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Spectral butterfly, mixed Dirac-Schrödinger fermion behavior, and topological states in armchair
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An exact mapping of the tight-binding Hamiltonian for a graphene nanoribbon under any armchair uniaxial
strain into an effective one-dimensional system is presented. As an application, for a periodic modulation we
have found a gap opening at the Fermi level and a complex fractal spectrum, akin to the Hofstadter butterfly
resulting from the Harper model. The latter can be explained by the commensurability or incommensurability
nature of the resulting effective potential. When compared with the zig-zag uniaxial periodic strain, the spectrum
shows much bigger gaps, although in general the states have a more extended nature. For a special critical value
of the strain amplitude and wavelength, a gap is open. At this critical point, the electrons behave as relativistic
Dirac fermions in one direction, while, in the other direction, a nonrelativistic Schrödinger behavior is observed.
Also, some topological states were observed which have the particularity of not being completely edge states
since they present some amplitude in the bulk. However, these are edge states of the effective system due to a
reduced dimensionality through decoupling. These states also present the fractal Chern beating observed recently
in quasiperiodic systems.
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I. INTRODUCTION

Graphene is an amazing one-atom-thick material. Its re-
markable properties include high mobility, anomalous Hall
quantum effect, Klein tunneling, lack of backscattering,
etc. [1]. Moreover, graphene possesses excellent mechanical
properties, such as, for example, the largest known elastic
response interval (up to 25% of the lattice parameter [2]). The
importance of this stems from the fact that it is possible to
modify the electronic properties of graphene using elastic de-
formations, leading to a new field called “straintronics” [3–6].
For example, strain can modify electron-phonon coupling
and even superconductivity [7]. In the literature, several
approaches are used [5,8,9]. The most common one is to
combine a tight-binding Hamiltonian with linear elasticity
theory [8,10–12]. Under this approach, high pseudomagnetic
fields appear, although assuming that the Dirac cone is not
significantly modified [13]. However, for certain conditions
that occur experimentally, like in graphene grown on top of
a crystal [14] or rotated crystals [15], a gap can be opened
at the Fermi level [16]. Such gaps are not obtained under
the physical limit considered in the pseudomagnetic field
approach, although it has a paramount importance for technical
applications. Using other approaches, it has been shown that
the induced gap opening depends strongly upon the direction
of the strain [3] and requires values as large as 23%.

In a previous publication [16], we found a general method
to map any zig-zag uniaxial strain into a one-dimensional
effective system. Such a map opened the possibility to study
strain from a new perspective. For example, we have proved
that, in certain circumstances, periodic uniaxial strain produces
a quasiperiodic behavior, due to the incommensurability of
the effective resulting potential [16]. This results in a kind of
modified Harper model [17]. The original Harper model leads
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to the Hofstadter butterfly [18], which arises in the problem
of an electron in a lattice with an applied uniform magnetic
field. At the same time, these kinds of rough ideas were
experimentally confirmed for graphene on top of hexagonal
boron nitride as the rotational angle between the two hexagonal
lattices was changed [15].

Unfortunately, in our previous work [16] we found that the
gap sizes were very small and required strain amplitudes as
large as 20% of the interatomic distance. This was a little
bit disappointing from the technological point of view, as
well as for studying the topological properties [19]. Since
it is known that graphene under uniaxial uniform armchair
strain presents a bigger gap opening at the Fermi level than
zig-zag graphene [3], we decided to investigate the effects
of a different kind of strain. As we will see throughout this
paper, we found that it is possible to generate much bigger
gaps using graphene nanoribbons under uniaxial armchair
periodic elastic strain. Moreover, during this study we found an
interesting effect at a critical point where a gap is open. At this
point, the electrons have a mixed behavior. In one direction,
a relativistic Dirac dynamics is followed, while, in the other
direction, a nonrelativistic Schrödinger behavior is seen; i.e.,
the Dirac cone has a distorted cross section. As we will see, this
results from a decreasing of the effective dimensionality due
to strain. In fact, such behavior was theoretically anticipated
by tuning ad hoc the graphene parameters [20,21]. Although
Montambaux and coworkers [21] found since 2009 that bond
pattern changes can result in a Dirac-Schrödinger behavior,
there was not available an experimental setup to produce such
a pattern. Here we prove that, in fact, such a possibility can
be realized with the most simple oscillating strain. Our paper
shows that armchair strain is needed to produce a transition to
the Dirac-Schrödinger behavior, which is not observable using
the zig-zag case.

This also opens the way to study interesting topological
properties of the resulting one-dimensional effective systems
[19]. We would like to point out that many of the results
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presented in this paper are different from our previous work
on zig-zag. In particular, the special kind of topological states
found here are almost impossible to be observed in the zig-zag
strain case because the gaps do not open or are very small for
realistic values of strain.

Finally, it is important to discuss the possibility of having
an experimental system with the proposed uniaxial stain. From
this point of view, is clear that in order to have such strain one
needs to solve the elastic equations to derive the appropriate
stress load. By using this kind of experimental setup, it can
be difficult to get the proposed uniaxial strain, as we will
discuss later on. A much better prospect is to grow graphene
on top of another lattice, in which it has been demonstrated
in some particular cases that the strain is uniaxial [14,22].
Other systems that are suitable to observe the proposed effects
are artificially made graphene superlattices [23–25], in which
strain can be designed at will.

II. MAPPING OF ARMCHAIR UNIAXIAL STRAIN
INTO AN EFFECTIVE ONE-DIMENSIONAL SYSTEM

When graphene is loaded with external forces, a strain
pattern results. The new positions of the carbon atoms in the
strained graphene are given by

r ′ = r + u(r), (1)

where r = (x,y) are the unstrained coordinates of the carbon
atoms. Notice that a critical step is to find the specific form
of external forces to produce such a strain pattern. Usually,
this is found by inverting the elasticity Lamé equations [26].
In graphene, this inversion to find the force load pattern has
been made in some cases, like in suspended graphene [27] or

to produce a uniform pseudomagnetic field [28,29]. Usually,
such a step is not a trivial task. An alternative is to use the
finite-size method implemented in several available software
tools.

We start with an armchair graphene nanoribbon, as shown
in Fig. 1, with a uniaxial strain that produces an armchair
strain, and

u(r) = (ux(y),uy(y)) (2)

is the corresponding strain field, which here must depend only
on y. Although our approach can be applied for a general
strain of the form u(y) = (ux(y),uy(y)), here, for the sake of
simplicity, we will assume that ux(y) = 0 in what follows.

Let us discuss briefly the possibility of building such strain
experimentally, since there is a huge asymmetry in the types
of strains that can be applied to graphene [30]: while the C–C
bond length can be stretched by more than 20%, it is almost
incompressible because it would always change bond angle
instead of shrinking bond length by out-of-plane buckling.
Therefore, it is extremely hard to apply compressive strain
to graphene. However, there are several ways in which the
proposed strain can be realized. First the proposed strain can
be made without C–C compression if the lattice is already
in a state of uniform expansion and then some bonds are
further stretched. In that case, only the starting interatomic
distances need to be changed and our results are basically
renormalized. Second, even if we assume that there is buckling
in the compressed C–C bond, the out-of-plane buckling can be
modeled in a first approximation as a strain field [31]. Also,
it has been proved that graphene grown over certain lattices
has indeed uniaxial strain [22], and of course there is always

FIG. 1. (Color online) Mapping of armchair strained graphene into coupled chains. The strain in the y direction distorts the graphene
hexagons, while the boundary of the unitary cell in the x direction is shown by red dotted lines. Inside of the cell, four inequivalent atoms
appear (shown with different colors inside the rectangles) denoted by A

(m)
1 , A

(m)
2 , B

(m)
1 , and B

(m)
2 . The effective Hamiltonian of the armchair

path in the y direction can be mapped into the coupled chains that appear to the right, where the label j corresponds to each step of the ladder
along the y direction as indicated.
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the possibility of building a graphene superlattice with the
proposed strain.

To obtain the electronic properties, we use a one orbital
next-nearest-neighbor tight-binding Hamiltonian in a honey-
comb lattice, given by [32]

H = −
∑
r ′,n

tr ′,r ′+δ′
n
c
†
r ′cr ′+δ′

n
+ H.c., (3)

where the sum over r ′ is taken for all sites of the deformed
lattice. The vectors δ′

n point to the three next-nearest neighbors
of r ′. For unstrained graphene δ′

n = δn, where

δ1 = a

2
(1,−

√
3), δ2 = a

2
(1,

√
3), δ3 = a(−1,0), (4)

and cr ′ and c
†
r ′ are the annihilation and creation operators of

an electron at the lattice position r ′.
In such a model, the hopping integral tr ′,r ′+δ′

n
depends

upon the strain, since the overlap between graphene orbitals is
modified as the interatomic distances change. This effect can
be described by [28,31]

tr ′,r ′+δ′
n
= t0 exp [−β(lr ′,r ′+δ′

n
/a − 1)], (5)

where lr ′,r ′+δ′
n

is the distance between two neighbors after
strain is applied. Here β ≈ 3, and t0 ≈ 2.7 eV corresponds to
graphene without strain. The unstrained bond length is denoted
by a, which will be taken as a = 1 in what follows.

For any uniaxial armchair strain, we will prove that the
Hamiltonian given by Eq. (3) can be mapped into an effective
Hamiltonian made from two coupled chains, as indicated in
Fig. 1. Let us show such a construction.

In nonstrained armchair nanoribbons, the lattice can be
thought of as made from a periodic cell stacking [33].
Each cell has four nonequivalent atoms, as seen in Fig. 1.
When uniaxial strain is applied, each cell has different strain.
Thus, we introduce an index m to label cells in the y

direction. The nanoribbon is now made from cells of four
nonequivalent atoms with coordinates r ′

i = (x(m)
i ,y

′(m)
i ) where

m = 1,2,3, . . ., i = A1,B1,A2,B2. Here, A corresponds to the
sublattice A (B corresponds to sublattice B), as sketched in
Fig. 1. For graphene without strain,

y
(m)
A1

= y
(m)
B1

=
√

3(m − 1) (6)

and

y
(m)
A2

= y
(m)
B2

=
√

3(m − 1/2). (7)

On each of these sites, a strain field uy(y) is applied, resulting
in new positions:

y
′(m)
i = y

(m)
i + u

(m)
i , (8)

where u
(m)
i is a shorthand notation for uy(y(m)

i ).
Within each chain, the nearest-neighbor orbitals are coupled

by the hopping parameter t
(m)
AB and have vanishing onsite

energies.
For uniaxial strain, the symmetry along the x direction is

not broken. Thus, the solution of the Schrödinger equation
H�(r ′) = E�(r ′) for the energy E has the form �(r ′) =
exp (ikxx)ψi(m), where kx is the wave vector in the x direction
such that kx = 0, . . . ,2π , ψi(m) is the only function of
y

(m)
i , where i and m label the atoms along the armchair

direction, as indicated in Fig. 1. If we order the basis
as A

(1)
1 ,B

(1)
2 , . . . ,A

(N)
1 ,B

(N)
2 and B

(1)
1 ,A

(1)
2 , . . . ,B

(N)
1 ,A

(N)
2 , we

obtain the following Schrödinger equation:

EψA1 (m) =t0ψB1 (m) + t
A

(m)
1 B

(m)
2

ψB2 (m)

+ t
A

(m)
1 B

(m−1)
2

ψB2 (m − 1),

EψB2 (m) =d(kx)t0ψA2 (m) + t
B

(m)
2 A

(m)
1

ψA1 (m)

+ t
A

(m+1)
1 B

(m)
2

ψA1 (m + 1),

EψA2 (m) =d∗(kx)t0ψB2 (m)

+ t
B

(m+1)
2 A

(m)
2

ψB1 (m + 1) + t
A

(m)
2 B

(m)
1

ψB1 (m),

EψB1 (m) =t0ψA1 (m)

+ t
B

(m)
1 A

(m)
2

ψA2 (m) + t
B

(m)
1 A

(m−1)
2

ψA2 (m − 1), (9)

where d(kx) = exp (ikxa).
Now we label the atoms as in Fig. 1, i.e., A1,A2, . . . ,A2N

and B1,B2, . . . ,B2N . The sequences y
(m)
A and y

(m)
B can be

written as yA(j ) = yB(j ) = y(j ) = √
3a(j − 1)/2 where j =

1,2,3, . . . ,n labels the site number along the armchair path
in the y axis. Also, we observe that, due to the uniaxial
nature of the strain, several symmetries are found in the
bonds, t

A
(m)
1 B

(m)
2

= t
B

(m)
1 A

(m)
2

as well as t
A

(m)
2 B

(m+1)
1

= t
B

(m)
2 A

(m+1)
1

,
which allows us to reduce the resulting Schrödinger equation.

Finally, the Hamiltonian is mapped into a new one, H (kx),
without any reference to cells of four sites:

H (kx) =
∑

j

t0[d(kx)a†
2j b2j + a

†
2j+1b2j+1]

+
∑

j

tj a
†
j bj+1 + H.c., (10)

where aj , a
†
j , and aj , b

†
j are the annihilation and creation

operators in the lattices A and B, respectively. This effective
Hamiltonian describes two modulated chains coupled by bonds
of strength t0 and t0d(kx), as sketched out in Fig. 1, where tj
are the values of the transfer integrals along the chains in the
y direction. They are obtained as follows.

First, we calculate the length between atoms after strain is
applied:

lr ′,r ′+δ′
n
= ||δn + u(r + δn) − u(r)||. (11)

In the present case, two different kinds of bond lengths are
obtained:

l
A

(m)
1 ,B

(m+s)
2

=
√(

δx
s+2

)2 + [
δ

y

s+2 + uy

(
y

B
(m+s)
2

) − uy

(
y

A
(m)
1

)]2
, (12)

where s = 0,−1. δx
s+2 and δ

y

s+2 denote the x and y components
of each of the vectors δ1 and δ2.

Thus, for odd values of j ,

tj = t0 exp
[−β

(
l
A

(j+1)/2
1 ,B

(j+1)/2
2

− 1
)]

, (13)

while, for even values of j ,

tj = t0 exp
[−β

(
l
A

(j/2)
1 ,B

(j/2+1)
2

− 1
)]

. (14)
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In order to compare with other works, the case of small
strain is interesting. Under such approximation, the hopping
parameter between nearest neighbors along the chain is
simplified a lot:

tj ≈ t0 exp [−
√

3β(uj+1 − uj )/2], (15)

where it is understood that uj is the displacement of the
j th atom along the vertical armchair path, i.e., uj = u

(m)
i .

However, in the literature the most common approach is to use
a linear approximation for the hopping parameter, given by

tj ≈ t0

[
1 −

√
3β

2
(uj+1 − uj )

]
. (16)

Summarizing, Eq. (10) is an effective one-dimensional
Hamiltonian with effective hopping parameters given by
Eqs. (13) and (14). For small strain amplitude, Eqs. (13) and
(14) are replaced by their linearized version, Eq. (16). Such a
set of equations maps any uniaxial armchair strain into a pair
of coupled chains.

III. PERIODIC ARMCHAIR STRAIN

To understand the rich physics involved in strain, let us now
concentrate on the case of periodic strain, which arises when
graphene is grown on top of a substrate with a different lattice
parameter [14]. The simplest choice is to consider a sinusoidal
kind of strain, similar to the observed pattern in graphene
grown over iron [14]. This imposed oscillation contains three
parameters: wavelength (controlled by the parameter σ ),
amplitude (controlled by λ), and phase (controlled by φ). In
order to simplify the resulting equations, we prefer to write
the oscillating strain as

uy(y) = λ√
3β

cos

[
4πσ√

3
(y −

√
3/4) + φ

]
. (17)

Figure 2 shows the complex spectrum of H as a function of σ ,
obtained using fixed boundary conditions and by diagonalizing
the resulting matrix for each value of kx . The calculation
presented here was made for a width of 160 atoms, and
in Fig. 3 we present the resulting spectra for smaller sizes.

FIG. 2. (Color online) Spectrum as a function of σ for λ = 1 and
φ = πσ obtained by solving the Schrödinger equation for a system
of 160 atoms, using 250 grid points for sampling kx and with fixed
boundary conditions. The different colors represent the normalized
localization participation ratio α(E). Inset: σ = 1/2 near E = 0.

FIG. 3. (Color online) Spectrum as a function of σ for λ = 1 and
φ = πσ obtained by solving the Schrödinger equation for a system
of (a) 20 atoms and (b) 40 atoms, using 250 grid points for sampling
kx and with fixed boundary conditions. The different colors represent
the normalized localization participation ratio α(E).

As expected, the gaps are amplified for smaller sizes due
to quantum confinement effects [33,34], although there are
fluctuations associated with the width, as happens with pure
graphene nanoribbons [33]. Also, within our method it is
possible to get bulk graphene by imposing periodic boundary
conditions in the y direction, as will be done for the case
σ = 1/2.

The most important feature of the resulting spectrum is its
fractal nature, which is akin to the Hofstadter butterfly [18]
which arises in the case of a lattice under a uniform magnetic
field [17]. To illustrate this, we included color in Fig. 2 to
code the localization properties of the wave functions. They
are studied by calculating the normalized participation ratio,
defined as

α(E) = ln
∑N

j=1 |ψ(j )|4
ln N

. (18)

The quantity α(E) estimates the occupied area by an electronic
state [35]. For extended states, α(E) → −1 (blue color in
the figure), while it tends to be bigger when localization
is presented (red color in the figure). In the spectrum, it is
clearly seen how different localizations coexist, making a very
complex system in this respect.

To have a better understanding of the spectrum and its
relationship with the Hofstadter buttery, it is useful to consider
the small strain case. Using Eq. (16), the hopping integrals
along the chains are given by

tj = t0 [1 + λ sin (πσ ) sin (2πσj + φ)] . (19)

We recognize that Eq. (19) corresponds to the transfer integrals
of the off-diagonal Harper model [17], that produces a
Hofstadter butterfly [18]. The main difference here is that we
have an off-diagonal Harper ladder.
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FIG. 4. (Color online) Band structure (left column) and density
of states (right column) using φ = πσ and λ = 1 for (a) an unstrained
graphene lattice, (b) strained graphene with σ = √

3/4, (c) strained
graphene with σ = √

3τ/2, and (d) strained graphene with σ = 1/2.
Fixed boundary conditions were used in this plot.

As in the Harper model, the fractal nature of the spectrum
is given by the number theory properties of σ . When σ is a
rational number, say σ = P/Q, the effective one-dimensional
potential has a superperiod Q. Thus states have a Bloch nature.
For irrational σ , the potential is quasiperiodic. Although the
Bloch theorem is still valid, it does not provide any reduction
of the problem since an infinite number of reciprocal space
components are needed to generate the wave function [18].
This can generate a cascade of gaps or critical eigenstates [36].
Interestingly, in the Harper model, the gaps have a topological
nature [36–40]. Moreover, since the problem of finding the
solutions to a quasiperiodic potential is akin to the small divisor
problem in dynamical systems [41], perturbation theory has
a very limited value. A sequence of rational approximates or
renormalization techniques are much better strategies to follow
[41–44].

It is also interesting to discuss the resulting bands as a
function of kx , using different values of σ at a fixed lambda. In
Fig. 4 we present the bands with the corresponding density of
states (DOS) to the right. For σ = 0 we recover the graphene
case, where the Dirac cones projections are seen at E = 0,
resulting in a linear DOS at the Fermi level. However, for the
three selected cases, σ = √

3/4, σ = √
3τ/2, and σ = 1/2,

the Dirac cones are completely destroyed. The DOS for
the case σ = 1/2 suggests that the problem is akin to two
uncoupled linear chains. As we will see, these two chains
are not the ones that are observed to the right in Fig. 1, since
t0 and t0d are never zero. These effective chains are in fact
running in the x direction, due to the fact that for some j > 0

FIG. 5. (Color online) Energy spectrum of graphene as a function
of λ for (a) σ = √

3/4, (b) σ = √
3τ/2, and (c) σ = 1/2. For λ > 1/2

a gap at the Fermi level is opened. Fixed boundary conditions were
used in this plot.

we can have tj ≈ 0 or even tj = 0. Also, two edge states are
observed at E = ±1. These states are the remaining of the
original Van Hove singularities that appear at the same energy
for unstrained graphene. The other cases for irrational σ are
spiky, as was also observed and explained in our work of
zig-zag strain [16]. This is due to the quasiperiodic behavior of
the resulting potential for irrational σ , which results in many
nearly uncoupled linear chains of different widths [16]. Thus,
the DOSs are strikingly similar to those observed in narrow
nanoribbons [45].

Consider now how the spectrum changes with λ for a
given σ . Figure 5 presents such evolution for fixed boundary
conditions. The main result here is the big gap opening at the
Fermi level for the different σ as λ grows. When compared
with the zig-zag case [16], is clear that armchair strain is much
more efficient to produce gaps, especially at the Fermi level.
Also, the case σ = 1/2 shows two edge states at E = ±1
which have a topological nature, as will be discussed in a
special section.

IV. HALF-FILLING CASE σ = 1/2:
MIXING DIRAC AND SCHRÖDINGER FERMIONS

Of particular interest is the case σ = 1/2, which for
topological insulators is associated with half filling of the
bands. For this case, the main interest is to know if a gap
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is open or not. We start by noting that the hopping parameter
can be written, using Eq. (19), as

tj = 1 + (−1)j λ. (20)

This results in a staggered ladder in which the unitary
cell contains only four nonequivalent atoms. As a result,
the effective Hamiltonian can be further reduced using the
symmetry in the y axis. For that end, the wave function can be
written as

�(r ′) = exp (ikxx) exp (ikyy)ψi(j ), (21)

where now j = 1,2. The corresponding spectrum is found
by looking at the eigenvalues of the 4 × 4 effective matrix
Hamiltonian, whose solutions, in terms of the parameters λ,
kx , and ky , are given by

E±,± = ±
√

∓2
√−(1 + cos kx)g(λ,ky) ∓ [−1 − 2g(λ,ky)],

(22)
where

g(λ,ky) = −1 − λ2 + (λ2 − 1) cos

(√
3ky

2

)
. (23)

The gap size � can be found by minimizing the square of
the energy in Eq. (22), since the bands are symmetric around
E = 0. The momentums that produce a minimum are kx =
2nπ and ky = 2π (2n + 1)/

√
3, where n = 0,1,2, . . . ,n. The

resulting gap is given by

� = 4
(
λ − 1

2

)
(24)

and grows linearly with λ. This gap opening can be confirmed
in Fig. 5. Notice, however, that the linear behavior is seen
only near λ = 1/2, mainly because Fig. 5 was made for the
nonlinearized model.

Furthermore, at the critical point λ = λc = 1/2 in which
the spectrum changes from nongapped to gapped, we obtained
a very interesting behavior. In Fig. 6, we plot the dispersion
relationship E±,± as a function of kx and ky . As one can
see, at the Fermi level there is a kind of Dirac point at K =
(0,2π (2n + 1)/

√
3). However, it is not a cone. Instead, in the

kx direction the behavior is linear, i.e., of the Dirac type, while
in the ky direction it behaves in a parabolic fashion; i.e., the
fermions follow the usual Schrödinger behavior. For λ = λc,
and near the Dirac point, one can confirm such behavior by
expanding Eq. (22) in series. In the kx direction [ky = 2π (2n +
1)/

√
3] we find the Dirac behavior,

E±,± = ±kx

2
, (25)

while in the ky direction (kx = 0) we find a Schrödinger
behavior:

E±,± = ± 9

32

[
ky − 2π√

3
(2n + 1)

]2

. (26)

Thus, this highlights the paramount importance of the
particular half-filling and half-amplitude σ = λ = 1/2 critical
point, in which the electron has a mixed Dirac and Schrödinger
fermion dynamics, as seen in Fig. 6. The reason for this
transition can be understood by looking at the limiting
cases. For λ = 0, the system is unstrained graphene in which

FIG. 6. (Color online) Different perspectives of the energy sur-
face as a function of kx and ky for λ = 1/2 and σ = 1/2, using
a linearized version of tj . Notice how the electron has a mixed
Schrödinger parabolic behavior with a Dirac linear fermion behavior
at the Fermi level corresponding to E = 0.

electrons behave as Dirac fermions. At λ = 1, tj = 0 for j odd,
resulting in a decoupled system in the y direction. The system
is thus made of two-atom-width nanoribbons spanning the x

direction. In this case, the particles follow a chainlike behavior,
i.e., of the Schrödinger type. As λ decreases, the parallel chains
have a small interaction, as is suggested by the DOSs that
appear in Fig. 4(d), which corresponds to two linear chains.
Thus, the critical point separates two regions of different
effective dimensionality. One is mainly two dimensional while
in the other the propagation is nearly unidimensional. From
a different point of view, this transition is due to the merging
of Dirac cones, as was suggested in previous works by tuning
ad hoc the transfer integrals [20,21]. In Fig. 7, we present
three stages of the dispersion relationship evolution near the
critical point. Below λc, two Dirac cones are seen, which are
merged at λ = λc. Then a gap is open for λ > λc. Notice that
the mixing of Dirac-Schrödinger dynamics is not observable
using the zig-zag case, since the effective chain never has only
two kinds of bonds [16].

V. TOPOLOGICAL STATES

As was discussed previously, in Figs. 4(d) and 5(c), two flat
bands are seen at E = ±1 when σ = 1/2. These two bands
only appear when fixed boundary conditions are considered,
since the energy dispersion for the bulk given by Eq. (22)
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FIG. 7. (Color online) Evolution of the energy surface as a
function of kx and ky for σ = 1/2 near the critical point. (a) λ = 0.9λc.
(b) λ = λc. (c) λ = 1.1λc. In case (a), two Dirac cones are seen, which
are merged in (b), and in (c) the cones disappear. The arrows indicate
the position of the Fermi level.

does not present such states as seen in Fig. 8. Thus, these
are edge states. It is well known that systems with band gaps
and edge states can present nontrivial topological properties
[46]. Here we decided to look at the behavior of the spectrum
as a function of the phase in the potential, given by φ in
Eq. (17).

In Fig. 8 we present the spectrum for the bulk and when
fixed boundary conditions are included, as a function of the
phase φ for σ = 1/2 and λ = λc. As we can see, the edge
states present a nontrivial topological behavior, since they are
absent in one of the gaps. We can track the behavior of the
related states as seen in Fig. 8. For φ close to zero, the states
are localized at the edges as expected, but surprisingly they
also have amplitude near the center. However, this can be
explained by observing that in this limit we almost have chain
decoupling. Thus, these states are edge states of the effective
one-dimensional system, which seems to be a very interesting
phenomenon. Furthermore, observe how the amplitudes are
interlaced at the center, due to the symmetry of the problem.
As the phase moves, these states eventually merge with the
band edges, near φ = π/2, and present a nonlocalized nature.
As shown in the figure, the wavefunction spatial pattern
seems to be sinusoidal with a long-wave modulation, which
suggests that the Chern beating effect, originally observed and
explained in quasiperiodic systems [19], is also present here.

FIG. 8. (Color online) Upper panels show the energy spectrum
with 160 sites with λ = λC and σ = 1/2. (a) Energy spectrum
using cyclic boundary conditions. (b) Energy spectrum using fixed
boundary conditions. The colors represent the normalized localization
participation ratio α(E). Two E = ±1 energy modes are localized on
either one of the edges and on the middle of the chain in 0 � φ < π/2.
For φ = π/2 the localized energy modes become extended. The lower
panel displays the eigenstates for E = −1 energy modes using φ = 0
and π/2. Notice how the wave function is modulated with an envelope
of bigger wavelength, a phenomena called Chern beating [19].

VI. CONCLUSIONS

In conclusion, we provided a general way to map any
uniaxial armchair strain into an effective one-dimensional
system. For the particular case of periodic strain, we obtained
a spectrum akin to the Hofstadter butterfly. The armchair strain
produces bigger gaps than the zigzag case. An analysis of the
half -filling case for the periodic strain reveals a critical point
for the opening of the gap. At this critical point, the fermions
have a mixed behavior. In one direction they behave with a
Dirac dynamics, while in the perpendicular one they follow
a Schrödinger one. Such behavior arises as a consequence
of a change in the effective dimensionality of the system.
Also, we have observed some topological states due to strain.
Interestingly, strain allows us to have some amplitude of the
topological modes inside the bulk through a decoupling of the
system. These states also present the phenomenon of Chern
beating observed in other quasiperiodic systems [19]. This
opens the avenue for a whole set of new phenomena that seems
to be realizable from an experimental point of view.
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