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Instituto de F́ısica, Dpto. de F́ısica-Qúımica, Universidad Nacional Autónoma de Mexico,

Apartado Postal 20-364, Ḿexico 01000, D.F., Ḿexico.
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In this article, we give a short review of the theoretical problems concerning the formation of disordered materials (known as glasses). Then
we show how this problem is related to the anomalies in the low frequency vibrational modes observed in glasses. Rigidity theory and the
energy landscape topology picture is used to decode how this relationship is built for network glasses. Finally, the problem of the speed of
cooling and the ability to reach thermal equilibrium in glasses is explored using a simple model with non-linear interactions. The results are
also interesting in soft-matter and protein folding.

Keywords:Glass transition; glasses; low frequency modes.

En este trabajo se presenta una revisión de los problemas concernientes a la formación de materiales con estructuras desordenadas, llamados
vidrios, y su relacíon con el exceso de modos vibracionales de baja frecuencia. La teorı́a de la rigidez y la topologı́a del paisaje de energı́as
se usan para entender como surge dicha relación. Finalmente, el problema de la velocidad mı́nima de enfriamento y la habilidad de formar
vidrios se estudia en el mismo contexto, pero usando un modelo de interacción no lineal. Los resultados son interesantes tanto para materia
suave como para el problema del doblamiento de proteı́nas.

Descriptores:Transicíon v́ıtrea; vidrios; modos de baja frecuencia.

PACS: 64.70.P-; 64.70.Q-; 63.50.Lm

1. Introduction

Ever since the beginnings of civilization, humankind has used
glassy materials. For example, the Teotihuacan civilization
in Mesoamerica was based on the control of the obsidian
mines [1]. Obsidian is a glassy material used to make tools
and weapons. Its importance to such societies has been com-
pared to the value of steel to modern civilization [1]. More
recently, the 2009 Nobel prize was shared by Charles Kao
“for groundbreaking achievements concerning the transmis-
sion of light in fibers for optical communication”. The re-
sulting increase in bandwidth leads to a new era: the infor-
mation age. In spite of this, the process of glass formation,
known as glass transition, is not well understood. Accord-
ing to the Nobel laureate Phillip Anderson, glass transition
and high temperature superconductivity are the most funda-
mental unsolved problems of solid state physics [2] (recently
there seems to be compelling evidence that both problems are
related [3]). In this article, we shall make a short review of
the theoretical problems concerning glass transition, to show
how an important and forgotten feature of glasses, the excess
of low frequency vibrational modes (LFVM), is fundamental
to understanding the problem.

In regard to the atomic configuration, solid state materials
are divided into ordered and disordered structures. Glasses
have a disordered atomic structure. They are obtained from
liquids by fast cooling [4]. Under this classification, the
word (glasses) is used to denote a wide spectrum of mate-
rials, which are classified as in Table I.

The oxides, chalcogenides and amorphous semiconduc-
tors form a family known as network glasses, since their
structure is similar to a network with topological disorder.
Also, there are soft analogous of glasses. Colloids, foams,
granular media and other systems with small elastic modulus
have disordered structures similar to those present in glasses
[5,6]. In fact, the glass transition seems to be related to the
jamming transition. Jamming occurs when the particles are
trapped inside cages made from their neighbors, and the par-
ticles are not able to flow anymore, as happens in a traffic jam.
It is believed that the jamming and glass transitions are inter-
related in some kind of universal phase diagram [5]. Also,
proteins and glasses share many physical properties, such as
peculiar relaxation processes [7].

TABLE I.

Glass Compounds Some applications

Polymers Chains of organic molecules Plastics

Oxides Contain O, like SiO2 Window glass, optical fibers

Chalcogenides Contain S,Se,Te like GeSe2 Rewritable DVD+RW, optical fibers

Metallic Metals like Zn, Cu, Fe,... Mobile phones

Amorphous semiconductors Si0.9H0.1 Solar Cells
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However, it is surprising that we are not able to under-
stand the process of formation of all these materials. The
reason is the following. If we cool a melt slowly, a first or-
der phase transition occurs to an ordered structure (a crystal).
This transition is revealed as a discontinuity of the volume
(V ) against temperature (T ). By cooling fast enough, the
melt is supercooled, the phase transition is avoided, and there
is a smooth change to a solid at a temperature known as glass
transition temperature (Tg). During the process, the viscosity
(η) changes by at least20 orders of magnitude [4]. This span
of decades is unique in physics, and explains the widespread
use of glasses since one can mold the material in a continu-
ous way. The glass transition occurs whenη = 1013 Poise.
The viscosity is mainly the inverse of the time that takes the
atoms to relax (τ ). In the liquid τ ≈ 10−12s, while in the
glassτ ≈ 1010 years, more or less the estimated age of the
universe. Surprisingly, during these huge changes inη and
τ , almost nothing happens with the atomic structure. Why is
this process not well understood? The reasons are,

• there is NO thermal equilibrium, since the process de-
pends on time,

• there is NO long range order.

The first reason means that one cannot use the usual ther-
modynamics, and the second avoids the use of the traditional
tricks of the solid state physics and statistical mechanics, such
as using order parameters or expansion in Fourier series. Fur-
thermore, molecular dynamics simulations are not able to
provide definitive answers, since the cooling speeds in nu-
merical simulations are orders of magnitude higher than in
the real cases.

What are the unsolved questions?

• How to calculate the minimal cooling speed in order to
form a glass

• Why some chemical compounds form glasses while
others will never reach such a state [4].

• The origin of the non-exponential relaxation laws [8].
Typical correlations or response functions cannot be
represented by a single exponential. They are rep-
resented by stretched exponentials. For example, the
intermediate scattering functionF (k, t) can be repre-
sented for long times by [4],

F (k, t) = A(k) exp−
(

t

τ(k, T )

)βs

whereβs < 1 and the relaxation timeτ(k, T ) scales
with the temperature like the viscosity.

• The thermodynamical nature of the glass transition,
i.e., is it a phase transition or close to a thermodynam-
ical singularity?

• How to calculateTg or the jumps in some of the ther-
modynamical parameters like the specific heat of ther-
mal expansivity.

• How to calculate the aging properties of glasses,i.e.,
the properties of the glasses change with time and his-
tory of formation.

All these questions are interrelated [9-13]. To make a
glass, it must be cooled fast enough to avoid crystallization,
but there is a minimal cooling speed for doing this, so relax-
ation is related to the glass-forming ability. An important fea-
ture is how viscosity behaves near the glass transition. This
property is known as fragility [14-16]. For network glasses,
fragility is related to the glass-forming tendency, since a non-
fragile glass former (known as a strong glass former) does not
require a very fast cooling speed in order to be produced. The
viscosity behavior can be changed from strong to fragile by
chemical doping [16]. Thus, the minimal cooling speed (as
well as the aging properties) depends on the chemical com-
position. It is worthwhile mentioning, that this relationship
is not generally true, since for example CaNO3-KNO3 is the
most fragile of all glasses yet is an excellent glass former.

There are many theories available in the field, but most of
them are not able to explain all the associated phenomenol-
ogy. From a theoretical point of view, the main effort has
been aimed at solving the thermodynamical nature of the
glass transition. There are two main schools of thought.

• There is an underlying phase transition due to a change
in the configurational entropy. This leads to entropic
theories, like the Adams-Gibbs [14]. The driving force
of such theories is the observation made by Kauzmann
in 1948 about a crisis that appears when the entropy of
a supercooled liquid is extrapolated toward low tem-
peratures [14]. At a certain temperature, known as the
Kauzmann temperature (TK), the extrapolated entropy
begins to be lower than the crystal entropy. Such a
“paradox” is avoided by the glass transition, since the
entropy has a sharp change due to an underlying phase
transition.

• The transition is purely dynamical. There is no sin-
gularity, except that the dynamics is so slow that the
system behaves as a solid [15]. The most famous the-
ory of this kind is the mode coupling approach, based
in a non-linear feedback mechanism [14]. This mech-
anism is obtained by separating slow and fast modes in
the molecular hydrodynamics.

Both schools have successes and failures. The failures
are predictions that have not been corroborated, such as di-
vergences in the viscosity, special temperatures, etc.. Maybe
more frustrating is the fact that neither school allows us to
make practical predictions for real glasses. Furthermore, it
is very well known that all glasses present an excess of low
frequency vibrational modes (LFVMs) when compared with
crystals. The most famous excess is the boson peak [17].
There are others, such as the floppy mode contribution, due
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to the flexible/rigid character of the atomic network [18-20].
Most of the theories concerning the glass transition fail to
place special importance to the excess of LFVMs. This situ-
ation is surprising because as shown by Peierls in 1935, the
thermal stability of a crystal depends upon LFVMs [17]. In
fact, it is a subtle matter that concerns dimensionality and
LFVMs due to their high population [17]. The condition re-
quired for mechanical stability is that the displacement field
of two atoms separated by a distanceR must not tend to in-
finity as R → ∞. Let atomi with equilibrium positionri

have a displacementu(ri). This stability can be measured as
〈
‖u(ri )− u(rj)‖2

〉
=

〈
‖u(ri)− u(ri + R)‖2

〉
, (1)

whereR is the vectorR = rj − ri that joins atomsi with
j, and the bracket〈〉 denotes thermal average at temperature
T . Assuming a harmonic Hamiltonian for a crystal, and by
writing u(ri ) andu(rj) in normal coordinates, we get [17],

〈
‖u(ri)− u(rj)‖2

〉
=

2~
mN

∑

q∈1B.Z.

1− cos(q ·R)
ω(q)

(2)

× 1
[exp(~ω(q)/kBT )− 1]

. (3)

where ω(q) is the frequency of a state with wave vector
q, and the sum is over the first Brillouin zone. Eq. (2)
shows the fundamental role of LFVM in the stability since
a Bose-Einstein factor appears. The denominator can make
the sum divergent for acoustic modes whenω(q) → 0. For
crystals inD dimensions, the density of vibrational states
ρ(ω) in the low frequency region goes likeωD−1. In 1 D,
Eq. (2) goes likeR, and in 2 D like ln R. In 1 D and
2 D, crystals are unstable against thermal fluctuations since〈
‖u(ri)− u(ri + R)‖2

〉
→ ∞ whenR → ∞. Crystals

in 3 D are stable [17] since the density of vibrational states
ρ(ω) goes likeω2 and the divergence for low frequencies can
be integrated. The lesson is clear: the stability of a solid is
contained in the density of states. Similar arguments work
for glasses [21] and thus it is surprising to see the lack of
attention to this important point.

Here we will show the fundamental importance of
LFVMs in the formation of network glasses, specially by fo-
cusing our attention on rigidity theory (RT) and the energy
landscape. Both ideas provide a useful framework for under-
standing many features observed in the glass transition. The
main importance of RT is that it provides a unique opportu-
nity for tuning the number of LFVMs by chemical doping,
and for observing the resulting consequences in the proper-
ties of the glass transition [22-24].

2. Energy landscape picture

Although there are many different theories concerning the
glass transition, there is a common agreement to visualize
the events that takes place during glass transition using the

energy landscape picture [25]. The landscape is a surface
generated by the potential energy as a function of the molec-
ular coordinates [15]. In anN body system, the landscape is
determined by the potential energy, given byΦ(Q1, ..., Q3N )
whereQj is a generalized configurational coordinate for the
simplest case of particles possessing no internal degrees of
freedom. The landscape is a(3N + 1) object (see Fig. 1). A
system with kinetic energyK and potential energyΦ has total
energyE = K + Φ. K is always positive and thus only con-
figurations for whichK = Φ−E ≥ 0 are allowed, as it hap-
pens in a roller coaster. At high temperatures, the system does
not feel the summits and valleys ofΦ(Q1, ..., Q3N ) because
the kinetic energy contribution dominates (kBT À Φ). As
the temperature is lowered, the system is unable to climb the
high energy barriers and therefore is forced to sample deep
minima (kBT ≈ Φ). According to statistical mechanics, the
entropy depends on the accessible volume in the phase space.
Inside a local minimum of the potential energy, it can happen
that there is not a mountain pass to reach another minima.
The system cannot sample other available parts of the phase
space (see Fig. 1). Ergodicity is broken and the system is
no longer in thermal equilibrium. Such a glass will have a
residual entropy [26]. When this happen, the kinetics of long
time relaxation changes from exponential to stretched expo-
nential [14], as shown in Fig. 1.

This change between different relaxation laws has its ori-
gins in the fact that the dynamics can be divided into two time
scales (see Fig. 1). Over short times, the system is trapped

FIGURE 1. Energy landscape picture defined by the potential en-
ergy. At a given temperature, the system can visit the configurations
between the dotted line and the solid curve. A glass is trapped in a
metastable state performing harmonic oscillations. Jumps between
neighboring basins, indicated by arrows, are related to theβ re-
laxations shown in the lower panel. Jumps to other megabasins
produce the long timeα relaxation.
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FIGURE 2. A 2D version of rigidity. Four hinges joined by 4, 5
and 6 bars. The first is flexible with one floppy mode. Such floppy
mode is removed using a bar, and the system becomes isostatic.
Any other bar leads to an overconstrained system.

in a metastable minimum performing harmonic oscillations.
Fast relaxation events (calledβ relaxation) are related to
transitions to neighboring basins [27], while slow relaxation
events, which are collective motions that involve tens of
atoms (α relaxation) are related to transitions between dif-
ferent megabasins (a megabasin contains inside many basins
with similar energies [27]). Both of them occur via saddle
points of the landscape. These collective motions require
enough energy to jump the surrounding energy barriers and
depend on rare thermodynamical fluctuations. The topology
of the landscape has a self-similar, multifractal structure [28].
As we shall see, the importance of the LFVM anomalies in
the formation of glasses can be understood by looking at their
impact upon the energy landscape.

3. Rigidity theory: the key to understand low
frequency vibrational modes anomalies

In this section, we discuss how RT provides key ideas for un-
derstanding LFVMs and the glass transition. RT considers
each bond between any of theN atoms as a mechanical con-
straint. This is a very useful idea for covalent bonds. It was
introduced in this area by Phillips [18] and Thorpe [19] to un-
derstand the ease of glass formation [18,29-32]. RT was orig-
inally developed to study mechanical systems, to solve ques-
tions like how many bars are needed to make a rigid bridge or
building. If the system has fewer bars than a minimal thresh-
old, the system is flexible (see Fig. 2). Otherwise it is rigid.
If the number of bars is the minimal number required to be
rigid, the lattice is isostatic (see Fig. 2). So the question is,
with N hinges, what is the minimal number of bars required
to make the system rigid?

If Nc is the number of constraints of a3 dimensional sys-
tem, then a fraction(3N − Nc)/3N of the 3N configura-
tional coordinates are cyclic, since the energy of the system
does not depend on such variables [29]. Thus,f is also the
fraction of vibrational modes with zero frequency (f ), called
floppy modes.

The counting of constraints can be done using a pebble
game [29], or under a mean-field approximation known as
the Maxwell counting. The mean-field goes as follows: each
of the r bonds in a site is shared by two sites, and there are
r/2 constraints due to distance fixing between neighbors. If
we assume that bond bending costs energy, the angles are also
constraints, and in3D there are(2r − 3) constraints, then,

f =
3N −Nc

3N
= 1−

∑
r

[r/2 + (2r − 3)] xr

3
= 2− 5

6
〈r〉 ,

where the last term corresponds to the angular constraints,xr

is the fraction of particles with coordinationr, and〈r〉 is the
average coordination number, defined as

〈r〉 =
∑

r

rxr. (4)

A rigidity transition occurs whenf = 0 and the system
passes from a floppy network to a rigid one. In3D, the
mean field approach predicts the transition at the critical
value 〈rc〉 = 2.4 if all angular constraints are included. It
is well known that the chemical composition corresponding
to 〈rc〉 = 2.4 is special, since it corresponds to the best glass
formers with small rates of aging [30-32].

In fact, floppy modes are not the only anomalies ex-
plained using RT. There are a great deal of evidence that
the boson peak is also a consequence of the lack of atomic
contacts [33]. This assertion has even been proved for the
case of jammed systems [33], in which LFVM anomalies
arise as a consequence of the isostatic nature of random pack-
ings [34,35],i.e., the corresponding network is neither over-
constrained nor flexible. As a matter of fact, even in the case
of hard-spheres, the idea of a mechanical constraint can be
used considering an effective potential [33] or a dynamical
contact [36-40].

4. Thermodynamics of rigidity and the energy
landscape

It is clear that LFVM anomalies have a great impact upon
the low temperature properties of glasses. Such behavior is
very well known [17]. However, here we are interested in
a more subtle question: are these anomalies important for
glass formation? Let us consider first a simple model of two
masses and three springs, as shown in Fig. 3. Ifq1 andq2 are
the displacements of particle1 and2 respectively, it is pos-
sible to write the Hamiltonian in terms of the normal mode
coordinatesQ1 andQ2. The corresponding normal modes
frequencies are
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FIGURE 3. Energy landscape for a system of two masses and three
springs, with strengthskA andkB . In a),kA ≈ kB , while in b), a
channel in the direction of the arrow appears, sincekA ¿ kB and
ω2 ¿ ω1.

ω1 = ±
√

kA + 2kB

m
,ω2 =

√
kA

m
. (5)

and the surface generated by the potential energy is the
paraboloid (shown in Fig. 3),

Φ(Q1, ..., Q3N ) =
3N(1−f)∑

j=1

1
2
mω2

j Q2
j

When a hierarchy of forces is present, the ratio be-
tween the spring constants can be very small. For exam-
ple, if kA ¿ kB , as shown in Fig. 3b),ω2 is reduced as
also happens with the slope of the landscape alongQ2.
In the limiting casekA → 0, the system has one floppy
mode at zero frequency, which corresponds to the center
of mass coordinate of a “diatomic molecule”. A channel
is open in the floppy mode coordinate direction. Accord-
ing to the Bolztmann principle, the entropy is given by
S(E, V, N) = kB lnΩ(E, V, N), whereΩ(E, V, N) is the
number of states for a givenE, V andN . S(E, V,N) is pro-
portional to the allowed phase space volume visited by the
system [41]. Since floppy modes provide channels, they in-
crease the entropy. In Fig. 3b), this idea is indicated by an ar-
row. For this particular example, the extra entropy is given by
the center of mass, which can visit all the space between the
walls. A real glass in a metastable state performs harmonic
oscillations for short time scales, but due to residual Van der
Waal forces, floppy modes are not at zero frequency [42], in-
stead they are blue-shifted to a frequency [43,44]ω0 ≈ 5
meV. The potential energy can be written as,

Φ(Q1, ..., Q3N ) =
3N(1−f)∑

j=1

1
2
mω2

j Q2
j (6)

+
3Nf

2
mω2

0

3Nf∑

j=3N(1−f)+1

Q2
j . (7)

The corresponding energy landscape is a paraboloid with dif-
ferent curvatures, depending on each normal mode frequency.

The curvature in the direction of the floppy modes is deter-
mined byω0, and thus is not very pronounced in this di-
rection, as explained in the previous simple example. This
means that the system can move easily along such directions
since the energy barriers are less pronounced. Thus, one can
think that floppy modes lead to low “mountain passes” in the
landscape, although not every low-vibration needs to be con-
nected to a pass. Of course, one needs to be very careful
since this simple picture seems contradictory at first sight.
It is clear that a pure harmonic potential with all frequen-
cies different from zero is not able to reproduce a moun-
tain pass, because per se it can only have the shape of a
paraboloid. To have a mountain pass, the potential must have
other high order non-linear terms to shape a corridor or sad-
dle point. However, here we are assuming that there is a hi-
erarchy of force strengths: covalent and the ever-present Van
der Waals bonding. The non-linear terms in the expansion
of the potential must reflect this fact, and thus the hierarchy
is also preserved when we consider deviations from a pure
paraboloid landscape. As a consequence, a small curvature of
the paraboloid for floppy modes also leads to small non-linear
terms in the same direction in the landscape, as confirmed
by a normal modes analysis based on the local quadratic ap-
proximation of the energy, which captures a system dynamics
quite well [45,46]. In other words, this approach is based on
the assumption of a direct connection between low-frequency
vibrations and low-energy passes, and is in line with relating
the short elastic times scale behavior with the long time relax-
ation properties of the glass. The success of such an approach
has been confirmed in several empirical relationships, as has
been extensively reviewed in Ref. 47.

Using statistical mechanics, it is easy to find the entropy
in terms of the temperature [42]:

S(T, V, N) = kB ln




(
12πkBT

h

)3N(1−f) 3N(1−f)∏

j=1

(
1
ωj

)


+ 3NfkB ln
(

12πkBT

Nhω0

)
.

The last term of the previous expression is a “channel” en-
tropy contribution, produced by translations along floppy co-
ordinates. It depends linearly on the number of floppy modes,
and has a huge contribution due to the1/ω0 factor for small
ω0. This expression has been corroborated by studying the
specific jump during glass transition [48] and the viscosity
behavior for700 different glasses [49,50].

There is a second source for entropy due to rigidity, and
is related to the different energy minima configurations [42].
These minima are basins of the energy landscape [51], and
have been studied in the context of RT as a vectorial percola-
tion problem [52,53]. However, the entropy due to the chan-
nels in phase space is very likely to be much greater than the
one corresponding to percolation [42].
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5. Flexibility and the glass transition tempera-
ture

Now we raise the important question, do LFVM modes influ-
ence the glass transition temperature? There are arguments
against this. If a glass relaxes in the direction of a floppy
mode coordinate, after a certain time it can reach a new basin
in which the floppy coordinates are different. Also, floppy
modes are important for fast relaxation processes, since the
long-time scale relaxation (α) does not retainany memory
of the almost instantaneous configuration of a floppy mode.
However, the energy minima of the landscape are very simi-
lar [28]. Even in protein folding, this observation holds, and a
detailed analysis of the landscape leads to the conclusion that
the similarity of the minima is behind the remarkable phe-
nomena of relaxation along soft coordinates [46]. For protein
G, slow modes display a very mild dependence on the trajec-
tory duration in the landscape. This property originates from
a striking self-similarity of the free-energy landscape embod-
ied by the consistency of the principal directions of the local
minima [46], where the system dwells for several nanosec-
onds, and of the virtual jumps connecting them. Incidentally,
proteins also have a boson peak [7].

Now we will show how LFVMs can determineTg, using
some results from density functional theory for disordered
systems. According to this theory, the idea is to look for
transition states between basins, using the ansatz that atoms
travel the least motion path between adjacent minima [53].
This ansatz is again in the same framework of the idea of re-
lating short times scales with long time relaxation [47]. The
viscosityη(T ) is given by [53],

ln η(T ) ≈ ln η0 +
3r2

0

4 〈u2(T )〉 , (8)

where η0 is the typical value of the viscosity in the liq-
uid phase,r2

0 is a constant for a given system and
〈
u2(T )

〉
is the mean quadratic displacement of the atoms. The
mean quadratic displacement should be taken as measured
by Mossb̈auer scattering, since

〈
u2(T )

〉
will diverge for

long time scales. For typical interatomic potentials,
0.3σ<r0<0.5σ (whereσ is the size of the particles [53]).
SinceTg can be defined as the temperature at whichη ≈ 1013

Poise, from Eq. (8) and usingr0 ≈ 0.3σ we get,
〈
u2(Tg)

〉

r2
0

≈ 3
4(13− y) ln 10

≈ 0.03
13− y

, (9)

wherey is an exponent defined asη0 = 10y. For typical
fluids [53],y ≈ 3. Thus,

〈
u2(Tg)

〉

σ2
≈ 0.0125, (10)

and
√〈u2(Tg)〉 ≈ 0.11σ. Sinceσ is of the order of the inter-

atomic distance, it turns out that we just obtained for glasses
the well-known Lindemann,i.e., for crystals melting occurs
when the mean atomic displacement

√
〈u2(T )〉 is around

10% of the atomic spacinga [54]. In fact, this criterion is
valid for many glasses [55,56]. At this point, the fundamen-
tal role of low frequency modes to determineTg andTm is
clear, since we can separate the problem in two time scales.
For short timescales, a glass is in a metastable state. Thus, we
can suppose that the glass can be represented as a harmonic
Hamiltonian in thermal equilibrium. Under this approxima-
tion, it is easy to prove that

〈
u2(T )

〉 ≈ 3kBT

〈m〉

∞∫

0

ρ(ω)
ω2

dω. (11)

Any excess of LFVM is enhanced by the1/ω2 inside the
integral in Eq. (11). LFVMs lead to an increased

〈〈
u2(T )

〉〉
of the glass when compared with the crystal. Thus, the glass
transition happens at a lower temperature than melting. Fur-
thermore, using Eq. (11) and that

√〈u2(Tg)〉 ≈ 0.11σ, Tg is
given by

Tg ≈ 0.01


3ρ2/3kB

〈m〉

∞∫

0

ρ(ω)
ω2

dω.



−1

(12)

We can combine the previous analysis with RT to es-
timate the glass transition as a function of chemical dop-
ing [57,58]. To do so, let us make a simple model forρ(ω) by
using a combination of an Einstein model that puts a spectral
weight3Nf to the floppy mode peaks at frequencyω0. The
rest of the spectral weight3N(1 − f) is carried by a density
ρR(ω),

ρ(ω) =
{

3N(1− f)ρR(ω) + 3Nfδ(ω − ω0), if ω ≤ ωD

0 if ω > ωD

whereωD is a cut-off frequency. If thisρ(ω) is used to feed
Eq.(11), and Eq. (12),

Tg(〈r〉) ≈ Tg(〈r〉 = 2.0)/ (1− γ(〈r〉 − 2)) , (13)

with γ a constant determined byρR(ω) (the density of states
whenf = 0) andω0,

γ ≡

ω2

0

∞∫

0

ρR(ω)
ω2

dω



−1

− 1. (14)

This functional form deduced here for the decreasing of
Tg with 〈r〉 has been observed experimentally by many
groups [16,59], and is called the empirically modified Gibbs-
DiMarzio law (see Fig. 4).
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FIGURE 4. Tg as a function of 〈r〉 for the compound
Se1−x−y(GeyAs1−y)x. The symbols are taken from the experi-
mental results given in references [16] and [30]. The solid line cor-
responds to Eq. (13), withγ = 0.67, andTg(〈r〉 = 2.4) = 425K.

FIGURE 5. Lattices in which extra constraints are added by using
second neighbors springs. In (a) the springs are placed at random,
while in (b) the arrangement is periodic. Model (a) is an example
of an overconstrained glass, while (b) corresponds to a overcon-
strained crystal.

6. Thermal relaxation

Even if low frequency modes play a role in the ease of glass
formation through the minimal cooling speed for glass forma-
tion [18,60], it is not clear what is behind this remarkable ob-
servation [42]. However, one can expect that a system which
relaxes fast will have a tendency for crystallization. For ex-
ample, it has been experimentally observed that in metallic
glasses,Tg is related to the chemical composition through
the thermal conductivity [61]. In fact, thermal conduction is
responsible for transferring the excess of internal energy to
an external bath, where it is finally dissipated. When heat is
not removed fast enough, the system will not reach thermal
equilibrium. Thus, thermal relaxation and thermal conduc-
tivity are closely related. Although there are experimental
observations on this matter [18,60,61], from the theoretical
point of view the problem is almost virgin territory. Here we
provide a small review of our recent work on this subject.
One of the firsts attempts to study thermal relaxation in har-
monic systems was made by Fermi-Pasta-Ulam (FPU). They
were interested in the paradox that a solid described by har-
monic oscillations can never reach thermal equilibrium since

there is no way of sharing energy between normal modes.
Their model was a chain of equal masses with non-linear
springs [62,63]. The non-linearity was supposed to relax the
system and restore the equipartition of energy. The resulting
equations were solved using the famous ENIAC computer,
performing an act considered to represent the birth of numer-
ical experiments. The answer was much more complex than
expected and still there are many unsolved question concern-
ing this simple model [64]. After years of research, in the last
few years it has become more or less clear that relaxation is
dominated mainly by LFVMs [65-68], due to their quasireso-
nant nature [65,68,69]. As a result, they share energy in an ef-
ficient way [68] when compared with high-frequency modes.

A suitable model to study the role of LFVMs and bond
constraints is to change the number of LFVMs in the FPU
model. Then we will be able to see how such a system re-
laxes after a rapid quench. The FPU model is made of equal
masses (m) joined by equal spring constants. In the case of
a linear chain, removing bonds does not lead to a flexible
lattice, since the lattice is separated in pieces. The only pos-
sibility is to add constraints to reduce the number of LFVMs.
To achieve this goal, we add new springs that connect second
neighbors (we denote these new springs as SNS), as shown in
Fig. 5a and 5b. The concentration of such springs is given by
c, and is defined as the numbers of second neighbor springs
divided byN . These new springs can be placed at random
(Fig. 5a), or in a periodic way (Fig 5b). The corresponding
Hamiltonian can be written as

H=
N∑

j=1

[
p2

j

2m
+

k

2
(uj+1−uj)2 +

k′

4
(uj+1−uj)4

]
(15)

+
N∑

j=1

Θj+2,j

[
k2

2
(uj+2−uj)2+

k′2
4

(uj+2−uj)4
]

, (16)

FIGURE 6. Energy relaxation as a function of time for concen-
trations fromc = 0 to 0.5 using a non-linear Hamiltonian with
parametersk = k2 = 0.5 andk′ = k′2 = 0.5. The inset shows a
zoom of the relaxation tail. For all chains,N = 100, dt = 0.01.
An average over40 disorder realizations was made.
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whereΘj+2,j is a random variable that takes the value0 or 1,
with probabilityc and1 − c respectively.uj is the displace-
ment of the massm at sitej, andN is the number of sites.k
is the harmonic spring constant, andk′ is the strength of the
non-linear interaction. In what follows, we setm = 1.0.

To study the dynamics of the relaxation, first the systems
need to be thermalized by using a bath [70]. To achieve
thermalization, we can use a Langevin dynamics, in which
a stochastic force [η(t)] and a damping (γ0) are added to the
equation of motion,

d2uj

dt2
= − ∂H

∂uj
− γ0

duj

dt
+ ηi(t).

As usual, the force has a Gaussian distribution, with zero
mean〈ηi(t)〉 = 0 and correlation given by

〈ηi(t)ηi(t′)〉 = 2γ0kBTδ(t− t′) (17)

whereγ0 is the damping amplitude.
These equations can be solved by using a fourth-

order Runge-Kutta algorithm, with parameters such that
γ0 < 8π2k/N2 and0.0 ≤ T ≤ 1.0. HerekB is set to1.0, so
T has always energy units.

The relaxation of the thermalized models from an initial
temperatureT to zero temperature can been studied follow-
ing two steps [70]: the thermal bath is retired and then a
damping term is added at both ends of the chains. The re-
sulting equations of motion are

d2uj

dt2
= − ∂H

∂uj
−

N∑

j=1

Γjl
duj

dt
, (18)

whereΓjl is the dissipation at the ends of the chain,

Γjl = γEδjl [δj,1 + δj,N ] , (19)

γE is the damping constant andδjl is a Kronecker delta. For
all chains we tookγE = γ0. Notice that in the previous equa-
tion, the system relaxes to zero energy and not to the original
equilibrium energy at temperatureT , since our equations of
motion do not contain a stochastic force. The reason is that
here we are interested in how fast the system relaxes when
we change its energy, as happens in a rapid quench. In the
present case, a quench is realized from a temperatureT 6= 0

to T = 0. Thus, we are measuring how the heat is removed
by thermal conduction and dissipated at the chain ends.

In Fig. 6, we plot the energy relaxation using non-linear
Hamiltonians for different concentrations of SNS. Each en-
ergy relaxation was made forN = 100, starting from ther-
malized baths atT = 0.5. An average over40 realizations of
disorder was made in all cases.

There are many interesting features in the relaxation. The
first is that the time required for relaxation increases asc goes
from 0.0 to 0.5. We can conclude that for long times, re-
laxation is always slower when the number of LFVMs is re-
duced. The relaxation of high frequency modes requires a
transference of energy to LFVMs [67]. Such a phenomenon
is akin to turbulence [68], in which energy is injected at large
scales, and transferred via a cascade of self-similar eddies
to a small scale, where energy is finally dissipated. In the
present case, the reduction of LFVMs means that not as many
modes are available to dissipate energy and energy relaxation
becomes slower. Observe that we can generalize our results
to supercooled liquids since at small time scales the liquid
behaves as a solid. This opens the study of the relationship
between the ease of glass formation and LFVM.

7. Conclusions

In this article we presented the main features of one of the
most fundamental problems in solid state physics: the for-
mation of glasses. Although there are many theories on this
subject, none of them take into account the important role
played by low frequency mode anomalies which are very
well-known in glasses. Here we presented a mini review
of the arguments that any successful theory must explain
such features and their relation with the glass transition phe-
nomenology. Still there are many questions to be solved,
especially on the supercooled “side” of the glass transition,
where a lot of experimental and theoretical efforts are needed.
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