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Glasses exist because they are not able to relax in a laboratory time scale toward the most stable structure:
a crystal. At the same time, glasses present low-frequency vibrational-mode (LFVM) anomalies. We explore in
a systematic way how the number of such modes influences thermal relaxation in one-dimensional models of
glasses. The model is a Fermi-Pasta-Ulam chain with nonlinear springs that join second neighbors at random,
which mimics the adding of bond constraints in the rigidity theory of glasses. The corresponding number of
LFVMs decreases linearly with the concentration of these springs, and thus their effect upon thermal relaxation
can be studied in a systematic way. To do so, we performed numerical simulations using lattices that were
thermalized and afterwards placed in contact with a zero-temperature bath. The results indicate that the time
required for thermal relaxation has two contributions: one depends on the number of LFVMs and the other on
the localization of modes due to disorder. By removing LFVMs, relaxation becomes less efficient since the
cascade mechanism that transfers energy between modes is stopped. On the other hand, normal-mode local-
ization also increases the time required for relaxation. We prove this last point by comparing periodic and

nonperiodic chains that have the same number of LFVMs.

DOLI: 10.1103/PhysRevE.77.061504

I. INTRODUCTION

After many years of research, glass formation still re-
mains as a source of debate in the scientific community [1].
The main reason is the nonequilibrium nature of the process.
As a consequence, some important questions concerning
glass science and technology are unanswered [2]. Among
these we can cite the origin of the nonexponential relaxation
laws [3] or why certain materials are not able to reach the
glassy state [2]. Both questions are interrelated. To make a
glass, it must be cooled fast enough to avoid crystallization,
but there is a minimal cooling speed for doing this. For low
velocities, the system relaxes toward the most stable configu-
ration: the crystal. The behavior of the viscosity near the
glass transition is an important feature of the associated phe-
nomenology and is known in the field as fragility [4-6].
Fragility is related to the glass-forming tendency, since a
nonfragile glass former (known as a strong glass former)
does not require a fast cooling speed. The viscosity behavior
can be changed from strong to fragile by doping [6]. There
are many theories available in the field of glasses, but most
of them are not able to predict the wide phenomenology
observed. For example, it is known that all glasses present
anomalies in the density of low-frequency vibrational modes
(LFVMs). The most famous one is the boson peak [7], but
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there are others, like the floppy-mode contribution, due to the
flexible and rigid character of the atomic network [8—-10].
Surprisingly, most of the theories concerning the glass tran-
sition do not give special importance to the presence of
LFVMs. This situation is surprising because for crystals, as
shown by Peierls in 1935, thermal stability depends upon
LFVMs [7].

In a series of previous papers [11,12], we have shown that
the anomalies in the density of LFVMs are a determinant for
the glass transition temperature (Tg). The key idea was to
combine rigidity theory (RT) with the Lindemann criteria for
the quadratic mean displacement [11]. Rigidity theory, intro-
duced in this area by Phillips [8] and Thorpe [9], was a major
step to understand glass formation. By considering covalent
bonding as a mechanical constraint, the ease of glass forma-
tion is related to the ratio between the available degrees of
freedom and the number of constraints. When the number of
constraints is lower than the degrees of freedom, there are
nearly zero-frequency vibrational modes called floppy
modes[13]. The resulting network is underconstrained. A
transition to a rigid lattice occurs by adding bonds. Glasses
near the flexible-to-rigid transition are easy to form [8].
Many interesting features of this transition have been experi-
mentally observed, including a self-organized intermediate
phase with zero internal stress which shows no-aging
[14-16]. Rigidity provides a unique opportunity for tuning
the number of LFVMs by chemical doping and thus to ob-
serve the resulting consequences in the physical properties
[17-19]. For example, Se is a fragile glass that follows a
Vogel-Fulcher-Tammann law [6]. It must be cooled very fast

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.77.061504

J. R. ROMERO-ARIAS AND GERARDO G. NAUMIS

to obtain the glass. When doped with other elements like Ge
and Se, the average connectivity of the network is increased,
and as a result, the glass becomes strong and can be formed
even by very slow cooling [6]. However, even if it is be-
lieved that RT plays a role in this minimal cooling speed [8],
up to now is not clear what the mechanism is behind this
observation [20-22]. In this article, we make an exploration
of such problem by following a reductionist strategy. In par-
ticular, we discuss what are the effects of having an excess of
LFVMs in the thermal relaxation properties of simple mod-
els of glasses. This thermal relaxation is fundamental to un-
derstand how fast thermal equilibrium is achieved and thus
how far from equilibrium is the glass. Usually, in the forma-
tion of glasses, two kinds of relaxations occur: the B (fast)
and « (slow) relaxation [2]. The fast decay is related to local
atomic rearrangements, while the « relaxation is related to
conformational changes that involve tens of atoms [4]. Both
are important to the fate of a supercooled liquid, since if a
liquid can be prevented from crystallizing down to a tem-
perature at which the time for molecular rearrangement be-
comes comparable to the experimental time scale, it appears
structurally arrested [4]. In the present work, we are inter-
ested in how thermal energy is stored in the glass, since such
energy is needed in order to produce rearrangements by
jumping over potential barriers. Notice that our results are
relevant for the size of the time scale of the S relaxation,
since here we do not consider rearrangements.

An alternative point of view consists in observing that
according to rigidity theory, elastic energy can be stored in
each extra bond (constraint) to jump energetic barriers and
thus leads to an increased tendency for crystallization . In our
model, the addition of constraints is given by second-
neighbor springs. Also, as is clear in a supercooled liquid or
glass, an external thermal bath removes heat from the sys-
tem, and in fact, the fate of a supercooled liquid depends
upon the rapid conduction of any excess of stored elastic
energy to the bath in order to avoid crystallization. Here
relaxation is studied by adding a damping term which plays
the role of an external bath, and thus the present study pro-
vides a link between how elastic energy is stored and con-
duced through a system depending on the number of anoma-
lies in the LFVMs. It is worthwhile mentioning that although
our results are mainly valid for glasses, since the equilibrium
positions of the atoms are fixed, they give clues about the
thermal relaxation of supercooled liquid near the glass tran-
sition at short time scales compared with the « relaxation. In
other words, here we are looking at the fast relaxation around
a given inherent structure of the supercooled fluid energy
landscape [5].

As pointed out many years ago by Fermi, Pasta, and Ulam
[25], the study of thermal relaxation requires the use of non-
linear Hamiltonians. The first attempt to study such pro-
cesses was the so-called Fermi-Pasta-Ulam (FPU) model of a
one-dimensional chain with nonlinear interaction [23-26]. It
is amazing that there are still many unsolved question con-
cerning this simple model [27]. After years of research, it
became more or less clear that relaxation is dominated
mainly by LFVMs [28-31], due to their quasiresonant nature
[28]. As a result, they share energy in an efficient way [31]
when compared with high-frequency modes. In this article,
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we propose to join the study of nonlinear Hamiltonians with
the anomalies in LFVMs of glasses, in order to get an insight
about how fast a glass relaxes. Thus, here we will study how
relaxation is affected by changing the density of LFVMs, as
well as the localization properties of the vibrational modes.
The structure of the article is the following. In Sec. II we
propose simple models with different densities of LFVMs
following the ideas of RT. Then in Sec. III we explain how
thermalization was achieved in the simulations, while in Sec.
IV we present the results. Finally, Sec. V is devoted to giving
some conclusions and perspectives of the present work.

II. MODELS OF GLASSES

As a starting point, we will formulate a suitable model to
study the role of LFVMs and bond constraints. The most
simple idea is to modify the FPU model to allow changes at
will in the number of LFVMs. The FPU model is a nonlinear
Hamiltonian defined in a one-dimensional lattice made of
equal masses (m) joined by equal springs constants,

i-3
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!
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where u; is the displacement of the mass m at site j and N is
the number of sites. k is the harmonic spring constant, and k'
is the strength of the nonlinear interaction. In what follows,
we set m=1.0, and since we are dealing with a system in a
finite volume, fixed-end boundary conditions (ug=uy,;=0)
are used. The resulting equations of motion are

2
d u;

e =k —wy) = k(uj—u;_y) + k' (ujyy - Mj)3

—k’(uj—uj_1)3. (2)

When the anharmonic term k' is small compared with &,
there are transitions between normal modes of the pure har-
monic Hamiltonian, plus a shifting of the eigenfrequencies
[32]. Also, discrete breathers appear [27]. As was shown in
Refs. [28-33], LFVMs are the ones that mainly influence
thermal relaxation. The actual number of LFVMs depends on
the structure of the pure harmonic Hamiltonian, since using
the rotating phase approximation for small k', one can show
that the effect of nonlinearity is a shift of the modes toward
higher frequencies [32]. Thus, one needs to change the basic
structure of the pure harmonic Hamiltonian. This can be
done by following the original idea of RT, in which each
bond can be treated as a constraint [8,9]. By comparing the
number of constraints with the number of degrees of free-
dom, one can get the fraction of modes with zero frequency,
denoted by f. In the case of a linear chain, the degrees of
freedom are N, while the number of bonds is also N. This
means that there are no floppy modes. Removing bonds does
not lead to a flexible lattice, since the lattice is separated in
pieces. The only possibility is to add constraints to the sys-
tem in such a way that the number of LFVMs is reduced
with respect to the FPU model. The most simple way to
achieve this goal is to add new springs that connect second
neighbors [we denote these new springs as second-neighbor
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FIG. 1. (Color online) (a) A glass model that has disorder in the
SNS connectivity. (b) A modified model that has the same concen-
tration of SNSs as that in (a), but disposed in a periodic
arrangement.

springs (SNSs)], as shown in Figs. 1(a) and 1(b). The con-
centration of such springs is given by c and is defined as the
numbers of SNSs divided by N. These new springs can be
placed at random, as shown in Fig. 1(a) or, in a periodic way,
in Fig. 1(b). The Hamiltonian can be written as

N p2 k k'
H= 2 {2_’: + E(Mjn - Mj)2 + Z(ujﬂ - ”,/)4:|
j=1

N

k k,

+2 ®j+2,j|:32(uj+2 —u;)’ + f(”ﬁz - Mj)“} . (3)
i1

where 0, ; is a random variable that takes the value 0 or 1
with probability ¢ and 1-c, respectively. Eventually, for
comparison proposes, we will use a periodic function for
®.l+27!.

If we consider the pure harmonic case (k'=0 and k;=0),
the number of LFVMs changes as ¢ goes from 0.0 to 1.0.
There are many ways to prove this. First we notice that the
limiting cases ¢=0.0 and ¢=1.0 are just periodic chains. For
¢=0.0, the dispersion relationship is w(q)=2k[1-cos(q)],
where ¢ is the wave vector and w(g) the corresponding fre-
quency. Using that the density of modes p(w) in one dimen-
sion is given by [34]

p(w)zg‘d_q

| dolg) @

and that for the acoustic region ¢—0, w(q)=qv.(, Where
U._o=Vk is the speed of sound for ¢=0, it follows that for
LFVMS p,_o(w)= 1/ 7.y . Notice that the subscript in p(w)
indicates the concentration of SNSs. When c=1.0, it is easy
to prove that

o(q) = \2[k + k, — k cos(q) - k, cos(2¢)], (5)

which leads to the result p.;(w)=1/7v.; with v,
:\e"k+4k2. To treat other cases, we obtained the density of
states by diagonalizing the dynamical matrix for chains with
N=20 000 and over an average of 100 disorder realizations,
where disorder means here different initial random distribu-
tions of second-neighbor springs. For all cases, it was ob-
tained that p.(w) does not depend on w in the low-frequency
region. Since p.(w) is a constant for w— 0, we can define it
as
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FIG. 2. (Color online) Limiting value of p.(w) as w—0 for
different concentrations ¢ of second-neighbor springs. The circles
are the results obtained by diagonalizing the Hamiltonian for a
chain with N=20 000 sites, averaged over 100 realizations of dis-
order. The solid line is a fit with a linear equation.

lim (@) = ——. ©)

w—0 c
In Fig. 2 we present a plot of 1/v.m obtained from the simu-
lations. It can be seen that 1/v, is a linear function that
interpolates between p,._;(w) and p,_o(w). Such a result is
clear since in the limit ¢ — 0, the system can be treated as a
continuous medium [35]. Thus, in the proposed model for
the harmonic contribution, the density of LFVMs decreases
as a function of the concentration c.

III. THERMALIZATION OF THE GLASSES

To study the dynamics of the relaxation, first we thermal-
ized the systems by using a bath. Afterwards, the bath was
retired and a damping term was added at the ends of the
chains to observe the energy dissipation. These steps were
made for harmonic and nonharmonic Hamiltonians in order
to compare the results. For the case of harmonic Hamilto-
nians, the systems were prepared in such a way that each
normal mode had an energy kz7/2, where kgT is the tem-
perature measured and kz the Boltzmann constant. For non-
linear Hamiltonians, we used a Langevin dynamics in which
a stochastic force [#%(7)] and a damping were added to the
equation of motion:

2
Ty 70%"' 7i(1).

d  du; dt

As usual, the force had a Gaussian distribution, with zero
mean (7,(1))=0 and correlation given by

() m(t")) = 2ypkpT St - 1), (7)

where 7, is the damping amplitude.

In all the cases, these equations were solved by using a
fourth-order Runge-Kutta algorithm, with parameters such
that y, < 87%k/N? (see below) and 0.0=7=1.0. Notice that
kg was set to 1.0 in all simulations, so T always has energy
units. For validating the software and to test the thermal
equilibrium, we performed several tests, including various
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FIG. 3. (Color online) S(w) using a pure harmonic Hamiltonian
for different concentrations of SNSs. The inset depicts the low-
frequency region, showing the decreasing number of states as a
function of c. The spectra have been obtained using N=100, T
=0.5, and dr=0.01. In this case, the interactions are k=k,=0.5 and
k'=k,=0.0. Each curve is an average over ten disorder realizations.

limiting cases. For the linear Hamiltonians, the phonon dy-
namics was compared with results obtained from other meth-
ods. The achievement of thermal equilibration was deter-
mined by monitoring the total energy E(f) as a function of
time and the amount of energy in each normal mode. Also,
for the harmonic chains we have checked that the kinetic and
potential energies of the atoms were fluctuating around
kpT/?2, as expected from the equipartition theorem in thermal
equilibrium. Finally, we characterized our systems by look-
ing at the frequency spectrum S(w) of the correlation func-
tion when thermal equilibrium is achieved,

S(w) = ZJOO C(7)cos(wTr)dT, (8)
0

where the time correlation C(7) is defined as [30]
LN
C(7) = —— 2 (A;(t+ DALD) )
N-15

and A(7) is the relative displacement:

Aj(t) = ujt) —u; (1) (10)
For a pure harmonic Hamiltonian, S(w) can be computed
analytically,

N-1

4’}/OkBT
S(w) = >
N q=0 [V%

1
(@) + 1[r3(q) + &*]

where r;,(¢g) are conjugated roots of the secular equation
obtained when diagonalizing the Hamiltonian. For a periodic
chain, such roots are easily obtained:

2
ra(q)=- % * \/(%) — 4k sin2<%>. (12)

In Fig. 3, S(w) is shown for chains with different concentra-
tions of SNSs using a pure harmonic Hamiltonian, while in
Fig. 4 the same calculation was repeated considering a non-

(11)
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FIG. 4. (Color online) S(w) using a nonlinear Hamiltonian for
different concentrations of SNSs. The inset depicts the low-
frequency region. The spring constants are shown inside the graph.
The spectra have been obtained using N=100, 7=0.5, and dt
=0.01. In this case, the interactions are k=k,=0.5 and k'=k,=0.5.
Each curve is an average over ten disorder realizations.

linear interaction. In both cases, the temperature was 7=0.5
and the time step dr=0.01. The damping constant 7y, was
taken as y,<87’k/N? in such a way that | ,(¢) has imagi-
nary roots for the largest separation between eigenfrequen-
cies, avoiding a cutoff effect in S(w) for LFVMs. For all
harmonic cases, we have verified that the S(w) calculated
from the Runge-Kutta method and from a direct diagonaliza-
tion using Eq. (11) are in complete agreement. In Figs. 3 and
4, we include a close-up of the low-frequency region, show-
ing that S(w) is reduced for small @ with increasing ¢, as
expected.

IV. ENERGY RELAXATION AND LOW-FREQUENCY
MODES

The relaxation of the thermalized models from an initial
temperature 7 to zero temperature has been studied follow-
ing two steps: first the thermal bath was retired and then a
damping term was added at both ends of the chains. The
resulting equations of motion are

N
d’u; oH du;

=—— - r,—<, 13
dr? du; FE{ I dt (13)

where I';; is the dissipation near the ends of the chain,

Ly=v8,[6;1+ ;5] (14)

v is the damping constant, and &, is a Kronecker delta. For
all chains we took y=1,.

In Figs. 5 and 6 we present a plot of the energy relaxation
using nonlinear Hamiltonians for different concentrations of
SNSs. Notice that in Fig. 5 we present the evolution from
¢=0.0 to ¢=0.5 0.5, while in Fig. 6 the concentration goes
from ¢=0.5 to 1.0. This separation was made in order to
simplify the discussion of the results. Each of the plots for
the energy relaxation was made for N=100, starting from
thermalized baths at 7=0.5. An average over 40 disorder
realizations was made in all cases.
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FIG. 5. (Color online) Energy relaxation as a function of time
for c=0-0.5 using a nonlinear Hamiltonian with parameters k=k,
=0.5 and k'=k;=0.5. The inset shows a close-up of the relaxation
tail. For all chains, N=100 and dr=0.01, and an average over 40
disorder realizations was made. The initial temperature is 7=0.5.

There are many interesting features in the plots of the
relaxation. The first one is that the time required for relax-
ation increases as ¢ goes from ¢=0.0 to 0.5. From ¢=0.5 to
1.0, this behavior is reversed for = 10*, since the time re-
quired for relaxation decreases with c¢. Near the crossover
time 7~ 10%, the relaxation becomes slow as the concentra-
tion of SNSs is increased. At ¢=1.0, the slowest relaxation is
observed. Thus we can conclude that for long times, relax-
ation is always slow when the number of LFVMs is reduced.
This long-time behavior can be understood in terms of the
depletion of LFVMs, as was explained in the Introduction.
According to Ref. [30], the relaxation of high-frequency
modes requires a transference of energy to LFVMs. Such a
phenomenon is akin to turbulence [31], in which energy is
injected at large scales and transferred via a cascade of self-
similar eddies to a small scale in which energy is finally
dissipated. In the present case, the reduction of LFVMs

10° .
\?\\Q —o—C=0.5
\\ e C=0.6
3 ~ 4 C=0.9
™~
0L NS ——c=1.0
—
=3
w
=
w
107}
10°
10° 10°

FIG. 6. (Color online) Energy relaxation as a function of time
for ¢=0.5-1.0. The inset shows a close-up of the relaxation tail.
For all chains, N=100 and dr=0.01, and an average over 40 disor-
der realizations was made. The interactions are k=k,=0.5 and k'
=k,=0.5. The initial temperature is 7=0.5.
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FIG. 7. (Color online) Energy relaxation of several concentra-
tions and lattice topologies for a nonlinear Hamiltonian with param-
eters k=k,=0.5 and k' =k5=0.5. The other parameters of the simu-
lations were the same as those in the previous plots.

means that no so many modes are available to dissipate en-
ergy. As a result, energy relaxation is slower.

In spite of this, our results show that this is not the only
effect. The density of LFVMs decreases from ¢=0.0 to 1.0,
while the time required for thermal relaxation in disordered
chains has a maximum around ¢=0.5 for times < 10*. This
fact means that the transference toward LFVMs is not the
only factor that determines thermal relaxation. To clarify this
point, we decided to compare disordered chains with peri-
odic chains that contained the same concentration of SNSs.
An example of a periodic lattice with a certain concentration
of SNSs was already given in Fig. 1. In Fig. 7 we present
some interesting cases, such as the relaxation of the periodic
cases ¢=0.25 and 0.75.

From Fig. 7, it is clear that around r=2.0 X 10*, the peri-
odic array with ¢=0.75 begins to relax slower than the ¢
=0.25 case. This is a clear indication that the depletion of
LFVMs produces a slow relaxation for very long times, as
expected from the arguments of energy sharing. We can see
in Fig. 7 that the disordered cases ¢=0.75 and 0.25 relax in a
very similar way before the crossover. Since both contain
different numbers of LFVMs, but almost the same degree of
disorder when compared to ¢=0.0 and 1.0, we can conclude
that for these concentrations and time scale, the spatial shape
of the normal modes seems to be as important as the number
of LFVMs in the disordered chain. Although for a given
concentration of SNSs a disordered and a periodic chain
have nearly the same density of normal modes for LFVMs
(below the Ishii limit [37]), for the pure harmonic disordered
cases the high-frequency normal modes are localized. As a
result, energy is not transferred so fast to the LFVMs. How-
ever, the periodic cases ¢=0.25 and 0.75 show that in the
long-term behavior, the absence of LFVMs is fundamental.
This long-trend behavior is very clear for the case c=1
which deserves a special mention, since although it relaxes
very similarly to the ¢=0.0 case at small times, at =10 it
begins to relax more slowly than any other curve.

In Fig. 8 we present another comparison of the relaxation
for a periodic and a disordered chain with ¢=0.5. One can
clearly see how the nonperiodic array relaxes more slowly
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FIG. 8. (Color online) Energy relaxation as a function of time
for the cases ¢=0.0, 0.5 periodic, and 0.5 nonperiodic using a non-
linear Hamiltonian with parameters k=k,=0.5 and k' =k5=0.5. No-
tice how the disordered case relaxes slower than the periodic case.
The other parameters used in the simulations were the same as
those in the previous plots.

than the periodic array. In both cases, the relaxation is slower
than the ¢=0.0 case. From this discussion, it is possible to
conclude that the localization of normal modes, due to dis-
order, plays a role in the relaxation time.

It is worthwhile mentioning that one must not be confused
by the term “localization.” In the previous discussion, the
term localization referred to the normal-mode characteristics
of the associated harmonic problem—i.e., when k" — 0. Such
localization is a consequence of disorder. There is another
kind of localization due to the existence of breathers [29],
which is basically a purely nonlinear effect. To understand
this, we calculated the energy localization parameter L(z),
defined as [36]

10.0 .
8.0 - —/A— C=0.00
—_ —0—C=1.00
E 60}
Q
4.0 |
20 F—8—— 6——08— 06 —6—45"5-06:0:600860%
10°
S
-1
w 10"
=
w
107
10°

FIG. 9. (Color online) Comparison between the localization of
energy and relaxation for the nondisordered cases ¢=0.0 and 1.0.
Notice that the case ¢=1.0 contains fewer LFVMs, and as a result,
relaxation is slower. The parameters used were N=100 and dt
=0.01 with parameters k=k,=0.5 and k' =k,=0.5.
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£(t)

E(t)/E(0)

FIG. 10. (Color online) Energy localization for different concen-
trations ¢ compared with the energy relaxation using disordered
chains. The parameters used were N=100 and dr=0.01 with param-
eters k=k,=0.5 and k' =k,=0.5. An average over 40 realizations of
disorder was made.
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where e/(t) is the energy localized in a given site:

2 '
p; k k
ej(t) = {2_; + 5(14141 - Mj)2 + Z(uj+1 - uj)4:|

k k
+ j+2,j|:32(uj+2 - ”j)2 + Zz(u]urz - Mjf} .

The role of the parameter £(7) is to give a rough estimate on
how energy is localized in the chain. In Fig. 9 we compare
L(t) for the cases ¢=0.0 and 1.0. Clearly, for times > 10*
the energy begins to be much more localized in the case ¢
=1, due to the depletion of LFVMs, compared to ¢=0.0. In
Fig. 9, the relaxation behavior is presented for comparison,
showing that the slow-relaxation properties are due to the
energy localization since both chains are periodic. As a con-
sequence, if k' — 0, both chains present nonlocalized normal
modes. In fact, it is easy to prove that for k' =0, the chains
with ¢=0.0 and 1.0 relax at the same time.

In Fig. 10, we show a plot of the energy relaxation and
localization for ¢=0.5—1.0 using nonlinear chains. One can
observe the relationship between energy localization and re-
laxation due to nonlinear effects, since the case ¢=1.0 does
not contain disorder as in the cases ¢=0.5, 0.6, and 0.9.

V. CONCLUSIONS

The present study shows that low-frequency modes have a
great impact on thermal relaxation. Such impact not only
arises as a consequence of the cascade mechanism that dis-
sipates energy from high- to low-frequency modes, but also
because of the interplay between localization and nonlinear-
ity. A decrease in the number of low-frequency vibrational
modes leads to an increased relaxation time on a small scale
compared with the structural rearrangement time scale. It is
worthwhile mentioning that our results are in complete
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agreement with the idea of Phillips that the cooling speed is
related to the number of constraints (bonds) [8]. Here we
proved that such an effect is not only due to the extra stored
elastic energy, but also to the fact that energy cannot be
transmitted in an efficient way to the thermal bath due to a
depletion of vibrational modes in the low-frequency region.
In fact, such phenomena can be also explained in terms of
the energy landscape curvature in the direction of floppy
modes [12,22]. This work suggests that experiments be per-
formed to look for an increased time scale for thermal relax-
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ation and a decreased thermal conductivity when the number
of low-frequency modes is reduced. Such a study can be
made in a systematic way by doping chalcogenide glasses to
change the connectivity of the network.
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