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The effects of flexibility and chemical composition in the variation of the glass transition temperature are
obtained by using the Lindemann criteria, which relates melting temperature with atomic vibrations, and
rigidity theory. Using this criteria and that floppy modes produce an excess of vibrational states at low
frequencies which enhance in a considerable way the average quadratic displacement, we show that the
consequence is a modified glass transition temperature. This approach allows us to obtain in a simple way the
empirically modified Gibbs-DiMarzio law, which has been widely used in chalcogenide glasses to fit the
changes in the glass transition temperature with the chemical composition. The method predicts that the
constant that appears in the law depends upon the ratio of two characteristic frequencies �or temperatures�. This
constant is estimated for the Se1−x−y�GeyAs1−y�x glass by using the experimental density of vibrational states,
and the result shows a good agreement with the experimental fit from glass transition temperature variation.
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Glasses are solids that do not have long range order, usu-
ally produced by fast cooling of a liquid melt. In spite of the
well-known importance of these materials, the physics of
glass formation is still an open and puzzling problem,1 since
it is mainly a nonequilibrium process. Even some important
technological questions are not well understood, as the origin
of the nonexponential relaxation laws2 or the ability of cer-
tain materials to reach the glassy state.3 One approach to the
problem was made by Kauzmann,4 who pointed out that
there is an underlying thermodynamical phase transition due
to an entropy crisis. Kauzmann’s approach was very success-
ful, but unable to answer many questions in a quantitative
way. Later on, other approaches were proposed:5 phenom-
enological models like the Gibbs-DiMarzio, theories based
in supercooled liquids as, for example, mode coupling
and energy landscape formalism, or the use of computer
simulation.4 Most of these theories have difficulties to ex-
plain one of the most simple and interesting questions: how
the glass transition temperature �Tg� depends on chemical
composition. As discovered by the Phoenicians, Tg can be
dramatically lowered or raised by adding few impurities. An-
other interesting property is the behavior of viscosity, which
is usually referred to as fragility,6 which can be changed
from strong to fragile.6 Chalcogenide glasses �formed with
column VI elements doped with impurities� are very impor-
tant to understand these effects. The change of Tg with the
chemical composition has been observed to follow an em-
pirically modified Gibbs-DiMarzio law:6–9

Tg��r�� =
Tg��r� = 2.0�

1 − ���r� − 2.0�
, �1�

where � is a parameter fitted from the experimental data, �r�
is the average coordination number, defined as �r�=�r=0

Zmaxrxr,
and r is the number of covalent bonds that the designated
atom can form. xr is the occurrence of each type of atom in
the glass and Zmax is the maximal coordination among all
atomic species. For example, for a Se-As-Ge glass, Zmax=4

which corresponds to the valence of Ge. Observe that the
average coordination number approach is very useful when
covalent bonds are present, since there is a hierarchy in the
atomic forces, and thus homopolar bonding is negligible in
�r�. It is worthwhile mentioning that the original Gibbs-
DiMarzio law was developed for polymers,4 and its use for
chalcogenide glasses is empirical. It can be obtained using
stochastic methods,10 but the problem is the need to define Tg
in an unusual way.10

The rigidity theory �RT�,11,12 was an important step to
understand glass formation. By considering covalent bonding
as mechanical constraints, the ease of glass formation is re-
lated with the number of constraints. If this number is lower
than the degrees of freedom, there are zero frequency vibra-
tional modes called floppy.13 The resulting network is under-
constrained. A transition occurs when a disordered lattice
becomes rigid. Many features of this transition have been
experimentally observed.8,14 Even for simple systems like
hard-disks,15 polymer melts,16 and colloids,17 rigidity plays
an important role. For proteins, RT allows one to understand
long-time scale motions,18 and the window of thermody-
namical reversibility,8 explained as stress self-organization.19

Although the success of RT, its thermodynamics has not been
developed.16 In previous papers, we approached this problem
by using a phenomenological free energy20 and computer
simulations.21 Yet, many questions remain open, as, for ex-
ample, the variation of Tg with the chemical composition of
a glass. However, very recently it has been shown from first
principles that the energy landscape and the phase space to-
pology of a glass depend upon the rigidity properties of the
system.22 In this Brief Report, we will take a further step by
combining the structure of the phase space topology, given
by the RT, and the old Lindemann criteria that relates melt-
ing with the size of atomic vibrations �which has been
proved to be valid for glasses23,24�, in order to explain the
variation of Tg with chemical composition. The fundamental
idea behind this approach is that flexibility increases the qua-
dratic displacement due to low frequency modes, produced
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by directions in the phase space where there is almost no
energetic cost in deforming the atomic network. Thus, no-
linear effects become more important at decreasing tempera-
tures. Furthermore, the present approach provides a clear
path to understand glass transition trends with the connectiv-
ity of the network, and it can serve to understand other flex-
ible systems as well, like polymers or proteins.

In RT, the ability for making a glass is optimized when
the number of freedom degrees, 3N �where N is the number
of particles�, is equal to the number of mechanical con-
straints �Nc� given by bond bending and stretching forces.
The parameter f = �3N−Nc� /3N gives the fraction of cyclic
variables of the Hamiltonian. A variation of these coordinates
do not change the energy and thus f also corresponds to the
fraction of vibrational modes with zero frequency, called
floppy modes.12 The parameter f is a function of �r�, and can
be calculated using the pebble game algorithm,13 but it can
be estimated with a mean-field procedure,25

f =
3N − Nc

3N
= 2 −

5

6
�r� . �2�

The rigidity transition occurs when f =0 �at the critical
value �rcz�=2.4�, and the system passes from a floppy net-
work to a rigid one. In principle, since floppy modes have
zero frequency, they do not contribute to the elastic energy,
and the specific heat of the glass depends on f , a result that
violates the Dulong-Petit law,20 and which is not observed in
the experimental data.8 In fact, floppy modes do not have a
perfect zero frequency, i.e., in real glasses they are shifted by
residual forces, like the van der Waals interaction.12 This was
confirmed in a very detailed neutron scattering26 study,
where it has been shown that floppy modes in the prototypi-
cal compound Se1−x−y�GeyAs1−y�x are blueshifted, forming a
peak at 5 meV. This frequency is just obtained as the maxi-
mum of the peak and remains at the same frequency for all
�r� between 2.0 and 2.4. If one deconvolutes the signal and
calculate the area under the peak, the spectral weight of the
peak is exactly f .26 For pure selenium, it has nearly 1/3 of all
the spectral weight.26 Observe that the role of floppy modes
is to enhance the intensity of any preexisting boson peak.27

The corresponding temperature �� f� where these floppy
modes are frozen, can be estimated from the energy required
to excite modes of 5 meV, that gives � f �54 K. For low
temperatures, it is clear that floppy modes are important, as
confirmed by the giant-softening of the 119 Sn Lamb-
Mossbauer factor in �Ge0.99Sn0.01�xSe1−x glasses.14 In prin-
ciple, one can argue that floppy modes are not so important
for the glass at high temperatures, since all 3Nf floppy oscil-
lators are excited, leading to the Dulong-Petit law. As we will
show next, this is not the case, and in fact floppy modes are
essential in determining Tg. To show this, we use the Linde-
mann criteria �1910�, which has been originally devised to
understand crystal melting.35 Such criteria establish that
melting occurs when the mean atomic square displacement
�u2�T��1/2 is around 1/10 of the atomic spacing a. There are
experimental evidences based on neutron scattering that this
criteria is applicable to glasses,24,28,29 as is the case for Se
and Se-Ge systems.23 Computer simulations are in agreement

with this observation.30,31 A comparison between different
glasses has been made for �u2�T�� as a function of T in a
review by Ngai.32 For many glasses there is a crossover from
a harmonic regimen to an anharmonic one when Tg is
reached.32 Some liquids and polymers show departures from
this rule,32 however, strong glasses and network glass form-
ers like Se, GexSe1−x or B2O3 are among those systems
where anharmonic effects are moderate below Tg. Since pure
Se becomes stronger6 with the addition of Ge or As, the
criteria is even improved when cross linking agents are in-
troduced in the network, and thus it is safe to assume this
criteria in the floppy region. Notice that this change of fra-
gility can be due to the surprising relationship between the
curvature of the landscape and other properties of the energy
landscape.33

The value of �u2�T�� can be calculated from the density of
vibrational states g���. For T�Tg, the system is in the har-
monic limit, and using statistical mechanics in the classical
limit,34

�u2�T�� =
3kBT

m
�

0

� g���
�2 d� , �3�

where kB is the Boltzmann constant, T the temperature, � the
frequency, and m the mass. Below Tg, �u2�T�� is linear in T
as observed for network glasses. At Tg, the Lindemann
criteria applied to glasses23 establish that �u2�Tg��
��u2�Tm���0.01a2 where Tm is the melting temperature.
This shows the fundamental importance of the excess low
frequency modes observed in glasses to determine Tg, due to
the enhancement produced by the term �−2 in Eq. �3�, which
leads to an increasing �u2�. Let us make a model for the most
prototypical chalcogenide glass: Se1−x−y�GeyAs1−y�x, since
this compound allows us to obtain the same �r� with different
chemical compositions. The three chemical elements of this
glass have nearly the same mass; thus we can suppose that in
Eq. �3� all the atomic masses are equal, although in more
general cases m must be replaced by an averaged mass, since
in Eq. �3� only acoustic modes have an important contribu-
tion. The most simple form for g��� is to use an Einstein
type model, with a delta function centered around a charac-
teristic floppy peak at � f, with a weight given by the number
of floppy modes, plus a density of states that has the rest of
the spectral weight. Such a density of states can be written as

g��� = �1 − f�gR��� + f��� − � f� , �4�

where gR��� is the density of states for f =0. It is important
to remark that in this model, gR��� will be the same at all
glass compositions below �r�=2.4, and the relative weight on
nonfloppy modes is taken into account by the factor 1− f .
Note that by using a fixed gI��� for all chemical composi-
tions, we are overestimating this contribution for flexible
glasses, which will give only a small correction to the final
result, since g��� /�2 goes to zero at high frequencies.26 This
assumption is also supported by the neutron scattering data,26

which show that g��� follows an isocoordination rule. Using
g���, �u2�T�� turns out to be
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�u2�T�� =
3kBT

m
�	 1

�2

R

+ f� 1

� f
2 − 	 1

�2

R
� , �5�

where �1/�2�R is defined as the second inverse moment at
the rigidity transition,

	 1

�2

R

� �
0

� gR���
�2 d� .

Equation �5� predicts a linear dependence of �u2�T�� upon f .
This result and the idea of an Einstein-type mode for floppy
modes are supported by the softening of the Lamb-
Mossbauer factor in �Ge0.99Sn0.01�xSe1−x glasses14 as x lin-
early decreases to 0, i.e., as the glass gets more floppy. The
mean square displacement at absolute zero of the vibrational
density of states contains the information on these floppy
modes, and its variation x nicely scales with the scattering
strength of the 5 meV mode observed in inelastic
scattering.14

Now we turn our attention to combine these results with
the Lindemann criteria. When f =0, we use Eq. �4� and
the Lindemann criteria to obtain Tg at the rigidity threshold
f =0,

T
g
�f = 0� �

0.01ma2

3k
B	 1

�2

R

. �6�

For the variation of Tg as a function of rigidity, we use the
previous expression to rewrite Eq. �5� in terms of Tg�f =0�,
and then we apply again the Lindemann criteria to obtain,

Tg�f� =
Tg�f = 0�

1 + 	f
, �7�

where Tg�f� is the glass transition temperature when a frac-
tion f of floppy modes is present. The parameter 	 is defined
as

	 �
1

�
f
2	 1

�2

R

− 1 ���
R

�
f

�2

− 1,

and depends upon the ratio of two characteristic frequencies,
since we define the following frequency and temperature at
the rigidity transition, �R /
��R��1/�2�R

−1/2.
Equation �7� predicts that Tg should decrease as the num-

ber of floppy modes increases. Furthermore, we can trans-
form Eq. �7� into the empirically modified Gibbs-DiMarzio
Eq. �1�, just by using the Maxwell mean field to express f in
terms of �r� and simple algebraic manipulations,

Tg��r�� =
Tg��r� = �rc��

1 + 	�2 − 5
6 �r�� �

Tg��r� = 2.0�
1 − ���r� − 2.0�

, �8�

where the constant � is given by

� =
5	

2	 + 6
,

and Tg��r�=2.0�=Tg��r�= �rc�� / �1+	 /3�. Notice that the
fraction of 10% prescribed by Lindemann, only determines
Tg��r�=2.0�, since the only important thing on the derivation
is that glass transition occurs at a fixed quadratic displace-
ment. If the fraction is changed, the form of the obtained law
and � still are preserved. In experiments with chalcogenide
glasses, � is a constant fitted from the data. Our approach
shows that � depends upon the ratio of two characteristic
frequencies or temperatures. It is worthwhile mentioning that
the constant experimental value of � for Se1−x−y�GeyAs1−y�x

glass in the interval 2.0� �r��2.4 gives an extra support to
the assumption made in Eq. �4�. For �r��2.4, the isocoordi-
nation rule for Tg is broken and � is no longer constant for
different chemical compositions, as is also observed with Tg.
Another advantage of the approach presented in this Brief
Report is that � can be estimated from neutron scattering
data or Lamb-Mössbauer factor. Here we will use the neutron
scattering data taken from Ref. 26. We start by noting that at
the rigidity transition, f =0 and from Eq. �5�, gR���=g���.
Thus, �1/�2�R can be obtained from the experimental data by
calculating the second inverse moment of the normalized
density of states at �r�=2.4. Following this procedure, we get
�1/�2�R�0.019 86 meV−2, with a characteristic frequency
�R�7.0959 meV, and temperature �R�76 K. Using that
� f �5 meV, 	 has the approximate value 1.014, and finally
��0.67±0.02. The value from fitting the experimental data
of the glass transition has been obtained by many groups,6,7,9

and produces the value ��0.72 which is in very good agree-
ment with our estimation from neutron data. Using that
Tg��r�=2.0�=316 K, Fig. 1 shows a plot of the experimental

FIG. 1. �Color online� Glass transition temperature as a function
of �r� for GexS1−x, Se1−x−y�GeyAs1−y�x, and GexTe1−x taken from
Refs. 36 and 37, respectively. All the lines correspond to Eq. �8�,
with �=0.68, and Tg��r�=2.0�=245 K �dotted line�, �=0.67, and
Tg��r�=2.0�=316 K �solid line�, and �=0.72, and Tg��r�=2.0�
=343 K �dashed line�. The upper axis shows x for GexS1−x and
GexTe1−x.
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data compared to Eq. �8� with the predicted � from neutron
scattering. Notice that for each �r�, there are many different
chemical compounds. Although the agreement is good, the
calculation of � can be improved by taking into account the
floppy peak finite width. In Fig. 1 we also compare Tg��r��
for GexTe1−x and GexSi1−x taken from Refs. 36 and 37, with
with Eq. �8� but using the second inverse moments of g���
obtained from Mössbauer experiments, where �
�0.68±0.05 and ��0.72±0.03, respectively. Observe the
decreasing of Tg for pure group VI elements. The reason why
Te has the highest Tg despite having the higher mass must be
due to strong nonpolar interactions. Many other glasses made
with elements of different masses follow the same modified
Gibbs-DiMarzio law.38 There is also an effect in the average

mass against �r� in Eq. �3�, but it is small compared with the
effects of the floppy peak. Observe that for �r��2.4, one can
develop �1−���r�−2.0��−1 in Eq. �8� to produce a linear law
Tg��r���Tg��r�=2.0��1+���r�−2.0��.

In conclusion, we have shown that floppy modes, which
are due to fundamental properties of the phase space and
energy landscape topology,22 are essential to determine the
glass transition in flexible systems, since they enhance the
square mean displacement, and thus nonlinear effects be-
come important at lower temperatures.
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