.e., the ellipses are rotated
by π/2 for a realistic value of β. The physical reason for this
occurrence is that a stretched direction in real space shirks in
reciprocal space, resulting in a higher Fermi velocity, while
in the same direction, the orbital overlap decreases since the
distance between atoms increases (see Fig. 1). This tends to
reduce the Fermi velocity. As a result, lattice distortion and
hopping changes tend to compensate. This fact can also be
seen in the movement of the Dirac points. From Fig. 2, one
can see that the Dirac points for β 	= 0 are closer to the original
ones than their β = 0 counterparts.

The qualitative results discussed above, and depicted in
Fig. 2, can be understood by finding analytical expressions
for KD and H . The position of KD can be obtained from the
condition E(KD) = 0. Up to first order in strain, we obtained
that KD is given as

KD � (I + ε)−1 · (K 0 + ξ A) � K + ξ A, (15)
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FIG. 2. (Color online) Isoenergetic curves obtained from the energy dispersion given by Eq. (9). A blowup is presented around the Dirac
points KD for each surface. (a) Unstrained graphene; (b) strained graphene with β = 0,εxx = 0.05,εxy = 0,εyy = −νεxx ; and (c) strained
graphene with β ≈ 3 and the same strain tensor as in (b). Note how although the strain tensor is the same in (b) and (c), the ellipses are rotated
by π/2, since the reciprocal space deformation and hooping effects tend to compensate.

with A defined by Eq. (1) and ξ the valley index of K 0.23 The
previous equation confirms the remark that the Dirac points
for β 	= 0 do not coincide with the K high-symmetry points of
the strained Brillouin zone. The shift, which is only produced
by β, is given by the pseudovector potential and do not depend
on K 0.

Furthermore, once the points KD are known, it is possible
to obtain a new Dirac Hamiltonian considering the lattice cor-
rection and orbital overlap changes. To do this, we developed
Eq. (4) around the Dirac points using Eq. (15) and derived that
(see Appendix C)

H = v0σ · (I + ε − βε) · q, (16)

which is a general version of Eq. (13), since β effects are
included. Note that the isoenergetic curves around KD remain
ellipses, as depicted in Fig. 2(c), but with different values of
the semiaxes owing to the β corrections. Equation (16) clearly
shows the tendency of β to cancel the lattice corrections.

Let us make two important remarks about Eqs. (15)
and (16), which are among the main contributions of this
paper. First, these equations are a generalization of analogous
expressions to the case of graphene under uniaxial strain which
were inherited from studies on deformed carbon nanotubes.29

Similar expressions were also found for a particular case
of distortion without shear. Thus, our generalization can be
reduced to other special cases for which the results are
known,7,29,30 and coincides with the exact solvable case for
β = 0. Such limiting cases allow us to check in different ways
the validity of the presented results. Second, Eq. (16) cannot be
derived from the theory of the strain-induced pseudomagnetic

field. Namely, the effective Dirac Hamiltonian obtained by
this theory (as for example in Ref. [19]) does not reduce to our
Eq. (16) for the case of uniform strain, for reasons explained
in the following section.

IV. EXPERIMENTAL OBSERVATION OF
PSEUDOMAGNETIC FIELDS

From the point of view developed in the previous section,
it is clear that, basically, the Dirac cone is translated and
distorted. As a result, if one tries to derive an effective
Dirac equation using K 0 as starting point to develop E(k) as
k = K 0 + q, the resulting energy can be quite far away from
the Fermi energy, as shown in Fig. 3. This poses a problem
that has been overlooked in the usual treatment of strain in
graphene using pseudomagnetic fields in the Dirac equations.

In general, if Eq. (9) is developed around a general point in
reciprocal space given by KG, we get

E2(KG + q) � E2(KG) + ∇E2(KG)

·q + 1

2
q · ∇∇E2(KG) · q, (17)

where ∇E2(KG) is the Jacobian vector and ∇∇E2(KG) the
Hessian matrix of E2(k), which are evaluated at k = KG.

In the usual procedure KG = K 0. However, E2(K 0) 	= 0
and ∇E2(KG) 	= 0. This produces an energy shift and a
q-dependent term, observed in other approaches,19 which
complicates the description of the dynamics somehow.

This also poses an issue concerning the experimental
possibility of observing the pseudomagnetic fields. Since the
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FIG. 3. (Color online) The Dirac cone in unstrained (dashed line)
and strained (solid line) graphene and the experimental observation
of electron behavior for a probe that shifts the chemical potential
(μ) with respect to the Fermi energy. The shaded (green) rectangle
indicates the width of the thermal selector due to the Fermi-Dirac
distribution. The effective Dirac equation with pseudomagnetic fields
can be obtained by developing around the original K 0 points or in
the Dirac points KD of the strained lattice. For μ = 0, only the latter
approach will work for low temperatures.

energy evaluated at the original Dirac point E(K 0) is different
from 0, the Fermi energy does not fall at this point, as we
illustrate in Fig. 3. In general, if an experiment is performed
at temperature T , and the chemical potential μ is shifted by a
field, the condition to observe the pseudomagnetic fields in the
usual derivation around the original Dirac point must satisfy

| E(K 0) − μ |� kBT , (18)

since the difference between E(K 0) and μ must be less
than a zone defined from the derivative of the Fermi-Dirac
distribution against the energy, as explained in Fig. 3 using the
rectangle around μ. As T → 0, the derivative is a δ function
centered around the Fermi energy, and the pseudomagnetic
fields calculated from K 0 are usually far from the region of
validity. For example, even a zigzag uniaxial strain of 1% will
produce a E(K 0) � 27 meV, which is much higher than the
thermal width of kBT ≈ 8.6 meV, obtained at T = 10 K. This
breaks the approximation of using pseudomagnetic fields in a
Dirac equation unless a very well-defined field is used.

The option is to have a better description of the energy
dispersion near the Fermi energy, by developing Eq. (17)
around the true Dirac points of the strained lattice, i.e., by
setting KG = KD , for which the corresponding energies fall
at the Fermi level. In this case,

E2(KD + q) � 1

2
q · ∇∇E2(KD) · q, (19)

since E2(KD) = 0 and ∇E2(KD) = 0. Now one obtains an
energy dispersion which corresponds to a distorted cone, with
a direction-dependent Fermi velocity given by the elements
of the Hessian of E2(k) evaluated at KD . This result is the
same as the one obtained from the Dirac Hamiltonian given
by Eq. (16).

V. CONCLUSIONS

In conclusion, we have analyzed the case of a spatially
uniform strain in graphene. The lattice correction terms
are simply an effect of the strained reciprocal space. As a
consequence, the Dirac cones are deformed and translated.
No pseudomagnetic fields are associated with such terms, as
has been recently discussed.19–21 When hopping changes are
considered, there is an extra deformation of the cone that tends
to cancel the effect of the reciprocal space strain. The new
Dirac points of the strained Hamiltonian do not coincide with
the K symmetry points of the strained reciprocal lattice. Due
to this fact, the effective Dirac equation can be obtained by
developing around either the old or the new Dirac points.
If the old points are chosen, as is usual in the graphene
literature, there is a restriction to observe the dynamics
produced by the calculated pseudomagnetic fields since only
for very high temperatures or carefully designed probes is it
possible to make a comparison with the usual theory. If the new
Dirac points are used, we have shown that it is possible to find
a very simple modification of the Dirac equation. In computer
simulations, it is also important to distinguish between lattice
distortion effects and connectivity matrix. Some of these issues
can explain the differences between theory and simulations in
graphene.31

Finally, it is worth mentioning that although we only treated
a particular case, the ideas and lessons obtained from this
study can be translated to general cases, as we will show in
forthcoming work.
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APPENDIX A

In this section, we provide explicit expressions for the last
terms in Eq. (9):

fε(k∗) = (3εxx + εyy) cos(
√

3k∗
xa)

+ (3εxx + 5εyy) cos

(√
3k∗

xa

2

)
cos

(
3k∗

ya

2

)

− 2
√

3εxy sin

(√
3k∗

xa

2

)
sin

(
3k∗

ya

2

)
,

fε2 (k∗) = 1

8

(
9ε2

xx + 6εxxεyy + 9ε2
yy + 12ε2

xy

+ (
(3εxx + εyy)2 − 12ε2

xy

)
cos(

√
3k∗

x )

+ 8εyy(3εxx + εyy) cos(
√

3k∗
x/2) cos(3k∗

y/2)

− 16
√

3εyyεxy sin(
√

3k∗
x/2) sin(3k∗

y/2)
)
.

APPENDIX B

For the case β = 0, the hopping integral does not depend
on the direction, tn = t0, and consequently, the Hamiltonian
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TB given by Eq. (4) reduces to

H = −t0
∑
k,n

e−ik·(I+ε)·δna
†
kbk + H.c.

The closed dispersion relation derived from this Hamiltonian
has the form

E(k) = ±t0
√

3 + f (k∗),

where f (k∗) is given by Eq. (10). As discussed in Sec. II,
the condition E(KD) = 0, which defines the KD Dirac points,
corresponds to KD = K , where K is the image of point K 0

under the mapping K = (I + ε)−1 · K 0. Thus, for β = 0 it
makes sense to develop the TB Hamiltonian around the original
Dirac points, as k = K + q, with |q| � |K |:

E(K + q) = ±t0
√

3 + f ((I + ε) · ((I + ε)−1 · K 0 + q))

= ±t0
√

3 + f (K 0 + (I + ε) · q))

= ±t0
√

3 + f (K 0 + q∗)), q∗ = (I + ε) · q

� ±v0|q∗|
� ±v0|(I + ε) · q|.

In the next section we provide a more general proof of
Eq. (13). At this point, is clear that the case β = 0 is a
benchmark tool for any effective Hamiltonian, since it can
be solved without using any approximation.

APPENDIX C

We start with the Hamiltonian in momentum space of
strained graphene,

H = −
3∑

n=1

tn

(
0 e−ik·(I+ε)·δn

eik·(I+ε)·δn 0

)
, (C1)

where tn is given by Eq. (7). Now, let us develop this
Hamiltonian around an original Dirac point KD , which is
defined by KD = K + A. Expanding k = KD + q we get

H = −
3∑

n=1

tn

(
0 e−i(KD+q)·(I+ε)·δn

ei(KD+q)·(I+ε)·δn 0

)
, (C2)

but KD · (I + ε) · δn = (K 0 + A) · δn, and to first order in q
and ε we may write

H � −
3∑

n=1

tn

(
0 e−i K 0·δn

ei K 0·δn 0

)

× (1 − iσ3 A · δn)(1 − iσ3q · (I + ε) · δn); (C3)

note that A is an expression in the first order of strain. Using
the identity (

0 e−i K 0·δn

ei K 0·δn 0

)
= i

σ · δn

a
σ3, (C4)

σ = (σx,σy) being the two Pauli matrices, the Hamiltonian
becomes

H � −t0

3∑
n=1

(
1 − β

a2
δn · ε · δn

)(
i
σ · δn

a
σ3

)
(1 − iσ3 A · δn

− iσ3q · (I + ε) · δn − (A · δn)(q · δn))

� −t0

3∑
n=1

(
i
σ · δn

a
σ3

)(
1 − iσ3q · (I + ε) · δn

− (A · δn)(q · δn) + i
β

a2
σ3(δn · ε · δn)(q · δn)

− iσ3 A · δn − β

a2
δn · ε · δn

)

� v0σ · (I + ε)q − v0σ · β

4
(2ε − Tr(ε)I )

·q − v0σ · β

4
(2ε + Tr(ε)I ) · q

� v0σ · (I + ε − βε) · q. (C5)

This is our Eq. (16), which also reproduces Eq. (13) for β = 0;
therefore, this section can be taken as a proof of both equations,
Eq. (13) and Eq. (16). It is important to emphasize that in this
proof we assumed that the valley index of K 0 is ξ = 1. For the
case ξ = −1, the proof is analogous, and the Hamiltonian is

H � v0σ
∗ · (I + ε − βε) · q, (C6)

with σ ∗ = (σx, − σy).
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