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Abstract

Although power laws of the Zipf type have been used by many workers to fit rank distributions in different fields like in

economy, geophysics, genetics, soft-matter, networks, etc. these fits usually fail at the tail. Some distributions have been

proposed to solve the problem, but unfortunately they do not fit at the same time the body and the tail of the distribution.

We show that many different data in rank laws, like in granular materials, codons, author impact in scientific journal, etc.

can be very well fitted by the integrand of a beta function (that we call beta-like function). Then we propose that such

universality can be due to the fact that systems made from many subsystems or choices, present stretched exponential

frequency-rank functions which qualitatively and quantitatively are well fitted with the beta-like function distribution in

the limit of many random variables. We give a plausibility argument for this observation by transforming the problem into

an algebraic one: finding the rank of successive products of numbers, which is basically a multinomial process. From a

physical point of view, the observed behavior at the tail seems to be related with the onset of different mechanisms that are

dominant at different scales, providing crossovers and finite size effects.

r 2007 Elsevier B.V. All rights reserved.

PACS: 89.75.Fb; 87.10.+e; 89.75.Da; 89.65.Gh; 89.65. �s; 87.23.Cc
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1. Introduction

Both natural language texts and DNA sequences present power laws [1,2] in the observed frequency of a
word as a function of its rank (r), where the rank is just the ordinal position of a word if all words are ordered
according to their decreasing frequency. Usually, the most frequent word has rank 1, the next most frequent
rank 2 and so on. This power law behavior of the ranking is known as the Zipf law, and it is very common in
physics, biology, geography, economics, linguistics, etc. [3]. In physics one can cite the rank distribution of
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stick–slip events in sheared granular media [4], earthquakes [4], radionuclides half-life time and nuclides mass
number [5]. Many complex systems share as well the same phenomenology, as happens in networks [6],
biological clocks [7] and metabolic networks [8]. Zipf discovered his rank law by analyzing manually the
frequencies of 29,899 different words types in the novel ‘‘Ulysses’’ by James Joyce. When a larger set of words
is considered, a deviation from a power law is observed for larger ranks [9]. A similar behavior is found in
genetic sequences [1]. Deviations from the Zipf law are also found in the tails ranking of many physical
systems [10]. In fact, is clear that one should expect a different behavior at the tails, since finite size effects are
always present and the power law must be ‘‘stopped’’ at a certain region. In spite of this, many workers just
ignore the tail effects by fitting the data in a restricted range, or they proceed in a very questionable way by
fitting all the data with a power law. Others have fitted sets of data in nature and in economy with stretched
exponentials [10] and log-normal distributions [11]. The problem with the previous expressions is that they do
not fit the data at both ending tails, where different kinds of processes are set in once a crossover region is
reached. Such crossovers are due to finite size effects, in which different mechanisms are set in when certain big
and small scales are reached. This leads to the idea of using multiscaling physical modelling to understand
such features. Maybe the best example of the previous situation occurs in turbulence, where Kolmogorov’s
power law is observed only in the inertial regimen [12]. In one tail (small length scales) energy dissipation plays
the main role, while energy injection dominates at big scales [13]. For each of these limits, the scaling behavior
is different [14,15]. One can conjecture that similar ideas are behind many other complex physical systems,
since we report that many rank laws are well parametrized with the formula,

f ðrÞ ¼ K
ðR� rþ 1Þb

ra
, (1)

where a and b are fitted from the data, r is the rank and R is the maximal r. If f ðrÞ is normalized to 1, then
K � ra=

PR
r¼1 ðR� rþ 1Þb. For Rb1, K can be transformed into an integral that yields K�Gðb� aþ 2Þ=

Gð1� aÞGð1þ bÞ. We will propose that f ðrÞ is related with the ranking of multinomial events, in which a and b

seem to be parameters that determine the onset of different mechanisms that operate at different scales. Notice
that Eq. (1) is similar to the integrand of a beta function, and thus in what follows we will call it a modified
beta-like function. Our work is in the same spirit of Moyano et al. [16] in the sense that we try to develop
general properties of systems that are built from many subsystems or choices [17]. The outline of this paper is
the following: in Section 2 we present some representative examples of the phenomenology that we have
observed. In Section 3 we show how this phenomenology can be studied as a problem of hierarchies in the
product of random variables, and then transformed into a related algebraic problem: the ranking of a set of
numbers produced by the iterative product of an initial finite set of numbers. In Section 4, we analyze the
proposed problem, and finally, in Section 5 we give the conclusions of this work.

2. Phenomenology of rank laws and the beta-like function

As starting point, we will provide some representative results of the wide phenomenology found in the tails
of rank laws. We start with an example from geography. We took the population of municipalities and
departments of different countries, and ranked them in order of decreasing population. Fig. 1 shows a semilog
plot of the corresponding population rank of four representative municipalities in Mexico and Spain. For each
state or department, a fit using Eq. (1) was made. Such fits are given by solid lines in the figure. The agreement
is very good, with a correlation coefficient R2 bigger than 0.986 for all fits. The values of a and b for each fit
are shown in the inset of the plot, and their numerical values are given in Table 1, with the corresponding
correlation coefficients. We have verified that similar good results are obtained for the population of countries
around the word.

As a second example, we ranked the impact factor of scientific journals from different fields. Fig. 2 shows
the logarithm of the impact factor against the rank of scientific journals, taken from a recent study [18],
compared with the fits given by Eq. (1). Again, all of the fits are excellent, with correlation coefficients
above 0.998.

Similar good fitting results are obtained in genetics. Here we took the codon frequencies in genomes of
different organisms and ranked each kind of codon according to its frequency. In Fig. 3, we plot the logarithm
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Fig. 1. Population ranking of four representative municipalities from Mexico and Spain. The solid lines are the fits obtained from Eq. (1).

The inset presents the corresponding values of a and b used in the fits. The correlation coefficients R2 are bigger than 0:986 in all cases.

Table 1

Numerical values of a and b and the correlation coefficients R2 for all of the examples presented in this work

Example a b R2

Chiapas 0:534 0:654 0:999
Puebla 0:616 0:190 0:999
Sevilla 0:716 0:656 0:988
Vizcaya 0:979 0:421 0:986
Agroscience 0:221 0:959 0:999
Computer science 0:284 1:063 0:999
Physics 0:406 0:991 0:998
Ch. Tracho 0:220 0:501 0:991
E. Coli 0:247 0:503 0:998
Homo Sapiens 0:164 0:365 0:989
Jannasch 0:370 1:243 0:978
Slip–stick events 1:080 0:401 0:991
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Fig. 2. Impact factor as a function of the rank for physics, computer science and agroscience. Fits using the beta-like function are shown

as solid lines. Inset: values of a and b. The correlation coefficients are bigger than R2 ¼ 0:998.
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of codon frequencies (normalized to 1000) as a function of the rank for different representative organisms,
taken from a genome database [19]. For all the organisms, the resulting correlation parameters are bigger
than 0.978.

Now we turn our attention to physics. In Fig. 4 we plot the rank-ordered distribution of stick–slip events in
a slowly sheared granular media taken from Ref. [4], fitted using Eq. (1). Although a modified power law was
proposed in Ref. [4] to explain the results, the present fit gives a better correlation coefficient, R2 ¼ 0:991.

All of these results are summarized in Table 1, where we present the numerical values of a and b and the
correlation coefficients for all of the previous examples.

Here we presented examples of four different fields in which the beta-like function appears, but Eq. (1) can
be used with excellent results in order to correct the Gutenberg–Ritcher law in earthquakes ranking, Bénard
convection cells and in other fields, like architecture, music or road networks [20]. For example, in music we
have found [21] that Eq. (1) produces a good fit for around 2000 different musical works (including classical,
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corresponding fits shown as solid lines. Inset: values of a and b used for the fits in the beta-like distribution. The correlation coefficients are

bigger than R2 ¼ 0:978.

1000

100

10

20 40 60 80 100 120 140 160 180 2000

1

rank

E
v
e
n
ts

 S
iz

e
>

r

Fig. 4. Rank-ordered distribution of stick–slip events in a slowly sheared granular media. Circles are data taken from Ref. [4], and the

solid line is a fit using Eq. (1), with a ¼ 1:08 and b ¼ 0:40. The correlation coefficient is R2 ¼ 0:991.
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jazz and rock) if the notes are ranked according to their statistical frequency. The actual values of a and b

depend on the composer and on the type of composition. In the case of Bach, a clear pattern is observed for
minor and major modes. For road networks, the ranking of distances between main cities in Mexico also
follows the beta-like function.

As was explained in the introduction, there are many fitting functions that have been proposed by others
[10,11]. Some of these functions use only one fit parameter, like the Lavalette’s law, and some others use two,
like the Yule–Simon distribution [22]. Since our function uses two fit parameters, plus normalization, is clear
that in general, it will provide a better fit than one-parameter functions but at the expense of an increased
number of parameters. However, as was explained in the introduction, it seems that in general we can expect
that different physical mechanisms are set in once different scales are reached. Thus, in order to give the
scaling for each different physical mechanism, one needs at least two-parameters. For example, in turbulence
the cross-overs are two, the one that determines energy injection versus inertial regimen, and the other scale at
which the inertial behavior becomes dissipative. Plus, one needs a critical exponent for the inertial regimen.

The comparison of Eq. (1) with others two-parameter fits is qualitative. For example, the Yule–Simon
distribution can be used to reproduce a Zipf law, but it introduces an exponential cutoff in the upper tail [22].
The stretched exponentials [10] and log-normal distributions [11] usually reproduce one of the tails but not the
other. Usually, such deviations do not change in a dramatic way the correlation coefficient with respect to
Eq. (1) since the tails do not have a great impact upon this coefficient. Compared with other two-parameter
distributions, the main difference is that Eq. (1) captures the qualitative behavior of the system, which seems to
be related with a hierarchy in multinomial events.

3. Hierarchy in a multiplicative stochastic process

The previous section leads to the conclusion that the tails of the ranking present some degree of universality,
and Eq. (1) seems to be an excellent fitting function due to the fact that it gives the right shape of the curve.
Also, it is simple and can be reduced to a pure power law by using an appropriate choice of a and b. As the
fa; bg distribution is indeed ubiquitous, one can try to associate it to some generic mechanism.

In the dynamics of population, scientific journal impact factor, codon usage and stick–slip events, there are
many important issues that determine the behavior. In the case of the impact factor, we can cite for example
the ability to select a good problem for investigation, the gift for writing clear papers, etc. Similar comments
would be valid for the dynamics of granular media, as well as in economy, linguistics, genetics, etc. All of the
previous systems share a common feature: their complex nature, i.e., they are build from many subsystems or
path choices that produce a final result. One can try to model such complexity as follows. Consider a system
made from N identical subsystems, where each can have s different states or choices with probability pj,
and j ¼ 1; . . . ; s. When N such subsystems are put together, the state space consists of all sN possible
sequences of length N. If we do not care about the order of the choices or states in the string, there are just
ðN þ s� 1Þ!=ðs� 1Þ!N! different combinations. For example, if a system is made from N ¼ 2 subsystems,
where each has two states or choices, say 1 or 0, the possible global states are ð0; 0Þ, ð1; 0Þ, ð0; 1Þ and ð1; 1Þ,
while there are only three combinations: ð0; 0Þ, ð1; 1Þ and ð1; 0Þ, the last one has multiplicity 2. Each combi-
nation has a certain probability that we call reduced probability xNðn1; n2; . . . ; nsÞ, where nj is the number of
subsystems in the j-esim state. The multiplicity of each different state is given by the multinomial coefficient
N!=ðn1!n2!n3! . . . ns!Þ. The probability of a global state of the whole system is,

PN ðn1; n2; . . . ; nsÞ ¼
N!

n1!n2!n3! . . . ns!
xN ðn1; n2; . . . ; nsÞ (2)

with n1 þ n2 þ n3 þ � � � þ ns ¼ N. Notice that PN ðn1; n2; . . . ; nsÞ is a multinomial distribution function, which
has well known properties. However, we are interested in the rank of the observed different values of the
macrostates, not in the distribution of probability. To tackle this problem, we notice that each value
xN ðn1; n2; . . . ; nsÞ corresponds to a different macrostate of the system. In our example, the states ð0; 1Þ and ð1; 0Þ
produce the same global macrostate. These two internal states lead to one global state that has the same
characteristics. If one assume that a certain characteristic (X) of a process or object is a function of
n1; n2; . . . ; ns, then each value of X ðn1; n2; . . . ; nsÞ can be mapped to xN ðn1; n2; . . . ; nsÞ and X ðn1; n2; . . . ; nsÞ ¼
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X ðxN ðn1; n2; . . . ; nsÞÞ. From the previous considerations, is clear that any rank hierarchy of xN ðn1; n2; . . . ; nsÞ

will be inherited to X ðn1; n2; . . . ; nsÞ, but the actual hierarchy of X will also depend in the functional form of
X ðxN ðn1; n2; . . . ; nsÞÞ. Is clear that the general problem cannot be solved without a reasonable assumption for
this functional form. Here we will suppose that X ðxN ðn1; n2; . . . ; nsÞÞ can be expressed as a power series in
xN ðn1; n2; . . . ; nsÞ,

X ðxN ðn1; n2; . . . ; nsÞÞ ¼ X 0 þ X 1xN ðn1; n2; . . . ; nsÞ þ . . . , (3)

where X 0 and X 1 are constants. Up to first order, this assumption means that X is proportional to
xN ðn1; n2; . . . ; nsÞ. Here X 1 plays the role of a susceptibility, as in any linear response theory. Under this
approximation, the rank features of a system are reduced to study the hierarchy present in xNðn1; n2; . . . ; nsÞ.
Observe that a priory, it is difficult to know if a system follows such approximation, but the assumption can be
tested a posteriori once the ranking of X is obtained and compared with the experimental results.

To study the hierarchy of xN ðn1; n2; . . . ; nsÞ, there are two cases. In the first, the subsystems are independent,
as in a Bernoulli process,

xNðn1; n2; . . . ; nsÞ ¼ pn1
1 pn2

2 pn3
3 . . . p

ns
s (4)

and the other is the general case of interacting subsystems, in which the addition of a new subsystem leads to a
functional relationship of the type,

xNþ1ðn1; n2; . . . ; nsÞ ¼ f ðxNðn1; n2; . . . ; nsÞÞ. (5)

In the following section, we will only consider the case of independent subsystems, in which no extra
information is needed in order to model the system. This allows to produce the beta-like function in a
simple form.

4. The rank hierarchy as an algebraic problem

For independent subsystems, an inspection of Eq. (4) shows that the rank structure can be reduced to the
following algebraic problem. Take s numbers p1; p2; . . . ; ps at random (normalization can be imposed at
the end of the process), labeled in such a way that p14p24 � � �4ps, and multiply once each number by all the
numbers in the set. With these resulting numbers, repeat the process N times to obtain a set of numbers that
have the form pn1

1 pn2
2 pn3

3 . . . p
ns
s , where n1 þ n2 þ � � � þ ns ¼ N. If the resulting numbers are arranged in

decreasing magnitude, we can assign a rank (r) to each one according to its order in the hierarchy. The rank
r ¼ 1 is assigned to pN

1 , while the lowest rank r ¼ R corresponds to pN
s . For example, chose at random three

numbers p1, p2 and p3 and form all the possible products: p2
1; p1p2; p1p3; p

2
2; p2p3; p

2
3. We remark again that the

events of the type p1p2 and p2p1 are considered as the same, since as was explained in the previous section, we
are only interested in the value of the observed number. The corresponding multiplicity can be obtained from
the multinomial distribution. In Fig. 5, we present a plot of log xNðn1; n2; n3Þ as a function of r for N ¼ 77 and
p1 ¼ 0:5202, p2 ¼ 0:3125 and p3 ¼ 0:1673. For obtaining this graph, we used arbitrary precision for the
products. Then, the logarithm of each number was calculated. A second version of the program was made
using an algebraic procedure that we will discuss later, and the results were completely equivalent. Fig. 5
shows the resulting ranking, and it is interesting to notice that they already display the shape presented in the
phenomenology of real systems. In fact the results can be fitted by the same two-parameter beta-like function,
with a ¼ 9:36� 0:2 and b ¼ 10:52� 0:2, with a correlation coefficient of 0:972. The quality of the fitting is
improved as we consider more than three numbers, i.e., when s!1. The message from this numerical
experiment is simple: if this product is seen as a multiplicative process where each number is the probability of
making a certain choice or state in a process, then each possible result has a well determined hierarchy.

The task that remains is how to calculate xNðn1; n2; . . . ; nsÞ in terms of the rank. The problem is more easily
solved using the logarithm of xN ðn1; n2; . . . ; nsÞ,

log xN ðn1; n2; . . . ; nsÞ ¼ n1 log p1 þ n2 log p2 þ � � � þ ns log ps. (6)

Each set of values ðn1; n2; . . . ; nsÞ is a point with integer coordinates in a s-dimensional space. Since
n1 þ n2 þ � � � þ ns ¼ N, all the points are in a subspace of dimension s� 1. The problem of ranking is reduced
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to find a path between the maximal rank point (with coordinates ðN; 0; 0; . . . ; 0Þ) to the minimum
ð0; 0; 0; . . . ;NÞ in such a way that log xNðn1; n2; . . . ; nsÞ decreases in each step. For s ¼ 2, the solution is easy to
find. Using that n1 þ n2 ¼ N,

xNðn1; n2Þ ¼ xN ðn2Þ ¼ pN�n2
1 pn2

2 , (7)

it follows that the range is given by r ¼ n2 þ 1. Then,

xNðrÞ ¼ pN
1

p2

p1

� �r�1

¼ pN
1 e�Aðr�1Þ (8)

with A ¼ j lnðp2=p1Þj. Eq. (8) shows that the numbers decrease in an exponential way as a function of the rank.
The case s ¼ 3 can be easily visualized in Fig. 6, where the points in the integer lattice defined by Eq. (6) are

shown as circles.
A path between points of decreasing log xNðn1; n2; . . . ; nsÞ is indicated as a line that joins the lattice points in

Fig. 6, for a given set of numbers p1; p2 and p3. Fig. 7 shows how the values of n1; n2 and n3 vary as a function
of the range. A very complicated oscillatory pattern is seen, although a well defined envelope is also observed.
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This envelope is in fact the key to solve the problem, since it is the responsible of the ranking behavior. Notice
also that all paths always start at ðN; 0; 0Þ and finish at ð0; 0;NÞ, since log p14 log p24 log p3.

In general, since the index nj is a function of the rank r, we can write that nj ¼ njðrÞ where r is just the
number of steps used to go from the point ðN; 0; . . . ; 0Þ to a certain ðn1; n2; n3; . . . ; nsÞ. It follows that,

log xN ðrÞ ¼ n1ðrÞ log p1 þ n2ðrÞ log p2 þ � � � þ nsðrÞ log ps. (9)

The task is reduced to find the functions njðrÞ for a given set fpjg. Consider again the case of an initial set of
three numbers, s ¼ 3. Using that n1 þ n2 þ n3 ¼ N, log xN ðrÞ can be written as

log xN ðrÞ ¼ N log p1 þ n2ðrÞ log d21 þ n3ðrÞ log d31 (10)

with d21 ¼ p2=p1 and d31 ¼ p3=p1. The solution for any set p1; p2, p3 is complicated, because some paths are not
periodic. However, one can work out first the cases p1�p2 bp3 and p1bp2� p3 that give insights about how to
treat others.

Let us first consider the limit p1�p2 bp3; and d221bd31. The corresponding path is easy to find because it is
similar to an odometer with an increased range after each turn, as seen in Fig. 7, due to the hierarchy
14d214d2214d314d21d314d2314 � � �4dN

31. For example, when N ¼ 2 this leads to the following table that
contains the number xN ðrÞ as a function of the rank, and the corresponding path given by n2 and n3.

xN ðrÞ n2 n3 r n2MAX ðrÞ

p2
1

0 0 1 –

p2
1d21 1 0 2 –

p2
1d

2
21

2 0 3 2

p2
1d31 0 1 4 –

p2
1d21d31 1 1 5 1

p2
1d

2
31

0 2 6 0

The sequence of the path goes as follows, first n2ðrÞ is increased one by one as n3 remains constant, until it
reaches a maximal value called n2MAX ðrÞ which in fact determines the envelope of the ranking sequence and
thus the basic shape of the curve xNðrÞ (the envelope that contains n2MAX ðrÞ is shown in Fig. 8 as a dotted line).
Once n2ðrÞ increases from zero to n2MAX ðrÞ, a new cycle begins with n2ðrþ 1Þ ¼ 0 and n3ðrþ 1Þ ¼ n3ðrÞ þ 1. As
a result, the number of steps to reach n2MAX ðrÞ from the maximal rank (R) is given by summing over
all the number of steps made for each constant value of n3ðrÞ (corresponding basically in Fig. (8) to a sum of all
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‘‘row lengths’’ from the top of the triangle to n2MAX ðrÞ). This sum can be written as

R� r ¼
Xn2MAX ðrÞ

j¼1

j ¼
n2MAX ðrÞðn2MAX ðrÞ þ 1Þ

2
. (11)

The previous equation is quadratic in n2MAX ðrÞ, and can be solved in terms of r and R, to give,

n2MAX ðrÞ ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðR� rÞ

p
2

. (12)

One can verify that Eq. (12) agrees with the table when the positive sign is used, since n2MAX ð3Þ ¼ 2;
n2MAX ð5Þ ¼ 1 and n2MAX ð6Þ ¼ 0. However, R and N are not independent. If for example we analyze the first
three rows of the table, is clear that in general, for r ¼ N þ 1 the value of n2MAX ðrÞ is N. On the other hand,
Eq. (12) must also be satisfied, from where it follows that,

n2MAX ðN þ 1Þ ¼ N ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðR�N � 1Þ

p
2

, (13)

thus,

8 ¼
ð2N þ 1Þ2 � 1

ðR�N � 1Þ
. (14)

The previous expression can be inserted into Eq. (12), and since 15N5R, we obtain that the leading term of
n2MAX ðrÞ is

n2MAX ðrÞ � N 1�
ðr� 1Þ

R

� �1=2

. (15)

We have verified that the previous equation is in excellent agreement with the numerical results. The
corresponding value of n3ðrÞ can be obtained from the condition n2 þ n3pN. Finally, the number as a function
of the rank is given by,

xNðrÞ � p1

p2

p1

� � 1�ðr�1Þ=Rð Þ
1=2

p3

p1

� �1� 1�ðr�1Þ=Rð Þ
1=2

2
4

3
5

N

. (16)
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Fig. 8. Path of decreasing ranks in the n2 and n3 plane for p1�p2bp3, where the n1 coordinate was eliminated using that n1 þ n2 þ n3 ¼ N.

The dotted line corresponds to all the n2MAX ðrÞ, which defines the envelope of the ranking sequence.
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Fig. 9 shows the excellent agreement between Eq. (16) and the curve obtained for p1 ¼ 0:5250, p2 ¼ 0:4250,
p3 ¼ 0:000047. Furthermore, Eq. (16) can be written as a stretched exponential as follows:

xNðrÞ � pN
3 exp D 1�

ðr� 1Þ

R

� �1=2
" #

(17)

with D ¼ Nj logðp2=p3Þj and R is the maximal value of r.
The case p1bp2� p3 can be tackled in a similar way. The result is,

xNðrÞ � pN
1 exp �E

r

R

� �1=2� �
(18)
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dashed line is the prediction made from Eq. (18), compared with the numerical result for N ¼ 100 iterations (solid line).

G.G. Naumis, G. Cocho / Physica A 387 (2008) 84–96 93



Author's personal copy

with E ¼ Nðlogðp1=p3Þ � logðp2=p3ÞÞ, and as shown in Fig. 10, the agreement is also good, specially for low
values of r.

Now consider the general case in which p1, p2 and p3 have the same order of magnitude, as in Fig. 5, where
two tails appears, one for small r and the other at r near R. The tail at low r is produced basically by the
hierarchy in the biggest probabilities, i.e., by numbers where n1�N. In a similar way, the tail for r near R is
produced by the lowest probability hierarchy, n3�N. The main effect in these tails when p1 � p2 � p3 is that
the sequence of ordering is not uniform as can be observed in Fig. 6, for which a very complicate path appears.
As a result, Eq. (11) changes with the appearance of new subcycles in the rank path. These changes are
the result of the increasing number of cycles in the odometer that we have discussed, as is also clear in the
exponents that are transformed from 1 to 1

2 as s goes from s ¼ 2 to 3. Then we propose that Eq. (17) can be
transformed into a generalized expression,

xNðrÞ � pN
3 exp D 1�

ðr� 1Þ

R

� �b
" #

(19)

in which b is a yet unknown exponent, always less than 1. Although we do not have a general proof in order to
get analytically the value of b, is clear that the functional form is due to the way in which the area of the
triangular surface defined by n1 þ n2 þ n3 ¼ N is filled. In a similar way, Eq. (18) should be replaced by,

xNðrÞ � pN
1 exp �E

r

R

� �ah i
(20)

with ao1. These generic exponents for the tails also appear for s43 since from the degree of the polynomial
equivalent to Eq. (11), one can prove that ap1=ðs� 1Þ and bp1=ðs� 1Þ. A simple procedure to combine the
tails represented by Eqs. (19) and (20) is obtained by making the observation that for a given tail, only one
stretched exponential produces curved tails in a semi-log plot, while the other tends toward a constant, i.e., if
we consider the derivative of Eq. (19):

d ln xN ðrÞ

dr

� �
¼ �

bD

R
1�
ðr� 1Þ

R

� �b�1

(21)

is clear that x0NðrÞ is nearly a constant if r51, corresponding to the limit in which Eq. (20) has greater
curvature. Analyzing the limit r! R gives a similar result,

d ln xN ðrÞ

dr

� �
¼ �

aE

R

r

R

� �a�1
. (22)

From these considerations, a simple way to produce a function with the required dependences when r! R

and r! 1 is by proposing the following ansatz which reproduces both tails:

xNðrÞ � C1 exp D 1�
ðr� 1Þ

R

� �b
" #

exp �E
r

R

� �ah i
, (23)

where C1 is a constant. A plot of the previous expression is presented in Fig. 11, showing the basic shape of the
studied beta function.

Finally, Eq. (23) can be simplified when many states are present since ap1=ðs� 1Þ, bp1=ðs� 1Þ and for
sb1, a! 0 and b! 0. Then, by using the observation about the derivatives that appears in Eqs. (21) and
(22), one can approximate the derivatives like in Eq. (21) as follows:

d ln xN ðrÞ

dr

� �
¼ �

bD

R
1�
ðr� 1Þ

R

� �b�1

� �
bD

R
1�
ðr� 1Þ

R

� ��1
. (24)

A similar thing can be done in the tail r! 1, for which a can be neglected with respect to one in Eq. (22).
Combining both tails in a sole expression we get:

d ln xN ðrÞ

dr

� �
� �

bD

R
1�
ðr� 1Þ

R

� ��1
�

aE

R

r

R

� ��1
.
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By integrating the previous equation, we finally obtain the beta-like function given by Eq. (1), where the
exponents a and b are given by

a ¼ aE and b ¼ bD. (25)

Thus, the beta-like function is obtained when we have a large number of states in the system. Notice how the
parameters a and b are determined mainly by the behavior in the tails.

5. Conclusions

In conclusion, we have proposed a simple formula that allows to fit many different rank phenomena.
Although there are many formulas with one and two parameters that fit the observed ranking, the
present one seems to give a better qualitative agreement. Furthermore, we have proposed that this
formula arises as the result of ranking multinomial events. To do so, we considered an equivalent
algebraic problem: finding the rank of a successive product of numbers. The case of an initial set
with two numbers has been solved in a complete form, while for three numbers we have solved some
particular cases. Using such solutions, we constructed an ansatz that agrees with extensive computer
simulations. This construction is based on a detailed study of the rank at the tails, which is given by
stretched exponentials. In the limit of an infinite set of numbers, the ansatz leads to the proposed beta-like
function.

A task that remains is how to get the coefficients a and b from physical principles, using for example master
equations and the concept of multiscaling modelling. To do so, simple models are required to shine some light
on the problem. As an example, we can cite an ad-hoc expansion-modification algorithm in DNA models [23].
In such model, the beta-like function is also obtained for the ranking of codons, but a4b if the expansion
probability of the genetic code is bigger than the mutation rate. This particular model seems to confirm the
ideas presented in this article, i.e., that a and b represent the relative influence of two general mechanisms,
where each of them dominate at a given tail. According to some preliminary results, a seems to be related with
a certain funnel type of energy landscape, as in protein folding, which leads to a deterministic sequence, while
b is associated with a many valley landscape, as seen in spin glasses. This last opposite effect provides much
more variability in the sequence of results. Such correlation is consistent with associating b to the stochastic
component of the dynamics and a with the most deterministic features [23]. In future works, we will elucidate
with more detail such mechanisms.
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