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The relationship between the excess of low-frequency vibrational modes observed in glasses and the stability
against thermal fluctuations is explored. Such study is performed by calculating the correlation of atomic
displacements inside the glass. As a result, it is proved that thermal stability requires that modes present in the
boson or floppy peak �due to the flexibility or rigidity of the glass atomic network� should be localized or
strongly scattered. The glass transition is thus determined by the size of the quadratic mean displacement. Also,
the 2/3 relationship between melting and glass transition temperature is shown to have its origins in the
differences between the mean-free path of phonons due to scattering. The size of this scattering is estimated
using the Boson peak frequency and sound velocity. Finally, the change in the glass transition temperature with
pressure is obtained from the displacement of low-frequency modes.
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I. INTRODUCTION

The formation of glasses, which are solids that do not
have long-range order, remains a puzzling problem due to its
nonequilibrium character.1–4 For example, even if our civili-
zation has been making window glass for more than two
thousands years, until a few years ago its chemical compo-
sition was basically an empirical recipe. A theoretical expla-
nation came from studying with care a fundamental fact dis-
covered by the Phoenicians:5,6 The glass transition
temperature �Tg�, defined as the temperature at which relax-
ation time exceeds experimental time scale, can be dramati-
cally lowered or raised by adding impurities.7,8 In almost all
glasses there are anomalies in the density of low-frequency
vibrational modes �LFVMs�.9,10 The most famous one is the
Boson peak,10 but there are others, such as the floppy mode
peak,11 due to the flexible/rigid character of the atomic
network.12–17 It is surprising that although vibrational
anomalies are present in all glasses, most of the theories
concerning glass transition do not give a special importance
to such observation.18 This lack of attention is even more
surprising when one realizes that LFVMs are fundamental to
the thermodynamical stability of solids. In 1935 Peierls19

proved that crystals in one and two dimensions are unstable
against thermal fluctuations, while three-dimensional crystals
are stable. The derivation made by Peierls showed that the
interplay between the density of LFVM, dimensionality, and
the localization nature of the normal modes is fundamental in
the stability due to the high population of LFVM at low
temperatures. Although glasses are in a metastable state,20 it
is clear that they are stable from a laboratory time scale point
of view. This leads to the natural question of what we can
learn from the excess of LFVM in glasses and thermal sta-
bility. Following this line, in a previous paper we showed
that Tg depends upon the rigidity of the lattice through the
quadratic mean displacement,21 which is determined by

LFVM. Thus, there is a relationship between such modes and
glass transition, as pointed out by others using experiments22

and simulations.23 In this paper we propose to continue with
such exploration. As we shall prove, the states in the anoma-
lies need to avoid propagation of thermal fluctuations and as
a result there must be phonon localization or scattering. The
structure of this paper is as follows: In Sec. II we calculate
the displacement correlation of a glass at thermal equilib-
rium. In Sec. III we show that there is a relationship between
mode localization and thermal anomalies, while Sec. IV is
devoted to the study of the glass transition temperature and
phonon scattering. Such results are used in Sec. V to calcu-
late the effects of pressure; and, finally, in Sec. VI the con-
clusions are given.

II. DISPLACEMENT CORRELATIONS IN A GLASS

A. Correlation function of atomic displacements

We start by observing that once a glass is formed, it must
be mechanically stable, at least in a laboratory time scale,20

and thus resistant to thermal phonon field fluctuations for
temperatures T below Tg. The condition required for such
stability means that the correlation of the displacement field
of two atoms separated by a distance R must not tend to
infinity as R→�. Let atom i at an equilibrium position ri
have a displacement u�ri�. The correlation between two at-
oms can be measured as

��u�ri� − u�r j��2� = ��u�r j��2� + ��u�ri + Rij��2�

− 2�u�ri� · u�ri + Rij�� , �1�

where Rij =r j −ri is the vector that joins atom i with j, and
the bracket � � denotes thermal average at temperature T. In
order to calculate the previous quantity, we will argue that
nonlinear effects are negligible for a range of temperatures
such that T�Tg and T�Ta, where Ta is a temperature in
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which the very low-temperature anomalies observed in
glasses are not present. Usually it is observed that Ta
�10 °K and below this temperature there are anomalies due
to anharmonic effects, for example, the linear dependence on
T of the specific heat.24 There are many different experimen-
tal and theoretical arguments to support the use of a har-
monic Hamiltonian for the glass in the regime Ta�T�Tg.
For instance, the nature of bonding in a glass is similar to the
one observed in the corresponding crystal. The atoms in a
crystal are basically oscillating around equilibrium positions.
In a glass we expect a similar situation. In terms of the en-
ergy landscape picture, the system is arrested in one metaba-
sin and thus it can only sample states around an inherent
structure,20 which means basically harmonic oscillations.
This is in agreement with the well-known experimental fact
that the specific heat �Cp� of glasses differs only slightly
from the Dulong-Petit law25–27 near Tg.

Yet, there is another path to prove the harmonic character
of the Hamiltonian below Tg. This path is related with the
main topic of the present paper. The basic idea is that the
mean atomic square displacement ��u�r j��2� is linear in T
when the Hamiltonian that describes atom vibrations is har-
monic. By proving this we will make our first encounter with
a fundamental fact, which is ignored in most of the discus-
sions about glasses: the role of the excess of modes in the
low-frequency region. Following this line of thought, first we
will calculate ��u�r j��2� for a glass assuming a harmonic
Hamiltonian. Although some expressions are available in the
literature for monatomic systems,28 here we revisit the prob-
lem to account for the case of glasses made from different
atomic species, such as in binary and ternary glasses.

B. Correlation using the harmonic potential

In this section, we will study the atomic harmonic vibra-
tions in the glass phase assuming mass variance. If each
atom has mass mj, the Hamiltonian of such glass made from
N atoms can be written as29

H = �
j=1

N �p j�
2 +

1

2�
l=1

N

y�r j�D��r j,rl�y�rl�� . �2�

The renormalized displacement y�r j� is defined as y�r j�
=	mju�r j�. The corresponding momentum is p j�=−i��y�rj�
and D��r j ,rl�=D�r j ,rl� /	mimj, where D�r j ,rl� is the dy-
namical matrix written in the real-space basis.29 Equation �2�
can be solved by finding a diagonal base for D��r j ,rl�. If
��s� is the eigenvalue of the s eigenvector denoted by es�r j�
and as

† �as� is the corresponding creation �annihilation� op-
erator, the Hamiltonian can be transformed into29 H
=�s=1

3N �as
†as+ 1

2 ����s�. Notice that we avoid the obvious
choice of using the label k for the states, in order to highlight
that we do not know if the modes are extended or localized.
The only information is that modes oscillate in time with
frequency ��s�. The quadratic displacement at temperature T
can be calculated by taking a thermal average over the num-
ber of phonons and a configurational average over all atoms.
In the classical limit, when kBT����s�, such displacement
is given by28

��u2�T��� 

1

N
�
j=1

N

��û�r j��2� �
kBT

N
�
j=1

N

�
s=1

3N
�es�r j��2

mj�
2�s�

. �3�

A further simplification can be obtained by writing the mass
on a given atom �mj� as an average part �m� minus a fluc-
tuation �mj. Then, using the identity �1−x�−1=1+x+x2+ . . .
with x=�mj / �m� we have

��u2�T��� �
kBT

N�m��s=1

3N
1

�2�s���
j=1

N

�
l=0

� ��mj

�m�
l �es�r j��2

�2�s� � ,

�4�

where l is an integer. The term with l=0 in Eq. �4� is an
average term, while the others contain the correlation be-
tween mass fluctuations and normal modes. Only a bound
can be provided for such term. If the correlations between
fluctuations of masses and modes are neglected, we can re-
place ��mj�2 by the standard deviation of the mass distribu-
tion �m

2 . Using that the vectors es�r j� are normalized
� j=1

N �es�r j��2=1, the first three terms in Eq. �4� are

��u2�T��� �
kBT

�m�N
�1 +

�m
2

�m�2��
s=1

3N
1

�2�s�� . �5�

Notice that in general, ��s� is shifted due to the mass vari-
ance. This shift goes as �m�−1, so in fact ��u2�T��� is propor-
tional to the inverse of the average elastic constant of the
glass. To verify the approximations made with the masses,
we have performed numerical simulations in disordered one-
dimensional �1D� lattices. The results are presented in the
Appendix and show a good agreement with the exact calcu-
lations.

The sum over all states in Eq. �5� can be made using the
density of vibrational states 	��� to get

��u2�T��� �
kBT

�m�
�1 +

�m
2

�m�2��−2�	, �6�

where the second inverse moment of the frequency is defined
as

��−2�	 =
1

N
�

0

� 	���
�2 d� . �7�

Equation �6� proves that ��u2�T��� goes as T, as was said
previously for harmonic Hamiltonians. A comparison be-
tween different glasses has been made by Ngai30 for
��u2�T��� as a function of T showing that below Tg, ��u2�T���
is linear in T. Thus we can conclude that the harmonic model
is good below Tg. The slope of ��u2�T��� versus T is given
basically by ��−2�	. This fact tells a lot about the relationship
between an excess of modes and the nature of the density of
states �DOS� since low-frequency modes have a great impact
in the integral due to the 1 /�2 factor.

C. Correlation and phonon localization

Now we return to the original goal of finding the phonon
spatial correlation given by Eq. �1�. The last term in Eq. �1�
can be calculated under the harmonic approximation. In the
classical limit we get
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�u�ri� · u�ri + Rij�� � �
s,s�=1

3N
kBT

	mimj��s���s��


es�ri�es�
� �ri + Rij� . �8�

A configurational average can be obtained after a sum
over all pairs of atoms,

��u�r� · u�r + R��� �
2

N2 �
i,j=1

N

�u�ri� · u�ri + Rij�� . �9�

Let us estimate Eq. �9�. First the mass can be treated again
as an average plus a fluctuation part. Then we ignore corre-
lations between mass variation and local modes for LFVM.
Also, for a normal mode es

��r j +Rij� the dependence upon Rij
can be factored out. Using this observation, we propose the
use of a modulation factor �s�R� such that es��ri+Rij�
��s��R�es��ri���R− �Rij��, where R is a distance and ��x� is
the Kronecker delta function. Assuming isotropy in the glass,

we can perform the sum over j in Eq. �9� by considering all
contributions from atoms at distance R. The result is the
following:

��u�r� · u�r + R��� �
kBT

�m�
�1 +

�m
2

�m�2�
s=1

3N
�s�R�
�2�s�

. �10�

Equation �5� as well as Eq. �10� are fundamental to the
stability of the glass. In Sec. III, we will explore such con-
sequences.

III. STABILITY AGAINST THERMAL FLUCTUATIONS
AND PHONON PROPAGATION

In this section we relate the excess of modes in the low-
frequency region to the localization or scattering in order to
assure thermal stabilization. We return to the original calcu-
lation of the correlation given by Eq. �1�. Combining Eqs.
�5�, �6�, and �10�,

��u�ri� − u�r j��2� = ��u2�T��� +
kBT

N�m�
�1 +

�m
2

�m�2��
s=1

3N
�s�R�
�2�s� � . �11�

The sum over states can be performed using the density of states. However, at a given energy, normal modes can have
different localization properties. Here we can use the fact that in glasses, a boson or a floppy peak is observed while a
background of modes that follows Debye spectra is also present. Suppose that a fraction f of the 3N modes is contained in a
peak centered at a frequency �0, while the rest corresponds to the background modes. We assume that all the modes in the
Boson or floppy peak have the same localization properties. The density of states can be separated into a background 	b��� and
a peak contribution, which we model as a Delta function ���−�0�, such that

	��� � 	b��� + 3Nf��� − �0� . �12�

For 	b��� one can use a Debye model with a cut-off frequency �D that contains 3N�1− f� modes since we are only interested
in very low-frequency modes. In that sense, the model is a weighted mix between an Einstein model and a Debye one.29

The sum in Eq. �5� can be made using the proposed DOS to obtain

��u�ri� − u�r j��2� � ��u2�T��� +
kBT

�m�
�1 +

�m
2

�m�2� 1

N
�

0

� 	b����s����R�d�

�2 +
3f

�0
2�s��0��R�� , �13�

where the dependence of �s�R� in � is made explicit by
writing s as a function of �. The states in the background are
extended plane-wave acoustical modes, and thus �s���
�cos�2�s���R /a� where a is the mean lattice parameter.
For acoustic modes, ��s��v�sa where v� is the average
sound velocity. Now we take the limit R→�. The integral
term goes to zero, while the first term does not depend upon
R. In order to have a stable glass, the last term must not
depend on R. Thus, the limit R→� produces a condition for
the function �s��0��R�,

lim
R→�

�s��0��R� = 0. �14�

Such equation can be satisfied by two basic mechanisms:
localization or scattering. In any case, there must be at least

one characteristic length associated with such modes. This is
in agreement with some recent work made by other groups,
which pointed out by using very different arguments the ex-
istence of a characteristic length scale in glasses related to
LFVM.31,32 Notice that here appears a first natural length
scale �L�, since �s��0��R� is adimensional. From Eq. �13� we
obtain

L �	3fkBT

�m��0
2 . �15�

This length basically quantifies the ratio of the thermal en-
ergy contained in the boson or floppy peak with the elastic
potential energy of the corresponding modes. For a typical
glasslike Se, f =1 /3, �0�7.6
1012 Hz, and L�2 Å,
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which is comparable with a bond length. Notice that L al-
ready provides criteria for stability since, as we shall see in
Sec. IV, Tg occurs when 	��u2�T����0.01a, where a is the
bond length, namely, a few Å.

IV. GLASS TRANSITION AND LOW-FREQUENCY MODES

Here we will develop the relationship between glass tran-
sition and low-frequency modes. We start by pointing out
that stability cannot be achieved when 	��u2�T��� is of the
same order of magnitude of the lattice spacing because non-
linear effects or bond breaking destabilizes the lattice. A hint
about the nature of the stability comes from the fact that
��−2�g ��−2�c, due to the excess of LFVM of the glass,
from where it follows that ��u2�T���g���−2�g ��−2�c
���u2�T���c, where the subindex g denotes the glass and c
the crystal. Thus, in a glass ��u2�T��� is always bigger than in
the crystal.

In fact, crystal melting occurs when �u2�T��1/2 is around
1/10 of the atomic spacing a: A rule known as the Linde-
mann criteria. There are experimental evidences based on
neutron scattering that this criteria is applicable at Tg for
glasses,33–36 as is the case for Se and Se-Ge systems.37 It is
important to remark that this Tg nearly coincides with the
temperature in which relaxation time exceeds experimental
time scale. As a result, here we will take such temperatures
as equal. Computer simulations are in agreement with this
observation;38,39 and, in a previous article,21 we have showed
that in fact the number of floppy modes and the Lindemann
criteria can be used to predict variations of Tg. Such devel-
opment provided the first theoretical derivation of the modi-
fied empirical Gibbs-DiMarzio law21 used by experimental-
ists. Let us use the previous discussion to derive a general
relationship between melting and glass transition tempera-
ture.

Assuming that the glass transition and melting occur
when ��u2�T��� reaches a fraction r of the lattice spacing,
from Eq. �6� we obtain at Tg that

r2a2 �
kBTg

�m�N�0

� 	g���
�2 d� =

kBTg

�m�
��−2�g. �16�

Equation �16� leads to an important expression for Tg ,

Tg �
�m�r2a2

kB
��−2�g

−1. �17�

Equation �17� has been tested against numerous experiments
in a previous work.21 Notice that according to Eq. �6�, Tg
changes with chemical composition due to a different aver-
age mass �m� and vibrational spectrum.40 Now we can com-
pare with the melting temperature �Tm�, since a similar equa-
tion holds for it,

Tm �
0.01�m�a2

kB
��−2�c

−1. �18�

Combining Eq. �17� with Eq. �18� we get

Tg � ���−2�c/��−2�g�Tm. �19�

It is very well known that for almost all glasses9 Tg /Tm
�2 /3. We can infer using Eq. �18� that

��−2�c/��−2�g �
2

3
. �20�

Equation �20� indicates an almost universal relationship be-
tween the excess of modes of the glass compared with the
crystal. In Fig. 1 we plot the excess of vibrational states
	�E� /E2 �where E=��� for several glasses compared with
their corresponding crystals. The values of ��−2� for each
system are presented in Fig. 2. Table I summarizes the results
for some representative glasses. In Fig. 3 we plot the ratio
��−2�c / ��−2�g versus Tg /Tm for the data presented in Table I.
From Fig. 3 it is clear that ��−2�c / ��−2�g has the same order
of magnitude as Tg /Tm. Furthermore, the case of Mg70Zn30 is
atypical in the sense that Tg /Tm is nearly one, a fact reflected
in the high value of ��−2�c / ��−2�g. For comparison, we in-
cluded the results for a monocomponent Lennard-Jones glass
taken from Ref. 24. Clearly, the ratio ��−2�c / ��−2�g is very
small, reflecting the unstable character of such glass, which

FIG. 1. �Color online� 	�E� /E2 for different glasses and their
corresponding crystals. The data set was taken from Refs. 37 and
41.

FIG. 2. �Color online� The integral �0
E	�E� /E2 for the glasses

and crystals that appear in Fig. 1. The data set was also taken from
Refs. 37 and 41.
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is known to be a very bad glass former24 maybe because of
its very low ��−2�c / ��−2�g ratio.

The origin of the 2/3 rule can be traced to the stability
limit of the system against thermal fluctuations. However,
the remaining question is why such rule appears in the vibra-
tional spectrum. A possible path to solve this problem con-
sists in studying the relationship between 	��� and the elastic
response function42 D�k ,��,

	��� � − � Im��
0

kD

d3kD�k,��� , �21�

where k is the wave vector and kD is a Debye-type cutoff.
For acoustic vibrations in the hydrodynamical limit, D�k ,��
can be written as

Im D�k,�� � − �F��k�/���2 − v�
2 k2 + �F��k��2 + ��F�����2� .

�22�

Here v� is the sound velocity and F�k� is a function, which
characterizes the damping of fluctuations. F��k� and F��k�
are the imaginary and real parts of F�k�. F��k� is related with
the mean-free path of the vibration L�k� by F��k�
�2v� /L�k�. For a crystal, F�k�→0 and Im �D�k ,�� turns
out to be a delta function ���2−v�

2 k2� and the usual 	���
��2 Debye dependence is recovered. According to the re-
sults of Ref. 42, the excess of modes at low � is a conse-
quence of the decreasing mean-free path, which goes as

L�k� = �G/k4 + L0� , �23�

where G and L0 are constants. The k4 dependence is due to
Rayleigh scattering as has been determined from thermal
conductivity43 and inelastic x-ray scattering.44 Also, the re-
sults are not very much dependent on F��k� so it can be set to
zero.42

However, in Ref. 42 it was not observed that F��k� must
have a crossover since to normalize 	���, F��k� needs to
decay at least as k2 when k→0 to avoid a singularity. Acous-
tic modes are expected for k→0. The most reasonable con-
sistent assumption is that F��k�=k2. Thus, there must be a
transition at a critical kc from a k4 to a k2 law. This theoret-
ical argument is in agreement with the experimental
observations.44 It is important to remark that the crossover
occurs at a frequency that corresponds to the boson peak
maximum44 F��kc���0, where �0�v�kc. For glasses we
can summarize the behavior of F�k� as follows:

F��k� � ��0��kc/k�2�−1 k � kc

2v��G/k4 + L0�−1 k � kc
� . �24�

A relationship between the parameters can be obtained from
F�k� by asking the same free path at the crossover, i.e., �0
�2v��G /kc

4+L0�−1, from where it follows

G � ��0

v�
3�2 − ��0L0

v�
� . �25�

Equation �25� shows that the size of the Rayleigh scattering
is related with the Boson peak frequency. Moreover, G needs
to be a positive quantity. This observation provides a bound
for L0,

L0 � 2v�/�0. �26�

For glasses, �0�1012 Hz and v� takes values between 103

and 104, which produces a typic length L0 between 20 and
200 Å. For v-SiO2, �0�3
1012 Hz, v��8430 m /s, and
L0�60 Å. This confirms the discussion made in Sec. II:
Stability requires a length scale for the distance of phonon
damping, which enters in Eq. �14�. Notice how L and L0 will
enter in the glass transition temperature via the position of
the Boson peak. In fact, L0 also contributes to determine L
since the fraction of modes f in the anomaly is given by Eq.
�21�.

To understand the effects of G and L0, let us obtain �u−2�
from ���2�� using Eqs. �21� and �22��,

��−2� =
4�

C
�

0

kD �
0

�D

dkd�k2F��k�/���2 − v�
2 k2�2

+ ��F��k��2� , �27�

where C is the normalization constant of 	���,

C = − Im��
0

�D �
0

kD

d�d3k�D�k,��� . �28�

TABLE I. A comparison between the ratio Tg /Tm and
��−2�c / ��−2�g for several glasses.

System ��−2�c / ��−2�g Tg /Tm Ref.

As2Se3 0.57 0.83 41

Mg70Zn30 0.78 0.96 41

Se 0.50 0.63 37

SiO2 0.52 0.72 41

Lennard-Jones 0.15 � 24

0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

Tg/Tm

<
ω
−

2
>

c
/

<
ω
−

2
>

g

As
2
Se

3

Mg
70

Zn
30

Se
SiO

2

FIG. 3. �Color online� Comparison between the ratio of the sec-
ond inverse moments ��−2�c / ��−2�g versus Tg /Tm. The dotted line
is a guide to indicate the identity.
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As an example, in Fig. 4 we present a plot of
��u2�T��� /kBT for different values of G using L0=1 and kc
=10−2 /L0. Notice that here we use adimensional units as in
Ref. 42. Figure 4 shows how Rayleigh scattering, which en-
ters through G, leads to an increased quadratic displacement.

In a similar way, we can fix G and vary L0 as shown in
Fig. 5. This plot reveals how ��u2�T��� /kBT decreases with
L0. This means that stability is enhanced as the mean-free
path grows. Notice that such behavior is a delicate balance
between two mechanisms. On one hand, to enhance the
mean-free path, phonon scattering must decrease. The free
path decreases as disorder is decreased as what happens in a
crystal. On the other hand, 	��� tends to reduce anomalies in
the low-frequency region because damping is reduced.

Finally, since ��−2�c� 2
3 ��−2�g, it follows from Eq. �27�

that there must be a kind of universal relationship between
L�k� for a glass and a crystal. In fact, it is known that the
phonon free path for most glasses is around 150 phonon
wavelength, which is an empirical observation that supports
the hypothesis.45 Thus, phonon scattering provides a mecha-
nism for thermal stabilization via the required anomalies in
the density of states and also explains the plateau between 1°
and 30 °K in the thermal conductivity of glasses.45

V. EFFECTS OF PRESSURE ON THE GLASS TRANSITION
TEMPERATURE

Finally, we would like to sketch out how Tg changes with
the applied pressure �P� using the approach developed in this
work. The usual path, involving several approximations, is to
prove the following relation:9

dTg

dP
� Tgvg

��p

�cp
, �29�

which is known to be accurate only within a 30% for a wide
variety of substances. Here vg is the volume per particle and
��p ��cp� is the jump of the thermal-expansion coefficient
�specific heat� during glass transition. We propose a different
path to obtain such change. By taking the derivative of Eq.
�17� with respect to the pressure, we obtain

dTg

dP
� − Tg�3�T +

d

dP
ln�

0

� 	g���
�2 d�� , �30�

where �T is the compressibility. For liquids and solids �T is
very small and can be neglected.46 Thus,

dTg

dP
� − Tg� d

dP
ln��−2�	 . �31�

In many systems, the effect of pressure upon 	��� is to shift
the boson peak toward higher frequencies40,47 since the co-
ordination of the lattice increases with pressure. As a result,
Tg is changed through the density of states. It is worthwhile
mentioning that the Lindemann fraction r can vary with the
pressure depending on the system; although, we neglected
such influence because it is smaller than the peak shift. A
complete discussion about how r changes with pressure can
be found in Ref. 48.

As a token, Eq. �30� provides a simple connection be-
tween ��P, �cp and the density of states. A comparison be-
tween Eqs. �29� and �30� leads to a simple prediction,

��p

�cp
� −

1

vg

d

dP
ln��−2�g. �32�

VI. CONCLUSIONS

In conclusion, we have shown that low-frequency vibra-
tional anomalies present in glasses are fundamental to pro-
vide stabilization against thermal fluctuations. Such collec-
tive effect is not any more effective near glass transition.
From pure thermodynamical arguments, we have shown that
modes present in boson or floppy peaks are localized or
strongly scattered and, as a result, there must be a length
scale associated. In fact, we obtained two characteristic
scales: L�	3fkBT / �m��0

2 and L0�2v� /�0. The first one is
of order of the bond lengths and provides a good approxima-
tion to the glass transition temperature. It is basically the
ratio between the thermal and elastic energy contributions of
the boson peak. The second one corresponds to distances in
the medium-range order resulting from phonon damping. It
is given by the average sound velocity divided by the boson
or floppy peak frequency.
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FIG. 4. �Color online� A plot of the mean quadratic displace-
ment as a function of G for �0=1 and kc=10−2 /L0 using arbitrary
units as in Ref. 42.
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FIG. 5. �Color online� A plot of the mean quadratic displace-
ment as a function of L0 for G=1 and kc=10−2 /L0 using arbitrary
units as in Ref. 42.
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The present approach still requires a fine tuning of the
hypothesis involved. For example, some crystals �such as
cristobalite SiO2� show a Boson peak at the same frequency
as in SiO2 glass. This is usually associated with significant
dynamic disorder. In other words, the system does not be-
come unstable but disorders dynamically. As a result, there
are other contributions to Tg.
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APPENDIX: ONE-DIMENSIONAL EXAMPLE

To test the approximations made with the masses and as a
simple example, we have performed numerical simulations
in a disordered 1D lattice, in which two types of atoms with
different masses �mA and mB� were present with concentra-
tions x and 1−x using a first-neighbor harmonic Hamil-
tonian. Notice that although in 1D ��u2�T��� is divergent for
an infinite number of atoms N, its value can be calculated for
a finite chain. In Fig. 6, the solid line represents the evolution
of ��u2�T��� as a function of the average mass �m�=xmA
+ �1−x�mB for a fixed mass ratio mA /mB using a random
distribution of masses in a chain with N=100 sites. The cal-
culation was made using formula �3�. These results were
obtained by a diagonalization of the Hamiltonian, which pro-
vides the eigenvectors es�r j� and eigenfrequencies ��s�. In
the same figure, the dotted line is the result obtained by the

method of treating the mass as an average plus a fluctuating
part, as given by Eq. �5�. One can observe that the approxi-
mation is good, especially for small amounts of disorder. The
role of the correlations is clear in the figure since the pro-
posed approximation is not symmetric around x=1 /2, while
the complete result is symmetric, indicating a correlation be-
tween oscillation and mass.
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