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Phonon diffusion in harmonic and anharmonic
one-dimensional quasiperiodic lattices
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zInstituto de Investigación en Materiales, UNAM,

A.P. 70-360, 04510, D.F., Mexico

(Received 12 May 2005; in final form 18 July 2005)

The phonon diffusivity in one-dimensional quasiperiodic lattices is studied
using harmonic and inharmonic Hamiltonians. This study is performed by
solving the equations of motion using a time discretization and the leap-frog
algorithm. For the case of harmonic Hamiltonians, the results show that the
variance of a wave packet in quasiperiodic systems is proportional to the time,
as in a periodic lattice, but their diffusion constant is lower. This behaviour
is qualitatively different from the electronic case, in which the variance
increases as a power law of the time, with an exponent that depends upon the
strength of the quasiperiodic potential. The difference between the electronic
and phonon problems seems to be related to the localization degree of their
long wavelength modes. In this limit, we present the time evolution of the
phonon wave extension, showing a finite sound velocity given by averaged
lattice parameters. Finally, for the inharmonic case, we found that the phonon
diffusivity decreases as the nonlinear perturbation grows.

1. Introduction

The nature of transport properties in quasicrystals, which are materials with long-
range order but without periodicity [1], still is not well understood [2]. For example,
the electronic conductivity of quasicrystals is similar to that observed among
amorphous semiconductors [3], while numerical simulations and theoretical studies
predict a marginal metallic regimen due to the Conway theorem [4], since from a
theoretical point of view, the wave-function resonates in a self-similar way. However,
when the frustration effects of antibonding states are considered, the conductivity
can be reduced by a considerable amount [5]. In one dimension (1D), it has been
proved that the electron diffusivity follows a power law as a function of time,
where the exponent depends upon the strength of the quasiperiodic potential [6].
Nevertheless, phonon propagation has been less studied, in spite of the fact that
its spectrum is also singular continuous, where the main difference from the elec-
tronic case is that the ratio of the gap and the band width goes to zero for acoustic
modes [6]. This difference can produce qualitative divergences in their behaviours
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and could be important in understanding the physical properties of quasicrystals,
e.g. heat capacity, resistivity, thermal conductivity, etc. On the other hand, to get
a finite thermal conductivity, it is necessary to include nonlinear effects since
phonon–phonon collisions that transfer moment to the lattice (Umklapp processes)
are responsible for this finite conductivity [7]. In spite of the importance of nonlinear
effects in materials, there are many significant questions that are still open even
for periodic and disordered systems [8], like how nonlinearity affects the localization
and the transport properties [9]. In perfect periodic systems, where phonons have
extended wave functions, nonlinearity produces phonon localization, usually known
as intrinsic localization [10]. This effect has been observed in different kinds
of physical systems such as Josephson junctions, optical waveguides arrays and
laser-induced photonic crystals [8]. Thus, it is natural to expect a strong localization
when both nonlinearity and disorder are present. However, several one-dimensional
nonlinear models with correlated disorder exhibit delocalized states [11]. These
effects have been confirmed recently using microwave waveguides [12]. An interesting
question is what happens in quasiperiodic systems. For example, it has been recently
found that quasiperiodic optical superlattices are useful for efficiently generating
third-harmonics [13]. This fact has been corroborated using numeric simulations
[14]. In this article, we study phonon propagation in a quasiperiodic system with
linear and nonlinear interactions.

2. Electron and phonon diffusion

Let us consider the simplest 1D quasicrystal which consists of two kinds of atoms,
A and B, arranged following the Fibonacci sequence [1], i.e. if one defines the
first generation, F1¼A and the second one F2¼BA, the subsequent generations
are given by Fn¼Fn�1�Fn�2. For instance, F5¼BAABABAA. In order to model
the behaviour of electrons and phonons in this system, for the electron case we start
from a simple s-band tight-binding Hamiltonian, which leads to the time-dependent
Schrödinger equation,

�ip
@uj
@t
¼ "ð j Þuj þ Vuj�1 þ Vujþ1 ð1Þ

where uj is the electronic wave-function amplitude at site j and time t, "( j ) is the
self-energy of site j which has possible two values, "A and "B, arranged in a Fibonacci
sequence, and V is the hopping integral that we take as a constant for all nearest
neighbours.

On the other hand, the phonon dynamics, including a quartic inharmonic term in
the spring–mass Hamiltonian, can be described by the following equation of motion,

mj

d 2uj

dt2
¼ �ðujþ1 � ujÞ � �ðuj � uj�1Þ þ �ðujþ1 � ujÞ

3
� �ðuj � uj�1Þ

3
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where mj is the mass of atom j and can be either mA or mB following the Fibonacci
sequence, and uj is the displacement of atom j at time t. The distance and
spring strength between all nearest-neighbour atoms are constants, given by
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a and �, respectively. The strength of the nonlinear effects are controlled by the
parameter �. It is widely accepted that within the tight-binding model, electron and
phonon behaviours are essentially the same, as revealed by a direct comparison
of equations (1) and (2), where the inharmonic terms would correspond to the
electron–electron correlation in equation (1). However, in this work we will demon-
strate that their dynamical behaviour in quasiperiodic systems could be very different.

In the absence of electron–electron correlations in equation (1), or inharmonic
terms in equation (2), the solutions of these equations are given by a superposition
of the corresponding time-dependent eigenfunctions. These eigenfunctions can be
obtained from the diagonalization of the Hamiltonian or by using the transfer matrix
method [6]. For � 6¼ 0 these methods do not work, and some approximations
are needed. In a previous paper we used the transfer method in conjunction with
a perturbative approach and the rotating wave-approximation, which predicts a shift
of the original frequencies [15]. To go beyond this approach, in this paper we solve
the equations of motion using a discrete time �t ¼ 0:001p=V for electrons and
�t¼ 0.001

ffiffiffiffiffiffiffiffiffi
m=�
p

for phonons. To solve equation (1), two coupled equations for
the real and imaginary parts of the wave function are used. For the case of phonons,
at each time the force, velocity and acceleration of each particle in the chain are
calculated using the leap-frog integration method [16]. Periodic boundary conditions
were used in all cases for N¼ 10 946 sites. As initial conditions, we always chose
a delta function at the middle of the chain, uj(t)¼ a�j,N/2, and zero velocity at all sites,
duj/dt¼ 0.

Once the chains are excited, the systems are allowed to evolve until they reach
a certain number of time steps tmax ¼ 2l, where l is an integer that usually has the
value of 18, determined in such a way that boundary effects are avoided. To obtain
the diffusivity, we evaluate the spreading of the wave packet as time evolves with
the square root of the second-moment probability distribution defined as

�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

j�
N

2

� �2

uj
�� ��2

vuut : ð3Þ

In figure 1a we show �(t) for the electron case as a function of time using different
strengths of the quasiperiodic potential, measured by the parameter �¼ "A� "B.
A log–log plot of the data reveals that �(t)/ t �, where � depends upon � as shown
in the inset figure 1a0. These results are similar to those obtained by other groups with
the transfer matrix [17, 18]. For the harmonic phonon case (�¼ 0), figure 2a shows a
plot of �(t) for different values of the parameter �¼mA/mB. The first interesting
observation is that �(t)¼At where A is a constant that depends on �. It would be
worth mentioning that A is related to the diffusivity constant (D) as A ¼

ffiffiffiffiffiffiffiffiffi
D=2
p

[17].
The inset of figure 2a shows the dependence ofAwith �. Notice that for both cases the
periodic results, �¼ 1 and A¼ 1/2, are recovered when �¼ 0 or �¼ 1, as proved
analytically [19].

The difference between the phonon and electron diffusions observed in figures 1a
and 2a can be understood by considering that the diffusivity is related to the fractal
dimension of the spectra [20] and this dimension decays with the frequency in the
acoustic region for the phonon spectra [6]. On the other hand, the fractal dimension
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is directly associated with the localization nature of the eigenstates [21], i.e. a bigger

bandwidth means that its states are less localized, as observed in figure 2b, where

a plot of the wave extension W(t) is shown. In this work the wave extension is

quantified by looking at the number of sites whose wave amplitude is larger than

a certain cut-off. From figure 2b, we observe that W(t)¼ vst, where vs is the

speed of the wave front propagation. In the inset figure 2b0 we show the variation

of vs as a function of �, which is very well approximated by

vs
� �
¼

ffiffiffiffiffiffiffiffi
�

hmi

s
ð4Þ

represented by a solid line in figure 2b0, where hmi ¼ mA=� þmB=�
2 is the averaged

mass and � the golden mean. Thus, the acoustic modes only ‘‘feel’’ an average

periodic lattice [22]. It is important to stress that the apparent increasing of vs
with � is mainly due to the reduction of hmi, instead of an effect of quasiperiodicity.

Figure 1. (a) Time evolution of the wave-packet variance for electrons in a chain of 10 946
sites, with different quasiperiodic strengths given by �¼ "A� "B. The data follow a power
law as �(t)/ t �. Inset (a0): values of the exponent � for different value of �. (b) Electronic
wave extension [W(t)] versus time for the same values of � as in (a).
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In contrast, for the electron case,W(t) does not grow linearly with t and it diminishes
with the quasiperiodicity strength, as shown in figure 1b.

Finally, we study the effects of nonlinear perturbations (�) on the phonon
dynamics. For this case, the linear dependence of �(t) on time persists, where
the slope A decreases as the non-linearity grows, as illustrated in the inset
figure 2a0. This fact can be understood as a consequence of intrinsic localization
induced by the presence of quartic terms [8], i.e. it leads to a larger effective spring
constant and a decreased transmittance, as obtained within the rotating wave
approximation [15]. In general, the presence of nonlinear interactions produces
a transfer of vibrational energy towards higher frequency modes which usually

Figure 2. (a) Time evolution of the wave-packet variance for phonons in a chain of 10 946
sites without inharmonic interactions, for different values of the quasiperiodic strength
characterized by the mass ratio � ¼mA/mB. The data follow a linear relation of the type
�(t)¼At. Inset (a0): values of the constant A as a function of � for different values
of the nonlinear perturbation, �. (b) Wave extension [W(t)] for phonons versus time for the
same values of � as in (a). All these data can be fitted with W(t)¼ vst. Inset (b

0): vs for different
values of � (open circles), in comparison with the averaged sound velocity hvsi (solid line)
defined in equation (4).
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are more localized in systems with disorder. Recently, we have observed that this
tendency is enhanced in quasiperiodic systems [14].

3. Conclusions

We have studied the electron and phonon diffusion in harmonic and inharmonic
1D quasiperiodic systems. For harmonic Hamiltonians, our results show that there
are clear differences between the electron and phonon cases. In the latter, the
diffusivity scales linearly with time, whose slope depends upon the strength of the
quasiperiodicity. On the other hand, the electronic diffusivity follows a power law.
We propose that this qualitative difference in diffusion behaviours is caused by the
fractal dimension of the spectrum in the low frequency region. For the case of small
nonlinearities, phonon diffusion still scales linearly with time, although the corre-
sponding diffusivity is smaller than in the harmonic case. Finally, it would be worth
mentioning that for systems with two possible nearest-neighbour distances, arranged
following the Fibonacci sequence, there are in consequence two different spring
constants and the results are essentially the same as those presented in this paper,
i.e. the nature of diffusion is dominated by acoustic modes, in spite of the differences
in the details of their band structures.
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