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We find the exact solution of graphene carriers dynamics under electromagnetic radiation. To obtain the
solution of the corresponding Dirac equation, we combine Floquet theory with a trial solution. Then the energy
spectrum is obtained without using any approximation. We also prove that the energy spectrum presents a gap
opening, which depends on the radiation frequency and electric wave intensity, whereas the current shows a
strongly nonlinear behavior.
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Graphene, a two-dimensional allotrope of carbon, has
been the center of much research since its experimental dis-
covery four years ago.1 It has amazing properties.2–4 For in-
stance, electrons in graphene behave as massless relativistic
fermions.5,6 Such property is a consequence of its bipartite
crystal structure,7 in which a conical dispersion relation ap-
pears near the K,K� points of the first Brillouin zone.8

Among other properties one can cite the high mobility that
remains higher even at high electric fields and translates into
ballistic transport on a submicron scale9 at 300 K. Graphene
is therefore a promising material for building electronic de-
vices, but there are some obstacles to overcome. One is the
transmission probability of electrons in graphene, which can
be unity irrespective of the height and width of a given po-
tential barrier.2 As a result, conductivity cannot be changed
by an external gate voltage, a feature required to build a
field-effect transistor �FET�, although a quantum dot can be
used. In a previous paper, we have shown that a possible way
to induce a pseudogap around the Fermi energy consists of
doping graphene.10 On the other hand, much effort has been
devoted to understanding the electrodynamic properties
of graphene as well as its frequency dependent
conductivity.11–15 In this Rapid Communication, we solve
without the need of any approximation, the problem of
graphene’s electron behavior in the presence of an electro-
magnetic plane wave. As a result, we are able to find a gap
opening. This is like if electrons in graphene acquire an ef-
fective mass under electromagnetic radiation. We also calcu-
late the current and show that there is a strongly nonlinear
electromagnetic response, as was claimed before by
Mikhailov16 using a semiclassical approximation.

Consider an electron in a graphene lattice subject to an
electromagnetic plane wave as shown in Fig. 1. The plane
wave propagates along the two-dimensional space where
electrons move. In this Rapid Communication we take k
= �0,k�. The generalization to any direction of k is straight-
forward. It has been proved that a single-particle Dirac
Hamiltonian can be used as a very good approximation to
describe charge carriers dynamics in graphene.17 For wave
vectors close to the K point of the first Brillouin zone, the
Hamiltonian is18

H�x,y,t� = vF� 0 �̂x − i�̂y

�̂x + i�̂y 0
� , �1�

where vF is the Fermi velocity vF�c /300, �̂= p̂−eA /c with
p̂ being the electron momentum operator, and A is the vector
potential of the applied electromagnetic field, given by A
= �

E0

� cos�ky−�t� ,0�, where E0 is the amplitude of the electric
field and � is the frequency of the wave. E0 is taken as a
constant since screening effects are weak in graphene.19 For
the valley K� the signs before �y are the opposite.18 The
dynamics is governed by

H�x,y,t���x,y,t� = i�
���x,y,t�

�t
, �2�

where

��x,y,t� = ��A�x,y,t�
�B�x,y,t�

�
is a two component spinor. Here A and B stand for each
sublattice index of the bipartite graphene lattice.7 To find the
eigenstates and eigenenergies we adapt a method developed

FIG. 1. �Color online� Graphene lattice. Atoms in the A sublat-
tice are shown with different color than those in the B sublattice.
The vector k in which the electromagnetic field propagates and the
electric-field vector E are shown.
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by Volkov in 1935 �Ref. 20� to study the movement of rela-
tivistic particles under an electromagnetic field. Volkov con-
sidered bispinors and Dirac matrices. We use instead Pauli
matrices and spinors. First we write the equations of motion
for each component of the spinor

vF��̂x − i�̂y��B�x,y,t� = i�
��A�x,y,t�

�t
, �3�

vF��̂x + i�̂y��A�x,y,t� = i�
��B�x,y,t�

�t
. �4�

Considering the magnetic field as B, the commutation rules
for �̂x and �̂y are

��̂i,�̂ j� =
i�e

c
�ijkBk, i, j = x,y , �5�

� �

�t
,�̂x � i�̂y	 = −

eEo

c
sin�ky − �t� , �6�

and using that k�A�=0, we find the following equation of
motion for the spinor:

− �2�vF
2� �2�

�x2 +
�2�

�y2 � −
�2�

�t2 	 + 2i�	vF cos 

��

�x

+ �	2 cos2 
 − 	vF��zk sin 
 − i��	�x sin 
�� = 0 ,

�7�

where we have defined the phase 
 of the electromagnetic
wave as 
=ky−�t. The parameter 	 is defined as 	=

eE0vF

c� ,
and �� is the set of Pauli matrices. To solve this equation, we
follow Volkov’s suggestion to use a trial function that de-
pends upon the phase 
 of the wave with the following form:

��x,y,t� = eipxx/�+ipyy/�−i�t/�F�
� , �8�

where �=vF

px

2+ py
2 and F�
� is a spinor. Inserting Eq. �8�

into Eq. �7�, it yields an equation for F�
�. The resulting
differential equation is

2i��
dF�
�

d

+ �− 2	vFpx cos 
 − 	vF��zk sin 


+ 	2 cos2 
 − i��	�x sin 
�F�
� = 0, �9�

and =��−vF
2kpy. The previous equation can be solved to

give

F�
� = exp�G�
��u , �10�

where u is a two component spinor and,

G�
� =
i	2

4�

 −

i	vF

�
px sin 


− i
	vF�zk

2
cos 
 +

i	2

8�
sin 2
 −

	�

2
�x cos 
 .

�11�

In the important case of a field with a long wavelength com-
pared with the system size ��→��, G�
� is reduced to

G��t� � lim
�→�

G�
�

= −
i	2

4��
t −

i	vF

���
px sin �t

+
i	2

8���
sin 2�t −

	

2�
�x cos �t , �12�

where 
 is now equal to �t. The complete solution is

��x,y,t� = exp�ipxx/� + ipyy/� − i�t/��exp�G�
��u ,

�13�

where u must be taken as a two component spinor, which
satisfies the requirement that when A→0, ��x ,y , t� should
be the solution of the free Dirac equation to avoid strange
solutions. Thus u is given by

u =
1

2

��e−i�/2

ei�/2 �, � = tan� py

px
� , �14�

where the plus sign stands for electrons and the minus sign
stands for holes. The eigenvalues are �+	2� /4. But now
we need to take into account the time periodicity of the elec-
tromagnetic field, which means that the solution must be
written in the following way:21

� = exp�− i�t/����x,y,t� , �15�

where ��x ,y , t� is periodic in time, i.e., ��x ,y , t�
=��x ,y , t+T�, and � is a real parameter, being unique up to
multiples of ��, �=2� /�. In fact, such property is very well
known within the so-called Floquet theory,21 developed for
time-dependent fields. This time periodicity of the field leads
to the formation of bands. Our solution �Eq. �13�� satisfies
the requisite form Eq. �15�. However, to obtain the Floquet
states21 for this problem, we need to consider that �
+	2� /4 is unique up to multiples of ��. Thus E=�
+	2� /4+n��, where n is an integer such that n
=0, �1, �2, . . ., while ��x ,y , t� is the Floquet mode given
by

��x,y,t� = exp�in�t + ipxx/� + ipyy/��exp�F�
��u ,

�16�

where F�
�=G�
�+ i	2�t /4�. The Floquet modes of the
problem must satisfy the equation21

�H�x,y,t� − i�
�

�t
	��x,y,t� = E��x,y,t� . �17�

The final eigenenergies for electron and holes are the fol-
lowing:

En�p� = n�� � vF�p� � � e2E0
2vF

4c2�2�p��1 − � vFkpy

��p� ��	 ,

�18�

where n=0, �1, . . ., and the wave function is
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�n,p�x,y,t� = exp�− iEn�p�t/����x,y,t� , �19�

and ��x ,y , t� is the Floquet mode Eq. �16�. If the two small-
est terms are neglected in Eq. �12�, our solution can be re-
duced to one found in Ref. 22. The spectrum given by Eq.
�18� is made of bands, where the electromagnetic field bends
the linear dispersion relationship due to the last term. In the
important limit of long wavelengths, such term becomes

��p� =
e2E0

2vF

4c2�p��2 =
	2

4�
. �20�

Thus, around the Fermi energy, holes and electron bands are
separated by a gap of size �=2��pF�. To estimate the mag-
nitude of the gap, we consider electrons near the Fermi en-
ergy, thus �=vF�p���F, where �F is approximately12 �F
=86 meV. For a typical microwave frequency �=50 GHz
with an intensity E0=3 V /cm of the electric field, the gap
size is around ��0.2 meV. Due to the gap opening, the
particles are no longer massless. The mass acquired by the
carriers due to the field is therefore around 10−4me. Since this
is a time-dependent problem, one cannot measure the gap
directly from the density of states. Instead, one can look for
jumps in the dc conductance, using, for example, the device
proposed in Ref. 22. Finally, the solution can be used to
evaluate the current using the collisionless Boltzmann
equation,16 neglecting interband transitions. However, this
approach turns out to give the same results as considering the
velocity of the particles as time dependent while the distri-
bution function �fp�t�� remains static.23 Such equivalence is
the result of the trivial statement that in the Boltzmann ap-
proach, the electric field induces a displacement of the Fermi
surface.23 In fact, the current obtained below is equal to the
one obtained using a Boltzmann equation semiclassical ap-
proach for graphene under an electric adiabatic field,16 which
also reproduces the intraband Drude conductivity.16 The
electric current is given by j�t�=4S−1pjp�t�fp�t�, where S−1

is the sample area and the factor 4 comes for the spin and
valley degeneracies. jp�t� denotes the contribution to the cur-
rent of particles with momentum p at time t. Let us first
calculate the � component of the current vector, given by
j�,p�t�=evF�n,p

� ���n,p. We use Eq. �19� in the long-
wavelength limit to obtain the components of j in the x and
y directions,

jx,p�t� = evF sinh� 	

�
cos �t� + cosh� 	

�
cos �t�cos � ,

�21�

and jy,p=evF sin �. In jx we observe a very important non-
linear behavior. In fact, jx,p�t� can be written as a combina-
tion of harmonics by using a Fourier series development of
the hyperbolic functions24

jx,p�t� = evF
s=0

�

J2s+1� 	

�
�cos��2s + 1��t�

+ evF�J0� 	

�
� + 2

s=1

�

J2s� 	

�
�cos�2s�t�	cos � ,

�22�

where Js�	 /�� is a Bessel function. Our result is similar to the
current obtained using a semiclassical approximation,16 ex-
cept for the last term, which eventually cancels out in the
thermodynamical limit. Now we include such limit by using
the distribution function f�p�. In this case, we are dealing
with quasiparticles with an effective dispersion relation. Us-
ing Eq. �22�, and by summing over the phase space we get

jx�t� =
4evF

�2���2
s=0

�

A�s�cos��2s + 1��t� ,

A�s� � �
−�

� �
−�

�

J2s+1� 	

vFp
�n�p�dpxdpy , �23�

where n�p�= �1+exp(En�p�−�F) /kBT�−1 is the occupation
factor. For �F�kBT, n�p� can be replaced by a step function.
Using Eq. �18�, vFpF=� f�1+
1− �	 /� f�2� /2 for n=0, A�s� is

A�s� = 2�pF
2�2�

0

1

J2s+1�Q0

�x
�xdx ,

� � ��1 + 
1 − Q0
2�

2
� � �1 −

1

4
Q0

2� , �24�

where Q0=	 /�F=eE0 / �c�pF�. For s=0 we obtain,

A�0� � �pF
2�Q0�1 +

1

8
�Q0

�
�2

−
1

576
�Q0

�
�4

+ ¯	 ,

�25�

and for s�0, the integral can be approximated as A�s�
�2�pF

2�Q0 /2�3��s− 1
2 � /���s+ 5

2 �. The first terms of the cur-
rent are

jx�t� � enevFQ0��1 − 1
8Q0

2�cos��t� + 2
15Q0

2 cos�3�t� + ¯� ,

where ne is the density of electrons ne= pF
2 /��2. In conclu-

sion, we solved the Dirac equation for graphene charge car-
riers under an electromagnetic field.
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