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Different types of self-similar states are found in quasiperiodic systems characterized by topological
invariants—the Chern numbers. We show that the topology introduces a competing length in the self-similar
band edge states transforming peaks into doublets of size equal to the Chern number. This length intertwines
with quasiperiodicity and introduces an intrinsic scale, producing Chern beats and nested regions where the
fractal structure becomes smooth. Chern numbers also influence the zero-energy mode that, for quasiperiodic
systems, which exhibit exponential localization, is related to the ghost of the Majorana: the remnant of the edge
localized topological state that delocalizes at the onset to a topological transition. In superconducting wires, the
exponentially decaying profile of the edge localized Majorana modes also encode fingerprints of the Chern states
that reside in close proximity to zero energy.
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I. INTRODUCTION

Quasicrystals (QC) are fascinating ordered structures ex-
hibiting self-similar properties and long range order with
regular Bragg diffraction1 characterized by a hierarchical
set of peaks. The revelation that these aperiodic crystals
belong to topologically nontrivial phases2 of matter is an
exciting development that opens avenues in the frontiers of
topological insulators.3 Insulating in the bulk but conducting
along the edges, topological insulators are exotic states of
matter that support topologically protected gapless boundary
modes and their number equals4 the topological integer, the
Chern number.5 Key to the topological characterization of
QCs is the translational invariance, that shifts the origin
of quasiperiodic order,2 which manifests as an additional
degree of freedom relating QCs to higher dimensional periodic
systems. Topological description of QCs requires an ensemble
of such systems and can be characterized by the Chern number
in view of their mapping to higher dimensions. An explicit
demonstration of transport, mediated by the edge modes, has
been demonstrated by pumping light across photonic QC.2,6,7

This paper studies an interplay between two exotic phe-
nomena in quasiperiodic lattices: self-similar fractal patterns
and nontrivial topology of band insulating states. In sharp
contrast to prior studies2,7 that developed the framework for
topological characterization of QCs, the focus of this paper
is the understanding of how topology and quasiperiodicity
coexist. Here we elucidate a manifestation of the topology
that is unique to QCs. In one-dimensional (1D) QCs, we
show that the band edge modes encode topological invari-
ants in their spatial profiles. Characterized by golden mean
incommensurability, the central peak and the subpeaks of the
band edge states split into doublets of size equal to the Chern
number. This splitting which we refer to as Chern dressing
is accompanied by new spatial patterns that include regions
where the wave function varies smoothly. In other words, the
topology generates nonfractal local regions of sizes dictated
by the Chern numbers embedded in self-similar structure. This
is reminiscent of the periodic orbits coexisting with chaotic
dynamics. The Chern numbers also leave their fingerprints on
the momentum distribution of particles, the observables that

can be measured in experiments involving ultracold gases.
These topological fingerprints in the band edge modes and the
momentum distribution are found in the Harper and Fibonacci,
as well as in generalized models that interpolate between these
two.7,8

Quasiperiodic p-wave superconducting systems9 provide
another perspective on the Majorana, zero-energy topologi-
cally protected modes at the ends of infinitely long wires.10

These modes have been the subject of very intense studies
due to their potential applications in quantum computing. We
show that in QCs where quasiperiodicity induces localization,
fluctuations about exponentially localized zero energy modes
describe Majorana at the onset to a topological phase transition.
This extinction of the Majorana mode, which we refer to as
Majorana ghost, as well as the exponentially decaying profile
of the Majorana modes encode Chern-4 topology in view of
their close proximity in energy. The shadowing or influence of
one topological state to another is one of the intriguing aspects
of quasiperiodic lattices that support both the Chern and the
Majorana modes.

II. QUASIPERIODIC LATTICES AND CHERN NUMBERS

We consider a 1D chain of spinless fermionic atoms in a
lattice described by the Hamiltonian,

H (φ) =
∑

n

tc†ncn+1 + H.c. +
∑

n

Vn(φ)c†ncn. (1)

Here, c
†
n is the creation operator for a fermion at site n

and t is the nearest-neighbor hopping amplitude. In our
studies we have investigated a generalized potential that
interpolates between the Harper and the Fibonacci model.7

Here we will restrict ourselves to the Harper model with Vn =
2λ cos (2π (σn + φ)), an incommensurate potential charac-
terized by an irrational number σ which we take to be
the inverse golden mean [(

√
5 − 1)/2]. Here λ controls the

strength of quasiperiodic disorder and φ is an arbitrary phase.
The eigenvalue equation, namely the Harper equation,

t
(
ψr

n+1 + ψr
n−1

) + 2λ cos (2π (σn + φ))ψr
n = Eψr

n, (2)

054204-11098-0121/2013/88(5)/054204(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.054204


INDUBALA I. SATIJA AND GERARDO G. NAUMIS PHYSICAL REVIEW B 88, 054204 (2013)

exhibits a self-similar spectrum and wave functions11,12 at λ =
t . This self-dual point is the critical point for quasiperiodic
disorder-induced quantum phase transition from extended to
exponentially localized phase.11

This incommensurate system is studied by approximating
σ by a sequence of rational approximates: the ratio of two
consecutive Fibonacci numbers. The Fibonacci sequence is
defined by F0 = 0, F1 = F2 = 1, and Fn = Fn−1 + Fn−2. For
any rational approximant σ = p/q = Fn−1/Fn, the system
consists of Fn bands and Fn − 1 gaps. The eigenstates of
the incommensurate system are obtained as a limiting case of
Bloch states of periodic system with period q = Fn as n → ∞,
characterized by the Bloch vector k.

In parallel with the well known5 formalism of quantized
Hall conductivity for a 2D system, one can define an adiabatic
conductivity, σ� = e2

h
Cr , for a 1D ensemble H (φ), of chains

with a periodic boundary condition, where

σ� = e2

h
Im

r∑
l=1

∫
dφ

[∫
dk

q∑
n=1

∂k

(
ψl

n

)∗
∂φψl

n

]
. (3)

Here r labels the gap characterized by a Chern number, Cr ,
and integration over φ corresponds to an ensemble average
of chains7 related to each other by translation using phason
shifts.13,14 However, the quantity in the square bracket, the
Chern density, in Eq. (3) is independent of φ, and therefore
Chern number can be associated with any H (φ). This is in
contrast with the rational σ , where the Chern density and the
energy E depend upon φ and therefore the Chern number is
associated only with the whole family of 1D systems, and that
a single periodic system belongs to the trivial phase.

III. CHERN DRESSED SELF-SIMILAR WAVE FUNCTIONS

We now show that topology introduces a new length equal
to the Chern number in the band edge states. Figure 1 shows
numerically obtained self-similar wave functions for the band
edge modes for topologically trivial and Chern-4 states, using
a rational approximant of the inverse golden mean with a
periodic boundary condition. These spatial profiles consist
of a central or main peak and secondary peaks at distances
given by Fibonacci numbers from the central peak. The
wave functions display self-similarity as the structure around
subpeaks approaches a scaled version of the structure around
the central peak. A blowup of the region near any peak reveals
new patterns. The most important feature associated with the
primary as well as the secondary peaks is the Chern dressing
as all peaks exhibit double-peak structures of sizes equal to
the Chern number as illustrated further in Fig. 2.

To understand Chern dressing, we begin with Thouless15

analysis of band edge states which identifies these wave
functions as states of definite parity, with symmetry points
about n = 0 or n = q/2. In other words, the rth band edge
state shows the property ψn1(r) = ±ψn2(r) [n1(r) = −n2(r)
for center of symmetry about n = 0]. This symmetry where
each site is paired with another site provides a starting
point to understand the Chern dressing. We first consider
the limit λ → ∞, where due to exponential localization
only the dominant peaks survive. In this case the wave
function is given by ψr

n(±) = 1√
2
(δn,n1(r) + eiβ±δn,n2(r)).16,17
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FIG. 1. (Color online) Magnitudes of the wave functions for the
topologically trivial ground state (a), and the topologically nontrivial
Chern-4–band edge state (b) at the critical point. The vertical arrows
show the Fibonacci sites which are Chern dressed for the topological
states. Note that the asymmetrically split Fibonacci peaks regain
symmetry as one moves far from the center. Blowup of the region
near the peak for Chern-4 state (c), showing structures consisting
of dimerized peaks (star), distorted M-shaped regions (triangle),
and regions separated by 9-sites (double arrow) where the wave
function varies smoothly. Panel (d) shows on-site potential (black)
and the Chern-1 wave function for λ = 1,1.1,1.5 (from bottom-top),
illustrating our key observation that the location of the peaks is
independent of λ.

It has been shown that the Chern number is given by Cr =
|n1(r) − n2(r)|, corresponding to the spacing between the two
localization centers. Here β+ = −(Cr − 1)π and β− = −Crπ

are relative phases for the upper and lower band edges,
respectively. We note that the cosine potential also has a
pairing property, that is, for every site m1 there exists a
site m2 such that V (m1) = V (m2). Since for λ → ∞ the
eigenvalues are Er (φ) = −2λ cos(2πσr + φ) = V (n1(r)) =
V (n2(r)) and each eigenstate is simultaneously localized at
n = n1(r) and n = n2(r); thus the spacing between the two
localization centers is equal to the distance between the paired
sites of the potential. Therefore, as we sort the eigenvalues
or the potential, we can associate to each Chern number Cr a
unique pair of sites [n1(r),n2(r)] of the potential.

We will now argue that the Chern dressing illustrated above
for λ → ∞ also occurs for finite λ including λ = t for the
central as well as for subpeaks. This is in contrast to the
rational σ case where Chern-dressed states, referred to as
Chern-dimers,17 exist only in the limit of large λ. Our key
observation [illustrated in Fig. 1(d) for Chern-1 state] is that
the locations of the (local) dominant peaks remain unchanged
with λ. In other words, for all eigenstates, the wave function has
maximum amplitude at sites given by the ordered pair of sites
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FIG. 2. (Color online) Spatial profile of Cherns 1–4 near the
central peak. Vertical lines mark the Fibonacci locations which are
Chern dressed, seen clearly once one moves away from the central
peak. Lines with double arrows mark some of the regions where the
magnitude of the wave functions vary smoothly.

that describe localization centers for λ → ∞ all the way down
to λ = 1 where the system exhibits power-law localization.

The key to the hierarchical manifestation of topology is
the fact that the symmetry of the band edge wave functions
about n = 0 or n = q/2, as discussed earlier, manifests
asymptotically at all sites with an index that coincides with
a Fibonacci number (Fibonacci sites), and the sites between
the two consecutive Fibonacci spaced sites. This is a direct
consequence of the number theory as limm→∞V (Fm) = V (0),
since V (Fm) = 2λ cos(2πσm−1) and σm → 0 for σ < 1.

Briefly, the proof of the existence of Chern-dressed self-
similar states as outlined above is based on a combination
of Thouless’s results about special symmetry of band edge
states about n = 0 that demands localization at two sites
simultaneously and the number theoretical argument that
extends Thouless’s analysis to every Fibonacci site. These
arguments associate a unique integer, namely the distance
between two localization centers with each band edge state.
The argument that connects this integer to Chern number
consists of two parts: rigorous proof that the distance between
the localization center is the Chern number for λ → ∞ and
the empirical observation that this must also be valid for finite
λ as the localization centers are independent of λ.

We recall that all previous studies of self-similar wave
functions of QCs have been carried out for special points
of the spectrum such as midband points12 or the band edge
points corresponding to maximum or minimum energy states.
Such states are topologically trivial. These studies describe
incommensurate states as consisting of a central or main peak
and a sequence of subpeaks separated by Fibonacci distances
from the central peak. For subpeaks far from the central peak,
the ratio of subpeaks to central peak intensity approaches a
well defined universal ratio. Topological states exhibit all these
above mentioned features with additional structures such as

Chern dressing and smooth regions embedded in the fractal
pattern.

Figure 2 further illustrates Chern-dressed band edge states
corresponding to Cherns 1–4, where peaks split into doublets
of size equal the Chern number. The splitting is symmetrical
for the central peak while the subpeaks away from the center
split asymmetrically. However, the symmetry is restored as
one moves farther from the main peak and, asymptotically, the
Chern splitting occurs symmetrically. Another striking aspect
associated with all self-similar band edge states is the existence
of windows where the wave function varies smoothly with
the lattice sites. These smooth regions are typically found
to be associated with the reduction of Fibonacci spacings,
Fn → Fn − Cr , due to Chern splittings. The observed narrow
windows where the fractal structure is wiped out include
dimerized sites for Chern-1 band edge states where the wave
functions at two consecutive sites have (asymptotically) equal
intensity, a non-Fibonacci region of size 6(6 = 8 − 2) for the
Chern-2 case and region of size 9(9 = 13 − 4) for the Chern-4
case. For Chern-3 case, the corresponding region has a size 5
(5 = 8 − 3) as clearly marked in the figure. The smoothening
is seen with higher clarity either at the center or as one
moves away from the peaks. The appearance of such local
regions of size controlled by the topological invariant is rather
striking and signals a very unique role of topology, namely
smoothening of the fractal structures. In our detailed study of
band edge states with higher Chern states, the smooth regions
were found to be confined to small regions. Analogous to
periodic orbits underlying chaotic sea or crystalline symmetry
patterns embedded in quasiperiodic lattices, smooth patterns
nested18 in fractal wave functions are fascinating and detailed
understanding of what determines the sizes of these regular
patterns remains elusive.

Figure 3 shows evidence of the self-similar pattern with
scale invariance x → σ 3x, which corresponds to patterns
repeating after every third Fibonacci spacing. Here we note
that the pattern is symmetrical about the center and the central
structure consists of one of the three new patterns discussed
in the paper. The origin of this symmetry and the period-3
behavior is rooted in number theory. To illustrate this, we note
that Fn = Fn−2 + Fn−3 + Fn−2. Therefore, the spatial patterns
separated by Fn can be viewed as consisting of two regions: the
central part of size Fn−3 that sandwiches the two side patterns
of length Fn−2, symmetrically placed about the center. The
pattern repeats every third Fibonacci spacing as shown in the
figures. The central part is identified with one of the three
possible “structures” obtained by splitting of Fn > Cr .

IV. CHERN BEATS

Chern splitting of the peaks at Fibonacci sites introduces
a beat frequency, which we will refer to as Chern beats, in
the spatial patterns of the quasiperiodic lattices. We show that
for the lower band edges, with λ � 1, ψr

n ≈ cos(πCrn/q)�0
n ,

where �0
n is the ground state wave function. We note that

a similar expression can be found for upper band edges.
This is the familiar standing wave at the band edges and for
incommensurate lattices has its period controlled by the Chern
numbers and demonstrates that the Chern number modulates
the existing length scales of the quasiperiodic system.
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We start by observing that the ground state wave function, ψ0
n for λ � 1, has most of its amplitude at Fibonacci sites in order

to reduce the energy. Also, the state needs to be symmetric about zero in order to avoid having a node. Therefore, such a wave
function can be written as

ψ0
n ≈

∑
p

Ap[δ(n − Fp) + δ(n + Fp)]. (4)

Using similar reasoning, the band edge states in view of Chern dressing can be described as

ψr
n ≈

∑
p,n

[
Ap+Cr/2δ

(
n − Fp − Cr

2

)
+ Ap−Cr/2δ

(
n − Fp + Cr

2

)]

±
∑
n,p

[
Ap+Cr/2δ

(
n + Fp − Cr

2

)
+ Ap−Cr/2δ

(
n + Fp + Cr

2

)]
.

In view of asymptotic symmetry of the Chern splitting, we
assume that Ap−Cr/2 ≈ Ap+Cr/2 ≈ Ap. Here ± respectively
refers to the lower and the upper band edges.

The Fourier transform of ψr
n , denoted as �r

m =∑
m ψne

2πnm/q , is given by

�r
m(±) ≈

∑
p

Ap[ei2πm(Fp+Cr/2)/q + ei2πm(Fp−Cr/2)/q]

±
∑

p

Ap[e−i2πm(Fp−Cr/2)/q + e−i2πm(Fp+Cr/2)/q],

where �(±) are given by

�r
m(+) ≈ cos(πmCr/q)

∑
p

4Ap cos(2πmFp),

�r
m(−) ≈ cos(πmCr/q)

∑
p

4iAp sin(2πmFp).

(a)

(d)

(c)

(b)

FIG. 3. (Color online) (a)–(d) respectively show spatial profile of
the band edge modes for Cherns 4 separated by Fibonacci sites 89,
144, 233, and 377. The similarity between the patterns separated by 89
and 377, corresponding to three generations of Fibonacci separations,
is clearly seen in the figure.

The topologically trivial states with Cr = 0 correspond to
r = 0 and r = q that respectively describe the minimum and
the maximum energy states. Therefore, the upper and the
lower band edge states can be written as a modulation of
topologically trivial states �(Emin) and �(Emax):

�r
m(+) ≈ cos(πmCr/q)�m(Emin),

�r
m(−) ≈ cos(πmCr/q)�q

m(Emax).

Therefore, band edge density is given by

ρ(m) ≈ 1
2ρ0(m)[1 + cos 2πκrm], (5)

where κ−1
r = q

Cr
are the Chern beats, the topological length

scales leading to spatial modulation of the quasiperiodic
ground states with density ρ0. In other words, topological
states can be viewed as Chern-modulated ground states.
Therefore, a length scale rooted in topology may underlie
a whole class of physical phenomena, and the mode beating
that has been observed in quasiperiodic systems19 may be an
example of this.

V. MOMENTUM DISTRIBUTION ENCODES TOPOLOGY

For a many body system of fermions, the topological
fingerprints are also encoded in the momentum distribution:
n(k) = ∑r

m |ηk
m|2, where ηk

m is the Fourier transform of the
single particle wave function ψm

l = ∑
k ηk

mexpikl and the
index r refers to the location of the Fermi level in the rth
gaps. The flat momentum distribution, characteristic of the
insulating state, develops wiggles, seen in Fig. 4, that are
somewhat correlated with the topological invariant. This
relationship becomes very transparent in the limit λ → ∞
as the momentum distribution exhibits sinusoidal oscillations,
n(k) = νr [1 + 1

q
cos(2akCr )],17 where νr is the filling factor,

namely the density of particles, that fills up all states below
the the rth gap characterized by the Chern number Cr . These
wiggles in the momentum distributions are a manifestation of
Friedel oscillations20,21 induced by quasiperiodic disorder. We
note that, in view of self-duality, the momentum distribution
also describes the density profile with k = 〈σn〉, where 〈x〉
denotes the fractional part of x. Furthermore, the fermionic
density also describes the density for a gas of hard core bosons
which have been realized in cold atomic gases.22

054204-4



CHERN AND MAJORANA MODES OF QUASIPERIODIC SYSTEMS PHYSICAL REVIEW B 88, 054204 (2013)

FIG. 4. (Color online) Fingerprints of Chern numbers in the
momentum distributions with Fermi levels in the gaps characterized
by Cr = 1,2,4. The outermost curve (green) shows a nontopological
many body state corresponding to filling factor of half, that resembles
the Chern-4 band insulating state in view of close proximity in energy.
Gaps characterized by these Chern numbers are shown in the slice
of the butterfly spectrum31 at the irrational flux (indicated by vertical
line). Small inset above the butterfly is the blowup of the butterfly slice
that contains Chern-4 gap, showing its proximity to the zero-energy
state that exists at the center of the spectrum.

VI. CHERN AND MAJORANA MODES

We will now discuss quasiperiodic systems that support
Majorana modes10 in addition to Chern-dressed band edge
states. The system under consideration is a variant of the
Harper Hamiltonian, describing a p-wave superconducting
wire, in the presence of quasiperiodic spatial inhomogeneity:9

Hs =
∑

n

[−ωc†ncn+1 + �c†nc
†
n+1 + H.c. + Vn(φ)c†ncn]. (6)

Here ω is the nearest-neighbor hopping amplitude and � is the
p-wave pairing amplitude, both taken to be real constants. The
eigenvalue equation of the system is a coupled set of equations
for two-component wave functions (fn,gn),23

(ω − �)fn+1 + (ω + �)fn−1 + Vn(φ)fn = Egn, (7)

(ω + �)gn+1 + (ω − �)gn−1 + Vn(φ)gn = Efn. (8)

The quasiperiodic system (6) has been shown to exhibit
localization transition9,24 similar to that of the Harper model
at λc = ω + �, where the critical point accompanied by the
appearance of the E = 0 mode also describes the onset to a
topological phase transition.

We first show that the zero-energy state in the supercon-
ducting system at criticality is related to the zero-energy
exponentially localized states of the Harper equation.25 From
Eq. (2), it follows that the fluctuations ηn about the exponen-
tially decaying envelope, ψn = e−nξηn, satisfy the following
equation, with ξ = ln(λ/t) being the inverse localization

(a)4

E=0

n

(b)

(c)

(d)

FIG. 5. (Color online) For � = 0.2, (a) shows energy spectrum
at λ = 1 where lines with arrows mark E = 0 and Chern-4 band
edge states, illustrating their proximity in energy. The 4-chiral modes
in the gap are distinctly visible. Panels (b)–(d) respectively show
the magnitude of wave functions for E = 0 state below (λ = 1),
at (λ = 1.2), and above (λ = 1.5) the transition. The spatial profile
of Majorana shows (b) decaying set of peaks separated by 4. The
delocalized critical (c) and topologically trivial mode above criticality
(d) shows Chern-4 dressing, all highlighted by lines with arrow.

length:

t(e−ξ ηn+1 + eξηn−1) + 2λ cos (2π (σn + φ))ηn = Eηn.

(9)

At λ = λc, Eqs. (7), (8), and (9) become equivalent for the E =
0 state.25 Therefore, fluctuations ηn in the localized envelope of
the E = 0 state of Harper are related to the delocalized states
that correspond to the extinction of Majorana, the Majorana
ghost, at the threshold of the topological phase transition.

In a finite chain, for λ < λc, the quasiperiodic model (6)
hosts Majorana mode at E = 0. As seen in Fig. 5, the E = 0
mode exists in close proximity to the Chern-4 mode and
its spatial profile is strongly influenced by the band edge
state. First, the envelope of the edge localized Majorana has
a decaying set of peaks separated by four lattice spacing.
Furthermore, at criticality the zero mode delocalizes, and its
spatial profile is Chern dressed as all peaks are doublets of size
4. In the nontopological localized phase, the interior localized
mode also exhibits double peak. The fact that the Majorana as
well as its remnants encode the Chern-4 topological invariant
is intriguing and perhaps a rare example of interplay of two
distinct topological effects.

We note that the Chern-4 shadowing has a very simple
origin, namely, the Chern-4 band edge state is the smallest
Chern number state that resides in close proximity to the zero
mode. This is valid only for the incommensurate parameter
and equals the inverse golden mean that is used here. For other
irrationals, there will be a similar effect provided a prominent
(small Chern state) exists in proximity to the zero-energy mode
and it need not be the Chern-4 state.

VII. SUMMARY

The interplay between topology and quasiperiodicity pro-
vides a remarkable example of competing periodicities where
Chern numbers, the aliens in Fibonacci landscape, adapt
to the quasiperiodic environment. Our results are valid for
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all irrationals with a periodic tail in the continued fraction
expansion.12 The renormalization scheme that incorporates
the Chern length, preserving scale invariance, remains an open
problem. In addition to photonic systems, QCs described by the
Harper equation have been realized in ultracold atomic gases.26

From the cold-atom point of view, these lattices have been
investigated in various contexts.21,27 Photonic experiments
which can simulate tight binding lattice Hamiltonians using
coupled rings resonators may provide an ideal setup to observe
Chern splitting.28 In these experiments, the on-site potential
can be controlled by changing the size of the rings and a direct
measurement of the wave function can be performed.

Superconducting quantum wires have been shown to be
promising candidates for realizing Majorana fermions.29 The
Chern shadowing of the Majorana mode is a rather unique
observation that is intriguing and its importance in the context
of the current hunt for the Majorana is not obvious. However,
characteristics described here may pave the way to some new
types of investigations in studies of Majorana modes and may
stimulate a different line of research in the hunt for new
exotic states of matter that involve an interplay between the
Majorana and the Chern modes. Finally, exploring the role

and manifestation of topology in interactioning QP systems,
particularly in the context of many-body localization that have
been recently studied,30 may be important.

Fractal patterns in quantum systems are rare and arouse
a great deal of excitement as evident from the Hofstadter
butterfly spectrum,31 whose experimental confirmation was
reported recently.32 This extraordinary quantum effect where
complicated structure of gaps, each characterized by a unique
Chern number, are arranged in a fractal pattern, creates a
new frontier to explore unknown electrical properties. Our
key findings, such as Chern dressed self-similar patterns,
Chern beats, Chern-4-shadowed Majorana, and topology that
smoothen fractals are some of the intriguing results that may
prove vital in exploration of topological states that exist in
quasiperiodic systems.
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