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We present a nonlinear model that allows exploration of the relationship between energy
relaxation, thermal conductivity and the excess of low-frequency vibrational modes
(LFVMs) that are present in glasses. The model is a chain of the Fermi–Pasta–Ulam
(FPU) type, with nonlinear second neighbour springs added at random. We show that the
time for relaxation is increased as LFVMs are removed, while the thermal conductivity
diminishes. These results are important in order to understand the role of the cooling
speed and thermal conductivity during glass transition. Also, the model provides evidence
for the fundamental importance of LFVMs in the FPU problem.

Keywords: rigidity theory; glasses; Boson peak; floppy modes;
thermal conductivity; thermal relaxation

1. Introduction

Glasses are solids that do not have long range order (Langer 2007). They are
formed by cooling a melt fast enough to avoid crystallization. This process is
not well understood (Jackle 1986; Anderson 1995; Phillips 1996). For example,
it is not clear why the glass transition temperature (Tg), defined as the
temperature at which the relaxation time exceeds the experimental time scale,
can be lowered or raised by adding impurities (Micoulaut & Naumis 1999;
*Author for correspondence (naumis@fisica.unam.mx).
†On sabbatical leave from: Departamento de Física-Química, Instituto de Física, Universidad
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Louzguine-Luzgin et al. 2008). Recently, it has been experimentally observed in
metallic glasses that Tg is related to the thermal conductivity κT, which, at the
same time, is related to the chemical composition (Louzguine-Luzgin et al. 2008).
In fact, the glass-forming ability, determined by the minimal speed of cooling
required to form a glass, depends on the chemical composition of the melt. Also,
almost all glasses present anomalies in the density of low-frequency vibrational
modes (LFVMs) (Elliot 1990; Binder & Kob 2005), such as the Boson peak
(Binder & Kob 2005) or the floppy mode peak (Kamitakahara et al. 1991) owing
to the flexible/rigid character of the atomic network (Phillips 1979; Thorpe 1983;
Naumis 2005). It is surprising that most of the theories concerning glass transition
do not give any special importance to such observations (Debenedetti 1996). In
previous papers, we showed that Tg depends on the number of LFVMs, which is
a function of the chemical composition due to the rigidity of the lattice (Naumis
2000, 2006; Huerta & Naumis 2002). It remains to be explained why the minimal
cooling speed and the thermal conductivity are also related to the glass transition
and chemical composition. This minimal cooling speed depends on the time for
thermal relaxation. We must point out that, although a supercooled liquid is
not a glass, it still shows a well-defined excess of LFVMs for time scales below
structural rearrangements (Binder & Kob 2005). To study relaxation, nonlinear
Hamiltonians (Fermi et al. 1955) such as the Fermi–Pasta–Ulam (FPU) model of
a one-dimensional chain with nonlinear interaction are required (Fermi et al. 1955;
Toda 1988; Lepri et al. 2003; Campbell et al. 2004). Still, there are many unsolved
questions concerning this simple model. However, it seems that relaxation
is dominated mainly by LFVMs (Ford 1961; Arnold & Moore 2001; Reigada
et al. 2001; Ponno 2005), owing to a cascade energy transfer mechanism akin to
turbulence. The purpose of this article is to answer some of these questions by
looking at a simplified glass model, in which the number of LFVMs can be changed
at will, mimicking what happens in a glass when the chemical composition is
modified. The model is based on the application of rigidity theory (RT) to glasses,
in which each covalent bond is considered to be a mechanical constraint (Naumis
2000). The present article also gives clues about the important role of LFVMs in
the FPU model.

2. A nonlinear model of a glass

Our glass model is a one-dimensional lattice made of equal masses (m) joined
by nonlinear springs, with second neighbour springs (SNSs) added at random as
shown in figure 1. The corresponding Hamiltonian is

H =
N∑

n=1

[
p2

n

2m
+ k

2
(un+1 − un)2 + k ′

4
(un+1 − un)4

]

+
N∑

n=1

Θn+2,n

[
k2

2
(un+2 − un)2 + k ′

2

4
(un+2 − un)4

]
, (2.1)

where un is the displacement of the mass m at site n, and N is the number of
sites. k is the harmonic spring constant for first neighbours and k2 for second
neighbours. k ′ and k ′

2 are the strengths of the nonlinear springs. In what follows
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(a)

(b)

Figure 1. Schematic of the model used. (a) Glass with disorder in the topology of the SNSs and
(b) a model that has the same concentration of SNSs as in (a), but using a periodic arrangement.

m = 1. We will use dimensionless variables for temperature, specific heat and heat
flux. Θn+2,n is a random variable that takes values 0 or 1, with probabilities c
and 1 − c, respectively. Eventually, Θn+2,n can also be made a periodic function,
as shown in figure 1b.

Let us briefly explain the characteristics of the model. When the anharmonic
term k ′ is small, the actual number of LFVMs depends on the structure of the
pure harmonic Hamiltonian, since, using the rotating phase approximation for
small k ′, one can show that the effect of nonlinearity is a shift of the modes
(Cerón et al. 2005). Following the idea of RT, each bond can be treated as a
mechanical constraint (Phillips 1979; Thorpe 1983). Comparing the number of
constraints with the degrees of freedom, one can obtain the fraction of modes
with zero frequency (known as floppy modes), denoted by f . In the case of a
linear chain, removing bonds does not lead to a ‘floppy lattice’; it just cuts the
lattice. So the only possibility is to add constraints, which is precisely the role of
the springs that connect SNSs.

In the harmonic case (k ′ = k ′
2 = 0), the number of LFVMs changes as c goes

from 0 to 1.0. There are many ways to prove this. For acoustic modes, ω(q) = vcqa,
where q is the wavevector, a the lattice constant (set to 1 in the present article),
ω(q) its corresponding frequency and vc the speed of sound for a given c. Using
that the density of states (DOS or ρ(ω)) in one dimension is given as ρ(ω) =
(1/π)dq/dω(q), ρ(ω) turns out to be a constant, given by ρ(ω) = 1/πvc. Figure 2
presents a plot of ρ(ω), and the corresponding limiting value 1/vcπ , obtained
by diagonalizing the Hamiltonian and averaging over realizations of disorder, i.e.
different configurations of SNSs. It can be seen in the inset that 1/vc is a linear
function that interpolates between ρc=1(ω) and ρc=0(ω).

3. Thermal conductivity

It is known that glass transition and chemical composition are related to the
thermal conductivity (Louzguine-Luzgin et al. 2008). We can shed some light on
the problem by looking at the effects of removing the LFVM. First, we treat the
case of a pure harmonic Hamiltonian. The Kubo–Greenwood formula allows us
to calculate the thermal conductivity (Elliot et al. 1974),

κμν(T ) = −2�
2

πΩkBT

∫∞

0
dω

ω2 exp(�ω/kBT )

[exp(�ω/kBT ) − 1]2 Tr[Aμ Im G(ω)Aν Im G(ω)], (3.1)

where (exp(�ω/kBT ) − 1)−1 is the phonon distribution function, Ω the system
volume, T the temperature, Aμ ≡ 1/2(ri − rj)μΦ the transversal or longitudinal
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Figure 2. Density of states ρ(ω) as a function of the frequency for different concentrations c of
SNSs. The chains have N = 30 000 atoms, averaged over 100 realizations of disorder. Inset: limiting
value of ρ(ω) for ω → 0 as a function of c. The solid line is the theoretical value 1/vcπ . The units
are dimensionless (see text). Line with squares, c = 0; dotted line, c = 0.5; line with circles, c = 1.0.

vibrational modes, Φ the dynamical matrix, μ and ν the Cartesian coordinates
and G(ω) = (mω2 − Φ)−1 the Green function. Such a function can be calculated
by matrix inversion (Economou 1983). The harmonic model works only in the
low-temperature region, because anharmonic effects are not present. These effects
are the cause of the lattice thermal conductivity drop in dielectric materials after
Umklapp processes activate.

Figure 3 presents the thermal conductivity for chains with 100 atoms and
different concentrations of SNSs using equation (3.1), in units where kB = 1 and
� = 1. Note that the zero concentration case corresponds to the first neighbouring
interaction. The second neighbouring interaction changes κ(T ) with c, as can be
seen in the inset of figure 3. Basically, κ(T ) is reduced as c grows, until it reaches
a minimum around c = 0.5. Then κ(T ) increases. This result can be explained as
follows. κ(T ) can be written as (Lepri et al. 2003; Binder & Kob 2005),

κ(T ) ≈
∫∞

0
vg(ω)C (ω, T )l(ω)dω, (3.2)

where l(ω) is the phonon mean free path, C (ω, T ) the specific heat and vg(ω) the
group velocity. Let us analyse the limiting value at high temperatures, and, for
the moment, we will consider a periodic arrangement of SNSs, as in figure 1b. In
such a case, C (ω, T ) =kBρ(ω) = (kB/π)dq/dω(q). The group velocity is vg(ω) =
dω(q)/dq. Thus, in equation (3.2), the linear increase in the speed of sound as
c → 1 is compensated by a decrease in C (ω, T ). As a result, equation (3.2) can
be written as,

κ(T ) ≈ kB

π

∫ωS (c)

0
l(ω)dω, (3.3)
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Figure 3. Thermal conductivity (κ(T )) for harmonic chains using 100 atoms, with concentration 0
(circles), 0.4 (diamonds), 0.7 (inverted triangles), 0.9 (triangles) and 1.0 (squares). The parameters
are k = 1.0 and k2 = 0.2. Inset: κ(T ) at the fixed temperature T = 1.4 for different values. The
units are dimensionless (see text).

where ωS (c) is the bandwidth of the phonon spectrum. For periodic chains,
l(ω) = Na and ωS (c) ≈ (2k + ck2/2). This explains why the conductivity is higher
for c = 1 than for c = 0, since ωS (1) > ωS (0) (figure 3). In the case of disordered
chains, the arguments are similar except for two differences: l(ω) depends on the
frequency and it is not possible to define a dispersion relation ω(q). However,
the integral is dominated by extended low-frequency modes since l(ω) ≈ Na. For
LFVMs, the phonon spectrum is continuous, and it is possible to use an effective
dispersion relation (Lepri et al. 2003). High-frequency modes are mainly localized
and do not contribute much to the integral. Localized and acoustic modes are
separated at the Ishii limit (Lepri et al. 2003) (denoted by ωI (c)). For example, a
detailed inspection of figure 2 for the concentration c = 1/2 reveals that the Ishii
limit is close to ωI (1/2) ≈ 1.4. Below this frequency, ρ(ω) is smooth owing to
the extended nature of the excitations, while ρ(ω) is spiky above ωI (1/2), a fact
indicating localization. Therefore, κ(T ) per unit length can be approximated by

κ(T ) ≈ kB

π

∫ωI (c)

0
l(ω)dω ≈ kB

π
ωI (c). (3.4)

One can see in figure 3 how κ(T ) decreases as c goes from 0 to 1/2, as deduced
from the fact that ωS (0) > ωI (1/2) (figure 2). Then it grows again after reaching a
minimum. Such behaviour can be understood as a consequence of disorder, which
is maximal at c = 1/2, leading to strong localization. In real glasses and quasi-
periodic systems at very low temperatures, the mean free path is also strongly
reduced owing to Rayleigh scattering and two-level systems (Binder & Kob 2005).
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Figure 4. Temperature profiles for chains with N = 128, λ = 5, k = 1, k2 = 1, k ′ = 0.1, k ′
2 = 0.1,

T = 1.0, T+ = 1.1 and T− = 0.9 using different concentrations of SNSs. Inset: κ(T ) at T = 1.0
as a function of c; c = 0, circles; 0.25, triangles; 0.50, squares; 0.75, inverted triangles; 1.00, solid
line.

To study κ(T ) for nonlinear cases, we solved the dynamical equations by
using a fourth-order Runge–Kutta algorithm, with fixed boundary conditions
(u0 = uN+1 = 0). Both ends of a chain were in contact with heat baths. The
equations obtained from equation (2.1) are (Lepri et al. 2003)

d2un

dt2
= − ∂H

∂un
+ δn1

(
ξ+ − λ

du1

dt

)
+ δn2

(
ξ+ − λ

duN

dt

)
, (3.5)

where δnl is a Kronecker delta. ξ+ and ξ− are stochastic variables that follow
a Langevin dynamics to simulate heat baths at temperature T+ and T−,
respectively. λ is the coupling constant between the bath and the chains (Lepri
et al. 2003). The local heat flux is given by (Lepri et al. 2003)

j(n) = 1
2

(
dun+1

dt
− dun

dt

)
∂H
∂un

, (3.6)

and the total flux is J = ∑N
n=0 j(n). This leads to the thermal conductivity

κ(T ) = −J /∇T . Also, the local temperature is (Lepri et al. 2003)

T =
〈

1
m

(
dun

dt

)2
〉

μt

, (3.7)

where μt is the average over time. This allows us to build a temperature profile
for the temperature gradient imposed on a chain. Figure 4 presents such profiles
for different concentrations of SNSs, using chains with N = 128, λ = 5, k = 1,
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Figure 5. Energy relaxation as a function of time for c = 0 to 0.5 (0, solid line; 0.1, triangles; 0.3,
dotted line; 0.5, circles) using a nonlinear Hamiltonian with parameters k ′ = k ′

2 = 0.5. The inset
shows a zoom of the relaxation tail. For all chains, the initial temperature was T = 0.5, N = 100,
dt = 0.01 and an average over 40 realizations of disorder was made.

k2 = 1, k ′ = 0.1 and k ′
2 = 0.1. Each profile has been averaged over 10 realizations

of disorder. The profile shows that the chosen parameters are inside the
Fourier law behaviour (Aoki & Kusnezov 2001). The inset presents the resulting
κ(T ) at T = 1.0 as a function of c. The overall behaviour is similar to the linear
case. These results allow us to understand in a qualitative way how chemical
doping leads to changes in the thermal conductivity by affecting the LFVM.

4. Relaxation

The energy relaxation was studied by solving the motion equations with a
fourth-order Runge–Kutta algorithm. First, the chains were thermalized using
a Langevin dynamics, then the thermal bath was retired and a damping term
was added at both ends of the chains. The equations of motion are

d2un

dt2
= − ∂H

∂un
−

N∑
n=1

Γn
dun

dt
, (4.1)

where Γn = γ [δn,1 + δn,N ] is the dissipation near the ends of the chain and γ
is the damping. We used fixed-end boundary conditions. Figure 5 presents a
typical plot of the energy relaxation using a nonlinear Hamiltonian for different
concentrations of SNSs. Each of the plots for the energy relaxation was made for
N = 100, starting from thermalized baths at T = 0.5. An average of 50 realizations
of disorder was made in all cases.
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Clearly, the time required for relaxation increases as c goes from 0 to 0.5.
A similar plot is obtained from c = 0.5 to 1.0. The long time behaviour can be
understood in terms of the depletion of the LFVM. According to Reigada et al.
(2001), relaxation requires a transference of energy from high-frequency modes
into LFVMs, which dissipate energy (Ponno 2005). The reduction of the LFVM
as c increases means that not so many modes are available to dissipate energy
and then energy relaxation is slower. Such a result is important in glasses because
glass transition depends on a fast cooling that avoids thermal equilibrium. The
chemical composition affects the number of LFVMs, and thus the speed required
to achieve thermal equilibrium.

5. Conclusions

We presented a nonlinear model that shows in a clear way how low-frequency
modes have a great impact on the thermal properties of a glass, although most of
the theories concerning glass transition do not consider such important effects.

We would like to thank C. Moukarzel for pointing out to us the rigidity properties of the
second-neighbour interaction model. We thank DGAPA-UNAM projects IN-117806, IN-111906
and CONACyT 48783-F, 50368 and FICSAC-Universidad Iberoamericana for financial support.

References

Anderson, P. W. 1995 Through the glass lightly. Science 267, 1610–1610. (doi:10.1126/science.
267.5204.1610)

Aoki, K. & Kusnezov, D. 2001 Fermi–Pasta–Ulam β model: boundary jumps, Fourier’s law, and
scaling. Phys. Rev. Lett. 86, 4029–4032. (doi: 10.1103/PhysRevLett.86.4029)

Arnold, P. & Moore, G. D. 2001 Monte Carlo simulation of O(2) φ4 field theory in three dimensions.
Phys. Rev. E 64, 066 113-1–066 113-222. (doi:10.1103/PhysRevE.64.066113)

Binder, K. & Kob, W. 2005 Glassy materials and disordered solids, pp. 50–80. Singapore: World
Scientific.

Campbell, D. K., Flach, S. & Kivshar, Y. S. 2004 Localizing energy through nonlinearity and
discreteness. Phys. Today 57, 43–49. (doi:10.1063/1.1650069)

Cerón, I., Naumis, G. G., Salazar, F. & Wang, Ch. 2005 Efficient anharmonic phonon generation
using a quasiperiodic lattice. Phys. Lett. A 337, 141–146. (doi:10.1016/j.physleta.2005.01.054)

Debenedetti, P. G. 1996 Metastable liquids, pp. 210–220. Princeton, NJ: Princeton University Press.
Economou, E. N. 1983 Green’s functions in quantum physics. Springer Series in Solid State Sciences,

vol. 7, pp. 71–93. Berlin, Germany: Springer Verlag.
Elliot, R. J., Krumhansl, J. A. & Leath, P. L. 1974 The theory and properties of randomly

disordered crystals and related physical systems. Rev. Mod. Phys. 46, 465–543. (doi:10.1103/
RevModPhys.46.465)

Elliot, S. R. 1990 Physics of amorphous materials, pp. 100–120. London, UK: Longman Scientific
and Technical.

Fermi, E., Pasta, J. & Ulam, S. 1955 Enrico Fermi, collected papers II, pp. 300–310. Chicago, IL:
University of Chicago Press.

Ford, J. 1961 Equipartition of energy for nonlinear systems. J. Math. Phys. 2, 387–393.
(doi:10.1063/1.1703724)

Huerta, A. & Naumis, G. G. 2002 Evidence of a glass transition induced by rigidity self-organization
in a network-forming fluid. Phys. Rev. B 66, 184 204. (doi:10.1103/PhysRevB.66.184204)

Jackle, J. 1986 Models of the glass transition. Rep. Prog. Phys. 49, 171–231. (doi:10.1088/
0034-4885/49/2/002)

Phil. Trans. R. Soc. A (2009)

 on 28 July 2009rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1126/science.267.5204.1610
http://dx.doi.org/doi:10.1126/science.267.5204.1610
http://dx.doi.org/doi: 10.1103/PhysRevLett.86.4029
http://dx.doi.org/doi:10.1103/PhysRevE.64.066113
http://dx.doi.org/doi:10.1063/1.1650069
http://dx.doi.org/doi:10.1016/j.physleta.2005.01.054
http://dx.doi.org/doi:10.1103/RevModPhys.46.465
http://dx.doi.org/doi:10.1103/RevModPhys.46.465
http://dx.doi.org/doi:10.1063/1.1703724
http://dx.doi.org/doi:10.1103/PhysRevB.66.184204
http://dx.doi.org/doi:10.1088/0034-4885/49/2/002
http://dx.doi.org/doi:10.1088/0034-4885/49/2/002
http://rsta.royalsocietypublishing.org/


Anomalies in glasses 3181

Kamitakahara, W. A., Cappeletti, R. L., Boolchand, P., Halfpap, B., Gompf, F., Neumann, D. A. &
Mutka, H. 1991 Vibrational densities of states and network rigidity in chalcogenide glasses. Phys.
Rev. B 44, 94–100. (doi:10.1103/PhysRevB.44.94)

Langer, J. 2007 The mysterious glass transition. Phys. Today 60, 8–9. (doi:10.1063/1.2711621)
Lepri, S., Livi, R. & Politi, A. 2003 Thermal conduction in classical low-dimensional lattices.

(http://arxiv.org/abs/cond-mat/0112193).
Louzguine-Luzgin, D. V., Saito, T., Saida, J. & Inoue, A. 2008 Thermal conductivity of metallic

glassy alloys and its relationship to the glass forming ability and the observed cooling rates.
J. Mater. Res. 23, 2283–2287. (doi:10.1557/JMR.2008.0286)

Micoulaut, M. & Naumis, G. 1999 Glass transition temperature variation, cross-linking and
structure in network glasses: a stochastic approach. Europhys. Lett. 47, 568–574. (doi:10.1209/
epl/i1999-00427-7)

Naumis, G. G. 2000 Contribution of floppy modes to the heat capacity jump and fragility in
chalcogenide glasses. Phys. Rev. B 61, R9 205–R9 208. (doi:10.1103/PhysRevB.61.R9205)

Naumis, G. G. 2005 Energy landscape and rigidity. Phys. Rev. E 71, 026 114-1–026 114-7.
(doi:10.1103/PhysRevE.71.026114)

Naumis, G. G. 2006 Variation of the glass transition temperature with rigidity and chemical
composition. Phys. Rev. B 73, 172 202-1–172 202-4. (doi:10.1103/PhysRevB.73.172202)

Phillips, J. C. 1979 Topology of covalent non-crystalline solids I: short-range order in chalcogenide
alloys. J. Non–Cryst. Solids 34, 153–181. (doi:10.1016/0022-3093(79)90033-4)

Phillips, J. C. 1996 Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog.
Phys. 59, 1133–1207. (doi:10.1088/0034-4885/59/9/003)

Ponno, A. 2005 Chaotic dynamics and transport in classical and quantum systems, vol. 182, pp.
431–435. Amsterdam, The Netherlands: Springer.

Reigada, R., Sarmiento, A. & Linderberg, K. 2001 Energy relaxation in nonlinear one-dimensional
lattices. Phys. Rev. E 64, 066 608-1–066 608-9. (doi:10.1103/PhysRevE.64.066608)

Thorpe, M. F. 1983 Continuous deformations in random networks. J. Non-Cryst. Solids 57,
355–370. (doi:10.1016/0022-3093(83)90424-6)

Toda, M. 1988 Theory of non-linear lattices, pp. 1–5. Berlin, Germany: Springer-Verlag.

Phil. Trans. R. Soc. A (2009)

 on 28 July 2009rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1103/PhysRevB.44.94
http://dx.doi.org/doi:10.1063/1.2711621
http://arxiv.org/abs/cond-mat/0112193
http://dx.doi.org/doi:10.1557/JMR.2008.0286
http://dx.doi.org/doi:10.1209/epl/i1999-00427-7
http://dx.doi.org/doi:10.1209/epl/i1999-00427-7
http://dx.doi.org/doi:10.1103/PhysRevB.61.R9205
http://dx.doi.org/doi:10.1103/PhysRevE.71.026114
http://dx.doi.org/doi:10.1103/PhysRevB.73.172202
http://dx.doi.org/doi:10.1016/0022-3093(79)90033-4
http://dx.doi.org/doi:10.1088/0034-4885/59/9/003
http://dx.doi.org/doi:10.1103/PhysRevE.64.066608
http://dx.doi.org/doi:10.1016/0022-3093(83)90424-6
http://rsta.royalsocietypublishing.org/

	Thermal conductivity, relaxation and low-frequency vibrational mode anomalies in glasses: a model using the Fermi--Pasta--Ulam nonlinear Hamiltonian
	Introduction
	A nonlinear model of a glass
	Thermal conductivity
	Relaxation
	Conclusions
	References




