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a b s t r a c t

One of the few examples in which the physical properties of an incommensurable system reflect an

underlying higher dimensionality is presented. Specifically, we show that the reflectivity distribution of

an incommensurable one-dimensional cavity is given by the density of states of a tight-binding

Hamiltonian in a two-dimensional triangular lattice. Such effect is due to an independent phase

decoupling of the scattered waves, produced by the incommensurable nature of the system, which

mimics a random noise generator. This principle can be applied to design a cavity that avoids resonant

reflections for almost any incident wave. An optical analogy, by using three mirrors with

incommensurable distances between them, is also presented. Such array produces a countable infinite

fractal set of reflections, a phenomena which is opposite to the effect of optical invisibility.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Although it is well known that quasiperiodic structures are
obtained as projections from higher dimensional spaces [1], it has
not been possible to obtain their physical properties as projections
or enlargements of the dimensionality [2]. Such is the case of
quasicrystals (crystals with forbidden symmetry) in which the
structure is described using a higher dimensional periodic crystal
[1]. It was thought that this simplification in the description of the
geometry of quasicrystals could have been useful to deduce
physical properties, like the electronic conduction, since Bloch’s
theorem can be applied in the higher dimensional space. This,
however, has not been possible and theories of physical properties
make no reference to the underlying periodic lattice [2–4].

In this work we present a simple problem that yields a physical
property that displays the remaining traces of a higher dimen-
sional space due to the existence of two incommensurate length
scales. The present work is thus similar to the recent trend in the
research of quasicrystalline photonic bandgap arrays, which is

generating a lot of interest in the optics community but which has
grown out of basic work in quasicrystals [5].

This proposed problem is a one-dimensional cavity with three
barriers which can be tuned to avoid resonant reflections for
almost any incident wave that fulfills a Helmholtz equation. We
show how this apparently simple problem, which at first sight
seems to be a sort of undergraduate exercise, leads to a reflection
and transmission probability density given by the density of states
(DOS) of a tight-binding Hamiltonian defined over a two-
dimensional triangular lattice. As we shall prove, this effect is
due to a phase decoupling of the scattered waves produced by the
incommensurable length scales of the system. By phase decou-
pling we mean that, in principle, the transmittance of the cavity is
given by the coherent interference of scattered waves whose wave
vectors are multiples of a fundamental wave-length. However,
when the cavity is incommensurate, the interference between the
scattered waves occurs in an incoherent way. We prove this
assertion by showing that the phase differences between the
scattered waves are almost random, having in mind the fact that
quasiperiodic functions can be used in an efficient way as a
random noise generator. Since we can expect cavities in acoustics,
optics, wave mechanics, electronics, etc., the presented results are
quite general. It is clear that one can study much more
sophisticated systems, but the proposed example provides the
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most simple example of phase decoupling without loosing the
essential feature: the almost random nature of a system made
with incommensurate length scales. Interestingly, an elementary
example slightly different to the one presented here (a double
barrier potential with adjusted parameters) allowed the exhibi-
tion of a degeneracy of resonances and the occurrence of complex
double poles in the scattering matrix of the problem [6].

The idea of phase decoupling due to incommensurability
provides also a way to produce useful effects, like avoiding
reflection resonances at interphases or in the generation of
infinite images of an object. As an example, we propose an optical
device that illustrates the effect: three mirrors separated at
incommensurable distances, producing a fractal infinite set of
reflections. This multiplicity can be used in some applications as,
for example, to produce many radial images of an object, or in
some kind of fun-house mirror effects (which is a reminiscent of a
trick used in the movies). In that sense, the present phenomena is
the opposite of optical invisibility [7,8], although one can also hide
an object between its multiple images. Such trick was presented
in a masterful way by the director Orson Welles in the famous
labyrinth of mirror’s fight scene from the film ‘‘The lady from
Shanghai’’.

Another possible application of the methodology presented
here can be the use of an alternative understanding of the
conductance statistics in cavities, which is a relevant topic in
mesoscopic physics [9] and in nanotechnology [10]. The model
presented, although being simple, shows that the behavior of the
transmittance can be obtained analytically in terms of an under-
lying higher dimensionality. It is worthwhile mentioning that
there is no chaos in one-dimensional, so the model presented here
does not allow to address such problem; however, it points to a
possible new interpretation based in an extended dimensionality
of the problem, alternative to the successful approach of random
matrix theory [11]. Notice that there is a possible link between
these two approaches, since for incommensurate systems, one can
use the transfer matrix formalism [12–15]. The main difference is
that in the former case, the matrices are not random. However, the
present article suggests that they can mimic a random sequence
of matrices.

We have also to mention that although a lot of work has been
done in studying the reflectivity of quasiperiodic sequences
[16–18], like in the Fibonacci chain [19], our results differ in the
sense that we study a simple cavity and not an infinite sequence
of scatters. This simplification produces an analytical formula for
the reflectivity, something which was not possible in the previous
approaches. Also, the present approach opens the door for the use
of a higher dimensional method to study the reflectance and
transmittance statistical properties of complex sequences of
scatters.

The outline of this paper is the following. In Section 2 we
provide the required geometry of the cavity and the equations.
Section 3 is devoted to the optimization of the resonator which
eventually leads to the discussion of the phase decoupling
phenomena, the mirror effect is discussed in Section 4 and,
finally, concluding remarks are presented in Section 5.

2. A generic simple cavity model

The basic idea of a resonator, active or passive, is to control
absorption or losses in such a way that the reflection and
transmission could be related to the geometry of the confining
cavity. The wave length and the phase are related to the
dimension of the cavity and are used to determine the transmis-
sion and the reflection of the wave. For instance, such idea can be
used to build an etalon, which is an optical instrument that

measures wavelengths, i.e., is an spectroscopic device that has
two flat parallel reflecting surfaces used to measure wavelengths
through interference. In optics, two or more etalons have been
used for some time as an experimental rule for white-light
rejection [20,21], and to assure no coincidence of etalon pass-
bands over a substantial frequency range. The ratio of etalon
optical gaps must be given by a ratio of two mutually prime
integers [20,21]. Of equally technological importance is the
optimization of periodically poled electrical domains or any other
phenomena that can be understood as a succession of cavities or
determined by the interaction between cavities [22]. Here the
word poled has the meaning of the result of applying a strong
electric field over a material. A strong electric field can order or
align a molecule or electric domain in a material accordingly to
such field.

Following these kind of ideas, suppose that we want to build a
simple model for a cavity or interphase in order to make it smooth
in the sense that almost all frequencies are reflected in the same
way. First we construct a simple resonator by considering the
generic Helmholtz equation that describes wave propagation in
acoustics, optics, wave mechanics, fluids in the shallow water
regime, etc. [23]. The corresponding stationary equation, say for
the quantum case, is of the type,

�
_2

2m

d2cðxÞ

d2x
þ VðxÞcðxÞ ¼ EcðxÞ, (1)

where cðxÞ is the wave function at site x, VðxÞ the potential and E

the eigenvalue. When E4VðxÞ, the solutions are propagating
waves of the type expðikxÞ. Let us suppose that a wave is traveling
from left to right as shown in Fig. 1a, approaching certain
obstacles, like for example membranes or a repulsive potential.
A simple model is to consider the potential as a Dirac delta
centered at site x0, where VðxÞ ¼ adðx� x0Þ. A delta potential
centered at x0 scatters the incident wave-function by an amount
which is directly proportional to the reflected wave. The scattered
wave is given by

cRðxÞ ¼Sðx0ÞcðxÞ,

where the scattering factor Sðx0Þ is given by

Sðx0Þ ¼
ib

1� ib
expð2ikx0Þ, (2)

where b ¼ ma2=E_2 and k is the wave vector of the incident wave.
To build the cavity, three delta functions centered at sites x1; x2

and x3 are used, i.e., the potential is given by

VðxÞ ¼ adðx� x1Þ þ adðx� x2Þ þ adðx� x3Þ. (3)
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Fig. 1. Geometry of the cavity. The position of the second scatter is regulated by

the parameter p: (a) electronic image and (b) Tandem Michelson interferometer.
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In the limit Ebma2=2_2, we have b51 and small reflection
amplitudes. Thus, the total scattering can be approximated as the
sum of the scattering of each delta potential separately. Without
loss of generality, if the size of the cavity is a, then we set x1 ¼ 0,
x3 ¼ a and x2 ¼ pa, where p is a number between 0 and 1. The
number p can be used as a control parameter of the position of the
second scatter inside the cavity. In such case, the reflection
coefficient of the cavity, Rðk; pÞ, as a function of the incident wave
vector k and p, is the norm of the sum of scattering given by
Eq. (2), with the proper normalization factor:

Rðk; pÞ �
b2
ð3þ 2 cosð2kaÞ þ 2 cosð2pkaÞ þ 2 cosð2ð1� pÞkaÞÞ

4ð1þ b2
Þ

. (4)

A simple way to reinforce the reflection for a given k, is to
diffract the wave by setting p ¼ 1

2 and a ¼ l, where l is the
wavelength. Fig. 2a shows a contour plot of Rðk; pÞ, which clearly
shows that the minimum occurs for p ¼ 1

2. The same effect is
observed for k ¼ 2pn=a, where n is an integer. A cavity that
scatters in this wavelength produces zero reflectance for other
wavelengths, as for example a wave with k0 ¼ p=a and all the odd
harmonics of this wave will pass thorough the cavity without
being blocked. The relevant point here is to know which p

produces the optimal result to avoid strong reflections.

Before giving an answer to the question, we shall discuss the
optical version of the resonator since its realization may produce
the same effects as the one proposed, but with a more accessible
experimental confirmation. A basic instrument that converts a
optical path difference in fringe patterns is the optical inter-
ferometer. One amplitude division interferometer that uses the
interference between only two beams is the Michelson inter-
ferometer. To produce transmission, we use it in tandem, with
mutually related phase difference, as can be seen in the Fig. 1b.
Assuming that the beam splitter is 50% and with no losses, we
have that

IT ðk; pÞ ¼ I0 cos2ðkpaÞ cos2ðð1� pÞkaÞ. (5)

The plot of IT ðk; pÞ=I0 is shown in Fig. 2b.

3. The reflectance distribution of an optimal cavity

Now let us go back to the originally posed question: Which p

produces the optimal result to avoid strong reflections at almost
all frequencies? As we shall see, answering this question will
eventually lead us to an extension of the dimensionality of the
problem. Furthermore, the involved design can be very useful in
optics and in any system in which impedance match from
incoming waves is desired, like in acoustics, fluids, wave guides,
etc. Let us first give an intuitive response to the proposed
question. The system can be viewed as two square wells that
interact through a perturbation and maximal reflection occurs
when the diffraction condition holds in each of the cavities, and
standing waves are produced inside each region. The conditions of
having standing waves in region I and II of the device are, k1 ¼

2pn=pa and k2 ¼ 2pl=ð1� pÞa, where n and l are integers. The ratio
k1=k2 determines the mismatch:

k1

k2
¼

lð1� pÞ

np
. (6)

The best compromise is to take p as an irrational number to
avoid such resonance. A different way of understanding this
phenomenon is to observe that the eigenfunctions with a given
wavelength in region I will never satisfy the boundary conditions
in region II. Actually, in this case the spectrum is built upon two
series of levels, E1 � �2p2_n2=mp2a2 and E2 � �2p2_n2=

mð1� pÞ2a2, which have incommensurate spacing between them.
If p is incommensurate, then it is clear from Eqs. (4) and (5), that
the reflectance is a quasiperiodic function of k. In Fig. 2, this
corresponds to a cut at an irrational p. Since a good mismatch
between the two regions is needed, it seems that the most
irrational number will perform better. The inverse golden section
1=t ¼ 2=ð

ffiffiffi
5
p
þ 1Þ ¼ 0:618034 . . . is the best choice since its

corresponding continued fractions representation converges at
the slowest pace among all irrationals. The corresponding rational
approximants are given by the ratio of two successive Fibonacci
numbers. An inspection of Fig. 2 suggests that this number can
work well, since values close to this number, such as p ¼ 0:62,
produce few maximal or minimal reflections.

Now let us quantify how effective is the reflector. This can be
done by calculating the distribution of reflectance PðRÞ for a given
p. To do so, the statistics of the reflectance produced by Eqs. (4)
and (5) can be calculated using a big cutoff kc such that kcb2p=a.
Fig. 3a shows examples of this function calculated numerically for
different values of p (notice that the problem is symmetric with
respect to p ¼ 1

2) for kc ¼ 20 000ð2p=aÞ. The most appealing result
is that for p ¼ 1=t; the PðRÞ is similar to the DOS of a tight-binding
Hamiltonian defined in a triangular lattice [24,25]. For p ¼ 1, the
obtained curve is just the DOS of a one-dimensional tight-binding
Hamiltonian. Such result is expected since for p ¼ 1, Eq. (4) turns
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Fig. 2. Density plot of the reflectance, as a function of the geometrical control

parameter p and wave-number ka, for: (a) cavity with Dirac deltas and (b) Tandem

Michelson interferometer. The color code for the reflectance appears at the right.
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out to be the dispersion relation of a one-dimensional chain.
A similar idea works for p ¼ 1

2.

3.1. The remains of the triangular lattice

Here we shall show that the relationship between Eq. (4) and
the DOS of the triangular lattice is not a coincidence, since the
effective dimensionality is increased due to the quasistatistical
independence of the phases in cos ka with respect to cos pka when
p is an irrational.

Let us first observe that any real number z can always be
written as z ¼ bzc þ fzg, where bzc is the integer part of a number
and fzg the fractional part. Thus,

cos 2z ¼ cos 2p
z

p

j k
þ

z

p

n o� �� �
¼ cos 2p

z

p

n o� �
. (7)

Applying this identity, it follows that cosð2kaÞ ¼ cosð2pfka=pgÞ and
cosð2pkaÞ ¼ cosð2pfpka=pgÞ. Since the function fzg is periodic with
period 1, when p is irrational, fpka=pg turns out to be incommen-
surate with respect to fka=pg. Thus, jfka=pg � fpka=pgj is a
quasiperiodic function that fills densely the interval ½0;1Þ. In fact,
this is a well known procedure to get a pseudo-random number
generator [26]. As a result, we can treat fpka=pg and fka=pg as if
they were almost independent random variables when k is

changed. Let us call these variables w1ðkÞ and w2ðkÞ, respectively;
both of them take values between 0 and 1, with an uniform
distribution. Having in mind the previous discussion, we have that

cosð2ð1� pÞkaÞ ¼ cosð2kaÞ cosð2kapÞ þ sinð2kaÞ sinð2kapÞ

¼ cosð2pðfpka=pg � fka=pgÞÞ

¼ cosð2pðw1ðkÞ � w2ðkÞÞÞ. (8)

The final step is to combine Eqs. (7) and (8) with the equation
for reflectance (4), which leads to

Rðk;pÞ ¼
b2
½3þ 2 cosð2pw1ðkÞÞ þ 2 cosð2pw2ðkÞÞ þ 2 cosð2pðw1ðkÞ þ w2ðkÞÞÞ�

4ð1þ b2
Þ

(9)

The phases of the cosine functions, containing with w1ðkÞ and w2ðkÞ,
behave as almost random independent variables, a phenomena
that we call phase decoupling. Thus, we define two wave vectors
kx � 2pw1ðkÞ and ky � 2pw2ðkÞ which are independent variables.
Using the previous definition, Rðk; pÞ can be renamed as an
effective two-dimensional reflectivity Reff ðkx; kyÞ � Rðk; pÞ. Using
Eq. (9), Reff ðkx; kyÞ is written as

Reff ðkx; kyÞ ¼
b2
ð3þ 2 cosðkxÞ þ 2 cosðkyÞ þ 2 cosðkx þ kyÞÞ

4ð1þ b2
Þ

. (10)
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Fig. 3. Distribution function of reflectances for different configurations of the cavity formed by Dirac deltas and (b) the same but for the Tandem Michelson interferometer.

Observe that the incommensurate ratio shows only one resonant peak.
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It turns out that Reff ðkx; ky; pÞ is the dispersion relation of a
two-dimensional triangular lattice Hamiltonian with first
neighbor interaction. Indeed, consider a simple s-band tight-
binding Hamiltonian, in which the stationary Schröedinger
equation is [27]

Ecl ¼ VðlÞcl þ
X
hj;li

tcj, (11)

where cl is the wave-function at a given atom l, t is the resonance
integral between atomic sites l and j, and VðlÞ the on-site potential.
The symbol hj; li indicates that the sum must be carried over
nearest neighbor atoms; all other interactions are considered
negligible [27]. The geometry in which the Hamiltonian is defined
can be chosen as a triangular lattice, as suggested by Eq. (10).
Since the triangular lattice is periodic, we can use the Bloch’s
theorem to propose a periodic solution of the type,

cj ¼ expðk � rjÞ, (12)

where rj is the position of the atom j in the triangular lattice and k
is a wave vector in two dimensions with components ðkx; kyÞ. The
positions of the atoms are given by linear combinations rj ¼

hje1 þ lje2 of the triangular lattice basis vectors e1 ¼ ð1;0Þ and
e2 ¼ ð1;1Þ, where hj and lj are any integers and the lattice
parameter is taken as unity. Notice that apparently, the basis
vectors are different from a perfect triangular lattice; however, it
is easy to prove that the Hamiltonian given by Eq. (11) takes into
account only the topological connectivity of the lattice, so that
ultimately the particular choice of the basis turns out to be
irrelevant provided that the topological connectivity is main-
tained. By inserting the proposed solution into Eq. (11), and taking
into account the appropriate phase for each of the six first
neighbors of the triangular lattice, we obtain the dispersion
relation of the two-dimensional triangular lattice,

E ¼ V þ t½expðkxÞ þ expð�kxÞ þ expðkyÞ þ expð�kyÞ

þ expðkx þ kyÞ þ expð�kx � kyÞ�. (13)

By setting t ¼ b2=2ð1þ b2
Þ and the self-energy as

V ¼ 3b2=4ð1þ b2
Þ, we recover Eq. (10). Thus, we have shown that

the reflectance of the two-dimensional lattice is equal to the
energy of the two-dimensional tight-binding Hamiltonian,
i.e., E ¼ Reff ðkx; kyÞ.

Notice also that since the DOS in the electronic case, rðEÞ, is the
number of wave vectors k having an energy E, and PðRÞ is the
number of wave vectors k that produce a reflectivity Reff ðkx; kyÞ, it
follows that rðEÞ ¼ PðRÞ.

There are many well-known procedures to generate the DOS
starting from a dispersion relation, for example, one can use the
integral of the norm of the inverse group velocity taken over
isoenergetic surfaces, SðEÞ, in the first Brillouin zone [27]:

rðEÞ ¼ PðRÞ ¼
1

2p2

Z
SðEÞ

1

krkEk
dkx dky ¼

ð1þ b2
Þ

p2b2

�

Z
SðEÞ

dkx dkyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½sin kx þ sinðkx þ kyÞ�

2 þ ½sin kx þ sinðkx þ kyÞ�
2

q .

(14)

An equivalent procedure consists into calculate the Green’s
function Gðl; j; EÞ at sites l and j of the Hamiltonian,

Gðl; j; EÞ ¼
ð1þ b2

Þ

p2b2

Z p

0

Z p

0

cosðkxlÞ cosðkxjÞdkx dky

E� ðcosð2kxÞ þ 2 cosðkxÞ cosðkyÞÞ
, (15)

and then use the identity [28],

rðEÞ ¼ �
1

p
Im
X

l

Gðl; l; EÞ. (16)

Eqs. (15) and (16) were already calculated some years ago by
Horiguchi [24], who obtained

rðEÞ ¼
ð1þ b2

Þ

p2b2
AKð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
Þ,

where K is the complete elliptic integral of the first kind. A is
defined as:

A ¼
8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Eþ 3
p

� 1
� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Eþ 3
p

þ 3
� �1=2

and u ¼ A 2Eþ 3ð Þ
1=4=2.

A corroboration of all the above results is that the graphics of
PðRÞ shown in Fig. 3a is exactly the same that the DOS of the
triangular lattice obtained in the work by Sakaji et al., [25].
Furthermore, some features of the PðRÞ are easy to understand in
terms of the proposed analogy. For example, the lone peak
observed in PðRÞ for p ¼ 1=t has a simple explanation. In the
electronic case, the maxima of the reflectivity is due to a Van Hove
singularity which occurs when the group velocity rkE is zero [27].
The Van Hove singularity arises because the eigenfunctions turn
out to be stationary due that they have the same periodicity of the
lattice, i.e., the corresponding isoenergetic touches the limit of the
Brillouin zone. The compression to the left of PðRÞ in Fig. 3a is due
to the odd rings in the Hamiltonian that produce frustration for
antibonding electronic states.

It is interesting to observe how the two-dimensional approach
allows us to construct a two-dimensional reciprocal space for the
problem. All these conclusions arise from the fact that phases are
decoupled. We must point out that all of the previous steps are
reversible, i.e., given a two-dimensional Hamiltonian, one can find
an incommensurate one-dimensional system that has a reflec-
tance statistics similar to the dispersion relationship. It is
worthwhile to remark that other cavities lead to different lattice
topologies. Finally, Fig. 3b presents the DOS for a tandem
Michelson; the result is similar to Fig. 3a, except that the most
frequent value is zero.

4. The incommensurate array mirror effect

The absence of resonances for the irrational case and the
extension of the dimensionality can be explained in terms of
simple optical mirrors, in which an infinite number of images
are produced when an object is placed between the mirrors.
Each image can be associated with a point in a two-dimensional
space, and since each image is produced in different places,
there is no possibility of enhancing a given reflection. To clarify
this idea, let us consider three plane mirrors facing each other
in a one-dimensional array with an arrangement similar with
those of the cavity made from delta functions (Fig. 1a). The
mirror at the middle is semi-transparent, so a fraction of the
light is transmitted and the other reflected. The reflections of an
object inside such device are calculated by obtaining all the
mirrors that are produced by successive reflections. The n-th
mirror at position xn, can be reflected in the m-mirror at position
xm, producing a new mirror due to the following symmetry
operation: Mxm ðxnÞ ¼ 2xm � xn. The initial position of a mirror
(say xn) can be written as a linear combination generated by pa

and a:

xn ¼ hnaþ lnpa, (17)

where hn and ln are integers. These numbers define a point in a
two-dimensional lattice with coordinates given by ðhn; lnÞ. The first
three initial planes have integer coordinates ð0;0Þ,ð1;0Þ and ð0;1Þ.
When two planes at positions of the form hnaþ lnpa are reflected
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by each other, we get that,

Mxm ðxnÞ ¼ ð2hm � hnÞpa� ð2lm � lnÞa. (18)

This shows that the new mirror at Mxm ðxnÞ is also a linear
combination of a and pa. Formally, all linear integer combinations
of a and pa densely fill the real plane, so a dense infinite number
of images are expected. Notice, however, that if we begin to apply
Mxm ðxnÞ to the three initial mirrors, then it is observed that not all
the linear combinations are obtained. For example, the point ð1;1Þ
is never reached. We can represent all mirrors planes in a two-
dimensional square lattice with coordinates ðhn; lnÞ, as shown in
Fig. 4. According to the previous discussion, however, the unit cell
is a square with a missing point at the center and due to this, only
3
4 of the square lattice vertices are integer coordinates of the
reflection planes. The consequence is that the resultant set of
reflections of a given object, turns out to be an infinite set, with a
fractal nature.

5. Concluding remarks

In summary, we study a incommensurate cavity that offers
an appealing example in which the physical properties are

determined by a higher dimensional Hamiltonian. Such effect is
due to a phase decoupling produced by the pseudo-random
behavior of quasiperiodic functions. The proposed method
provides a mechanism to produce an infinite fractal set of images
of an object and gives also clues to design useful devices to avoid
reflection resonances, and gives a simple approach to the
transmission and reflection properties of cavities.
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Fig. 4. Two dimensional representation of the distribution of mirror planes for the

cavity discussed in the text. Each circle denotes the coefficients of a possible

reflection, at the position x ¼ hnaþ lnpa. The unit cell is a square with a missing

central point.

G.G. Naumis et al. / Physica B 403 (2008) 3179–31843184


