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Resumen/Abstract

In the early 1950s, a study was conducted by four scientists from Los Alamos to address a
seemingly simple question:

What happens when a small nonlinearity is introduced into a system of coupled oscillators?

Through their research, unexpected behavior was discovered in thermalization, energy
localization, and recurrence in the system, ultimately leading to a fundamental challenge to the
principles of statistical physics.

More than half a century later, the problem, now known as the Fermi-Pasta-Ulam-Tsingou
problem, is still regarded as a cornerstone of nonlinear dynamics and computational physics. In
this work, the problem is revisited, and its framework is extended to alternating mass/spring
systems, exploring its consequences, with a focus on its effects on relaxation dynamics and energy
localization.

Although the case of alternanting masses was previously studied in the literature, the case
of different spring constants has not been studied before. This last case is interesting as it is a
model for polymers and topological insulators. In this thesis, site dependent spring constants are
considered.

xi



Índice general

Acknowledgements iii

Abstract xi

Introduction 1

1. Mathematical and Physical Foundations 3

1.1. Foundations of the Fermi-Pasta-Ulam-Tsingou Problem . . . . . . . . . . . . . . 3

1.1.1. The linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1.1. The nonlinear case . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2. Relaxation and nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Generalized Fermi-Pasta-Ulam chains . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1. Linear chain with site dependent masses and springs . . . . . . . . . . . . 7

1.2.2. Fermi-Pasta-Ulam-Tsingou chain with site dependent masses and springs . 9

1.3. Effects in the generalized Fermi-Pasta-Ulam-Tsingou chains . . . . . . . . . . . . 9

1.3.1. Predictions on thermalization time . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1.1. Effect on dispersion and resonances of diatomic case . . . . . . . 10

1.3.1.2. Thermalization Time Scaling . . . . . . . . . . . . . . . . . . . . 14

2. On the relaxation for the case of different masses 17

2.1. Fixed Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1. The Original Fermi-Pasta-Ulam-Tsingou Problem . . . . . . . . . . . . . . 18

2.1.2. The Role of Low-Frequency Mode Dynamics in Thermalization . . . . . . 20

2.1.2.1. Analyzing Thermalization Times . . . . . . . . . . . . . . . . . . 23

2.1.3. Exploration of High frequency Mode Dynamics . . . . . . . . . . . . . . . 26

2.2. Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1. Low Frequency Mode Dynamics and Its Effects . . . . . . . . . . . . . . . 29

2.2.2. Exploration of High Frequency Mode Dynamics . . . . . . . . . . . . . . . 32

3. On the relaxation for the case of different springs 39

xii



ÍNDICE GENERAL

3.1. Fixed Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1. Low Frequency Mode Dynamics and Its effects on Thermalization . . . . . 39

3.1.1.1. Thermalization Time Analysis . . . . . . . . . . . . . . . . . . . 42

3.1.2. Exploration of High Frequency Mode Dynamics . . . . . . . . . . . . . . . 46

3.2. Periodic boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1. Low Frequency Mode Dynamics and Its Effects . . . . . . . . . . . . . . . 48

3.2.2. Exploration on High Frequency Modes . . . . . . . . . . . . . . . . . . . . 51

Conclusions 57

A. MATLAB Code for numerical simulations 61

xiii





Introduction

Los Alamos, 1954. The war had ended, but a new scientific era had begun. With the
Cold War fueling technological advances, modern computers emerged, offering unprecedented
opportunities for scientific exploration. Among the European scientists who remained in the
United States were Enrico Fermi, John Pasta, and Stanislaw Ulam, who, in this fertile intellectual
environment, posed a seemingly simple question:

What happens when a system of masses and springs is perturbed with a slight nonlinearity?

At the time, classical statistical mechanics predicted that energy should eventually spread
across all degrees of freedom, a consequence of the ergodic hypothesis (cite). For the first time,
computers provided a way to test this assumption. Mary Tsingou, tasked with running the
simulations, played a crucial role in obtaining the results—though her contributions remained
unrecognized for decades [1].

When the results arrived, they were stunning: Energy failed to spread, the ergodic hypothe-
sis appeared to break down, and the system did not reach thermal equilibrium. These findings
raised fundamental questions. Was this a failure of statistical mechanics? Or just an anomaly?

Before these questions could be answered, Fermi passed away in 1954, and the group
abandoned the study [2]. Years later, the preprint resurfaced in Fermi’s unpublished works, laying
the foundation for computational physics and nonlinear dynamics.

Even today, the Fermi-Pasta-Ulam-Tsingou (FPUT) problem remains central to discussions
of thermalization, equipartition, and statistical mechanics [3, 4]. Some view it as a paradox that
challenges fundamental assumptions, while others regard it as a computational curiosity with
far-reaching implications.

Beyond its theoretical significance, the FPUT framework has influenced modern physics,
particularly in glasses [5, 6] and metamaterials [7]. Extensions to site dependent systems have
fueled research on energy localization and transport, making further generalizations of the model
essential for understanding the interplay of nonlinearity, site dependent, and energy dynamics.

Despite decades of research, fundamental questions remain. Does the system truly fail
to thermalize? Is the FPUT problem a genuine challenge to statistical physics, or simply an
exceptional case? This thesis explores these questions, focusing on the role of site dependent, high
nonlinearity regimes, and various initial and boundary conditions.
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ÍNDICE GENERAL

Chapter 1 develops the theoretical foundation, from classical oscillations to coupled
nonlinear systems, motivating extensions to site dependent systems.

Chapter 2 examines relaxation dynamics in an FPUT system with varying masses, analyzing
different initial and boundary conditions.

Chapter 3 extends this study to an FPUT system with varying spring constants, following
a similar approach.

Chapter 4 presents conclusions and future directions.

By addressing these aspects, this work takes a step toward understanding the fundamental
mechanisms of energy transport and thermalization in nonlinear and site dependent systems.
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Capítulo 1

Mathematical and Physical Foundations

To address the problem at hand, it is essential to establish a solid theoretical foundation.
This chapter begins with a review of the Fermi-Pasta-Ulam-Tsingou (FPUT) problem, outlining
the fundamental mathematical framework governing nonlinear lattices. Key analytical tools are
introduced, starting from the linear case and extending to the nonlinear regime, where mode
interactions and energy transfer mechanisms play a crucial role. Additionally, these concepts
are expanded to incorporate systems with alternating masses and springs, providing a broader
perspective on their implications for thermalization, wave turbulence, and statistical mechanics.

1.1. Foundations of the Fermi-Pasta-Ulam-Tsingou Problem

1.1.1. The linear case

Before introducing the original problem, it is useful to consider the Hamiltonian governing
a one-dimensional chain of N coupled oscillators:

H =
N∑
i=1

p2i
2m

+
1

2
κ

N∑
i=1

(qi+1 − qi)
2, . (1.1)

where qi and pi are the position and momentum of the i-th mass, m is the (identical) mass of
each particle, and κ is the uniform spring constant.

From Eq. (1.1), the equations of motion follow:

q̇i =
pi
m
, . (1.2)

ṗi = κ(qi+1 − 2qi + qi−1).. (1.3)

3



1. MATHEMATICAL AND PHYSICAL FOUNDATIONS

Combining these, the system satisfies the next equation:

mq̈i = κ (qi+1 − 2qi + qi−1) .. (1.4)

To solve for the system’s normal modes, we assume a solution of the form qi = Aie−iωt
yielding:

−ω2mAi = κ (Ai+1 − 2Ai +Ai−1) .. (1.5)

where ω is the frequency of oscillation of the system. This can be rewritten in matrix form:

KA = λA, . (1.6)

where λ = ω2/ω2
0, with ω2

0 = κ/m, A is the matrix of coefficients of Ai and

K =



2 −1 0 . . . 0
−1 2 −1 . . . 0

0
. . .

...
... −1 2 −1
0 . . . 0 −1 2

 . (1.7)

The eigenvectors of K correspond to the normal coordinates, forming the transformation matrix
V. Using this transformation, the positions and momenta can be rewritten as

q = m−1/2Vu, . (1.8)

where u represents the normal mode coordinates for position. Similarly, the momentum satisfies

p = m1/2VP, . (1.9)

where P corresponds to the normal mode coordinates for momentum.

By substituting Eqs. (1.8) and (1.9) into Eq. (1.1), the Hamiltonian in normal coordinates
takes the form

H =
1

2

N∑
k=1

(
P 2
k + ω2

ku
2
k

)
, . (1.10)

which represents the total energy of the system expressed in terms of normal modes. Each normal
mode behaves as an independent harmonic oscillator, confirming that in the linear case, energy
remains separable among the modes. Moreover, it is clear that thermal equipartition can not be
achieved as there is now way to share energy between the modes and this requires the addition of
non-linear terms to the Hamiltonian.

1.1.1.1. The nonlinear case

In their original article, Fermi, Pasta, Ulam and Tsingou took the Hamiltonian (1.1),
studying the case where κ = 1, m = 1 and modified it adding a cubic term, and later a quartic

4



1.1 Foundations of the Fermi-Pasta-Ulam-Tsingou Problem

term, giving now

H =
N∑
i=1

1

2
p2i + (qi+1 − qi)

2 +
1

3
α(qi+1 − qi)

3 +
1

4
β(qi+1 − qi)

4. (1.11)

Here, α is a coupling parameter indicating the strength of the cubic nonlinear interaction, similarly
β is a coupling indicating the strength of the quartic nonlinear term.

The equation (1.2) remains unchanged. However, the equation (1.3) is modified, giving

−ṗi = −κ [(qi+1 − qi) + (qi−1 − qi)]−α
[
(qi+1 − qi)

2 − (qi−1 − qi)
]
−β

[
(qi+1 − qi)

3 + (qi−1 − qi)
3
]
.

(1.12)
Similar with the linear case, it is possible to write the Hamiltonian in terms of normal modes of
the system, using the equations (1.8) and (1.9) and applying the same change of variables. Then
we found the following equation for the case α ̸= 0, β = 0,

H =
N∑
k=1

1

2

(
P 2
k + ω2

kuk
)
+

α

3

N∑
k,l,m=1

cklmukulumωkωlωm. (1.13)

where cklm are the coefficients between coupling for each mode. For the case, α = 0, β ̸= 0,
something similar can be made,

H =
N∑
k=1

1

2

(
P 2
k + ω2

kuk
)
+

β

4

N∑
j,k,l,m=1

djklmujukulumωjωkωlωm. (1.14)

where djklm are, again, the coefficients of coupling for each mode. Both equations, (1.13) and
(1.14), tell us that the nonlinear terms cause mode coupling. As a consequence, energy can be
transferred from one mode to several modes. A more general approach for mode coupling in
different systems can be found in [8, 9]. The case where β = 0, α ̸= 0 is called an α−FPUT chain,
and the case for β ̸= 0, α = 0 is called an β−FPUT chain.

It is enough to ignore the additional terms due to the nonlinear factor α (for the case
α ̸= 0, β = 0 and the case β ̸= 0, α = 0) and for other nonlinear factors of higher order. The
linear terms are called the harmonic energies. This is due to the values of ω2

k compared to the
nonlinear terms [2]. Therefore, it is possible to approximate the energy of the system in terms of
normal modes using (1.13) and (1.14) using only the harmonic energies.

1.1.2. Relaxation and nonlinearity

In their original work, Fermi, Pasta, Ulam, and Tsingou studied the energy per harmonic
mode at a certain time t of a monoatomic chain with equal masses and springs. In our study, this
corresponds to study the energy per normal modes given by Eqs. (1.13) and (1.14).

Ek(t) =
P 2
k

2
+ ω2

ku
2
k, . (1.15)

5



1. MATHEMATICAL AND PHYSICAL FOUNDATIONS

and as the nonlinear terms are assumed small relative to the harmonic terms, H ≈
∑

k Ek(t) to a
good approximation [2]. FPUT calculated the average energy < Ek(t) > for a given mode from
the begining up to an elapsed time t of the simulation,

⟨Ek(t)⟩ =
1

t

∫ t

0
Ek(t)dt. (1.16)

To quantify the energy distribution across modes, different definitions of spectral entropy
have been introduced in the literature. Following [10] and [4], we introduce the spectral entropy
as:

S(t) = −
N∑
k=1

ek(t) ln ek(t), . (1.17)

where the normalized mode energy ek(t) is defined as in [4]:

ek(t) =
Ek(t)∑
k Ek(t)

.. (1.18)

However, in nonlinear chains such as the FPUT system, the spectral entropy exhibits significant
oscillations due to recurrence effects. To mitigate this, Livi et al. [11] proposed to compute Ek(t)
over a local time window (t−∆T, t+∆T ) where ∆T encompases several simulation time steps.
This ensures that Ek(t) evolves smoothly, preventing large entropy fluctuations. Therefore, we
define

Ēk(t) =
1

T

∫ t+∆T

t−∆T
Ek(t

′)dt′.. (1.19)

Without this averaging, entropy oscillations would be more pronounced, making it harder to assess
the thermalization process. We can also support this idea from [11], in which it is established the
idea that, on the long rung Ē → E

N . Therefore, in this thesis we compute the entropy using the
formula,

S(t) = −
N∑
k=1

ēk(t) ln ēk(t), . (1.20)

where the local time averaged normalized mode energy ek(t) is defined as:

ēk(t) =
Ēk(t)∑
k Ēk(t)

.. (1.21)

with, Ēk(t) defined as in (1.19. A first approximation for thermalization occurs when dS
dt → 0.

Also and to define when thermalization has been effectively reached, we impose an asymptotic
threshold, when dS

dt < 10−7. This criterion ensures a more reliable estimate of thermalization,
accounting for recurrence effects in the system.

However, the thermalized value of the entropy as defined above depends upon the number
of masses [11]. To avoid this and to look for the equipartition, a parameter η(t) is defined as [12],

η =
S(t)− Smax

S(0)− Smax
. (1.22)

6



1.2 Generalized Fermi-Pasta-Ulam chains

where S(t) is the spectral entropy defined as (1.20), S(0) is the spectral entropy at time t = 0
and Smax is the maximum value of entropy during the simulation. From there one can define a
global average ⟨η(t)⟩ from the beginning up to an elapsed time t of the simulation,

⟨η(t)⟩ = 1

t

∫ t

0
η(t)dt. (1.23)

in order to compute the thermalization time. This quantity goes from 1 (initial state) to 0
(equipartition reached). In practice, a threshold for thermalization is imposed.

1.2. Generalized Fermi-Pasta-Ulam chains

1.2.1. Linear chain with site dependent masses and springs

Consider now a system of coupled oscillators, given by the equation

H =
N∑
i=1

p2i
2mi

+ κi(qi+1 − qi)
2. (1.24)

where κi is the spring between particle i and particle i+1 and mi being the mass of the particle i.

For this case, equation (1.3) is transformed into,

∂H

∂qi
= −ṗi = −κi(qi+1 − qi) + κi−1(qi − qi−1). (1.25)

the equation (1.2) remains unchanged.

The resulting equation of motion is

miq̈i = κi(qi+1 − qi)− κi−1(qi − qi−1). (1.26)

Such as in the original case, one could try to write (1.24) in terms of normal modes. For this,
we can transform this equation in terms of mass-weighted coordinates: Defining mass-weighted
coordinates ui as

ui =
√
miqi. (1.27)

or in matrix notation
u = M1/2q. (1.28)

where, M in this case, is a diagonal matrix consisting of the masses of the system,

The equations of motion in terms of qi become

üi =
1

√
mi

(
ki−1

(
ui−1√
mi−1

− ui√
mi

)
− ki

(
ui√
mi

− ui+1√
mi+1

))
. (1.29)

7



1. MATHEMATICAL AND PHYSICAL FOUNDATIONS

üi = −
(
ki−1 + ki

mi

)
ui +

ki√
mimi+1

ui+1 +
ki−1√
mimi−1

ui−1. (1.30)

In matrix form, (1.30) becomes

ü = −M−1/2KM−1/2u. (1.31)

Now, the dynamical matrix becomes

D = M−1/2KM−1/2. (1.32)

The matrix is symmetric as long as K is symmetric. Now, for implementing a numerical version,
we write this equation in matrix form, and for this, we must take into account the different
boundary conditions to be studied

For fixed boundary conditions we have, q0 = qN+1 = 0. Therefore, the matrix D has
components 

κ1
m1

− κ1√
m1m2

0 . . . 0

− κ1√
m1m2

κ1+κ2
m2

− κ2√
m2m3

. . . 0

0
. . .

...
...

. . . − κN√
mN−1mN

0 . . . 0 − κN√
mN−1mN

κN
mN


. (1.33)

.

On the other hand, in the case of periodic boundary conditions, the dynamical matrix is
similar to the case with fixed boundary conditions, but now q0 = qN .



κ1+κN
m1

− κ1√
m1m2

0 . . . − κN√
mNm1

− κ1√
m1m2

κ1+κ2
m2

− κ2√
m2m3

. . . 0

0
. . .

...
...

. . . − κN−1√
mN−1mN

− κN√
mNm1

. . . 0 − κN√
mN−1mN

κN−1+κN

mN


. (1.34)

The decomposition into normal modes of the system can be performed using the following
formulation

u = M−1/2Wv. (1.35)

u̇ = M−1/2Wv̇. (1.36)

where u is the displacement vector, W is the matrix of normal modes (normalized to the masses)
and v are the normal coordinates.

8



1.3 Effects in the generalized Fermi-Pasta-Ulam-Tsingou chains

Using equations (1.35) and (1.36 the Hamiltonian (1.24 can be written in matrix notation
form

H =
1

2
u̇TMu̇ +

1

2
uTKu. (1.37)

to a normal modes approach, resulting in

H =
1

2

N∑
i=1

(v̇2i + ω2
i v

2
i ).. (1.38)

where vi are the components of vector v. Thus, the total energy is given by equation (1.38).

1.2.2. Fermi-Pasta-Ulam-Tsingou chain with site dependent masses and springs

A more general case of the (1.11) equation is treated here. Now consider a one-dimensional
disordered chain. The Hamiltonian of this system is given by

H =

N∑
i=1

p2i
2mi

+
1

2
κi(qi+1 − qi)

2 +
1

3
ακi(qi+1 − qi)

2 +
1

4
βκi(qi+1 − qi)

4. (1.39)

From which the equations of motion are obtained

∂H

∂pi
= q̇i =

pi
m
. (1.40)

∂H

∂qi
= −ṗi

= −κi(qi+1 − qi) + κi−1(qi − qi−1)

− ακi(qi+1 − qi)
2 + ακi−1(qi−1 − qi)

2

− βκi(qi+1 − qi)
3 + βκi−1(qi−1 − qi)

3

. (1.41)

The analysis for the energies in terms of normal modes can be performed using the same tools for
the disordered linear case. An important thing to notice is the incorporation of nonlinear terms
in a disordered system and how this is done. In most papers, it is assumed that the strength of
nonlinear terms is homogeneous, and only changing the masses [13-15].

We remark here that the case of alternanting masses was previously studied in the literature
[13-15] while the case of different spring constants has not been studied before. This last case
is interesting as it is a model for polymers and topological insulators. Here we take a further
important step, incorporating nonlinear terms in the spring variations.

1.3. Effects in the generalized Fermi-Pasta-Ulam-Tsingou chains

In the standard FPUT system, all masses and springs are identical, and energy spreads
across different modes due to nonlinear interactions (shown by Equation (1.13) and (1.14).

9



1. MATHEMATICAL AND PHYSICAL FOUNDATIONS

However, introducing position dependent masses or springs modifies the normal modes. The
study of these cases is relevant for the modelling of different materials [16, 17]. A key feature of
the FPUT system is resonance, particularly in low-frequency modes. Exciting one low-frequency
mode generates resonances with others, driving the system toward thermalization [18]. However,
introducing mass variations ∆m can delay or prevent thermalization by changing energy recurrence
and localization for certain modes. Understanding these effects is crucial for explaining observed
recurrence behavior and thermalization time, how these are affected by introducing mass/spring
alternance, and possible implications and applications given the previous literature.

1.3.1. Predictions on thermalization time

In the uniform FPUT system, the thermalization time τth depends primarily on the
nonlinearity strength α or β, and the energy of the system E [19]. In contrast, alternating chains
introduce an additional dependence on alternance strength, characterized by mass or spring
variations, which we call D:

D(m) =
|m2 −m1|
m1 +m2

, D(κ) =
|κ2 − κ1|
κ2 + κ1

.. (1.42)

and we define two important parameters,

∆m = m2 −m1,∆κ = κ2 − κ1. (1.43)

For D = 0, the system reduces to the uniform FPUT model. When D ̸= 0, the normal mode
frequencies split into acoustic and optical branches, separated by a frequency gap that affects
energy transfer. A special case of these quantities are studied here, using adimensional masses
such that m1 = 1 +∆m, m2 = 1−∆m, κ1 = 1 +∆κ and κ2 = 1−∆κ. For these cases, (1.42 is
reduced to

D(m) = ∆m D(κ) = ∆κ. (1.44)

Therefore, it is enough to study ∆κ and ∆m for a diatomic chain if we choose m1 = 1 +∆m,
m2 = 1−∆m, κ1 = 1 +∆κ and κ2 = 1−∆κ. From here, we will study these kind of systems
unless specified otherwise.

1.3.1.1. Effect on dispersion and resonances of diatomic case

Let’s imagine a chain of atoms vibrating harmonically. If the chain is uniform (equal masses
and springs), the dispersion relation follows:

ωk = ck. (1.45)

where k is the wave number and c the velocity of the wave. But what happens if the chain is not
uniform?. An interesting case is the chain with alternating masses or with alternating springs.
These cases are both referred to as diatomic chains.

For a diatomic chain with alternating masses m1 and m2 (see Fig. 1.1), the dispersion
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1.3 Effects in the generalized Fermi-Pasta-Ulam-Tsingou chains

m1 m2

κ
m1 m2

κ
m1 m2

κκ κκ κ

Unit cell
a

Fig. 1.1: Diatomic chain with alternating masses m1 and m2, connected by springs with spring constant κ. The unit
cell has a length a.

m m m m m
κ1 κ2 κ1 κ2κ2 κ1

Unit cell
a

Fig. 1.2: Diatomic chain with alternating springs κ1 and κ2, connected by equal masses m. The unit cell has a length
a.

a) Dispersion relation respect to corresponding wave number k compu-
ted numerically for the case of a diatomic chain with different masses
with N = 64 particles.

b) Dispersion relation respect to corresponding wave number k compu-
ted numerically for the case of a diatomic chain with different springs
with N = 64 particles.

Fig. 1.3: Dispersion relations for a diatomic chain computed numerically using the values of ω obtained from Eq. (1.38.

relation is given by the formula [20]

ω2 =
κ

m1m2

(
m1 +m2 ±

√
(m1 +m2)2 − 4m1m2 sin

2 (ka/2)

)
. (1.46)

where a is the size of the unit cell. If we consider the following change of variables,

M = m1 +m2 . (1.47)

1

µ
=

1

m1
+

1

m2
. (1.48)

where M and µ are the total and reduced mass of the system respectively, we can express Eq.

11



1. MATHEMATICAL AND PHYSICAL FOUNDATIONS

(1.46 as follows

ω2 = κ

 1

µ
±

√(
1

µ

)2

− 4 sin2(ka)

µM

 . (1.49)

Similarly, for a diatomic chain with alternating springs κ1 and κ2 (see Fig. 1.2), we have

ω2 =
κ1 + κ2

m
± 1

m

√
(k1 + k2)2 − 4κ1κ2 sin

2 (ka/2). (1.50)

and introducing the following change of variables

κ̄ =
κ1 + κ2

2
. (1.51)

1

κred
=

1

κ1
+

1

κ2
. (1.52)

the (1.50) becomes

ω2 =
2κ̄

m

(
1±

√
1− κred

κ̄ sin2(ka)

)
. (1.53)

In both cases, the frequencies with the + sign correspond to the so-called optical modes,
while those with the − sign are the acoustic modes. Dispersion relations are presented in figures1.3a)
and 1.3b).

If we look at the limit of small k (long waves), we can expand the expression (1.49) and
obtain

ω2 =
a2κ

2M
k2 − a4κµ

24M2
k4 + .... (1.54)

and then, we can identify the velocity of the acoustic mode as

cac = a

√
κ

2M
. (1.55)

We can see, therefore, the dependence of mass-ratio in Eqs. (1.49) and (1.55).

In this thesis, we will consider adimensional masses such that m1 = 1 +∆m and m2 =
1−∆m. Then M = m1 +m2 = 2, m1m2 = 1− (∆m)2 and µ = (1− (∆m)2)/2. Using this, Eqs
(1.49) and (1.55)

ω2 =
2κ

1− (∆m)2

(
1±

√
1− (1− (∆m)2 sin2(ka)

)
. (1.56)

Therefore cac does not depend on ∆m, but the second order term of k4 does. With this in mind,
we can write

ω2
k(ac) ≈ c2ack

2 + δ(k,∆m), . (1.57)

12



1.3 Effects in the generalized Fermi-Pasta-Ulam-Tsingou chains

where δ(k,∆m) is given by

δ(k,∆m) = −a4κ

24

[
1

8

(
1− (∆m)2

)]
k4 + .... (1.58)

and the rest of higher order terms given in (1.54), and quantifies the shift from the uniform case.

Similarly, we can do the same thing with a diatomic chain with alternating springs κ1 and
κ2.

ω2 =
2

m

(
1±

√
1− (1− (∆κ)2) sin2(ka)

)
. (1.59)

Expanding the cosine term around k = 0 in (1.50) we have

ω2
ac =

κred

4m
(qa)2 − κred

48m

(
1− κred

2κavg

)
(qa)4 + .... (1.60)

and using (1.51) and (1.52)

ω2
ac =

1− (∆κ)2

4m
(ka)2 − (1− (∆κ)4)

96m
(ka)4 + .... (1.61)

Again, we can see the dependence of constants dependence of spring-ratio in Eq. (1.59),
but in this case velocity of sound does depend on springs even for a system of alternating springs.
Therefore, for this case, we can write

ω2
k(ac) ≈ c2ac(∆κ)k2 + δ(k,∆κ), . (1.62)

where δ(k, κ) is given by

δ(k,∆κ) = − κred

48m

(
1− κred

2κavg

)
(ka)4 + .... (1.63)

The rest of higher order terms given in (1.54), quantifies the shift in the dispersion relation from
the uniform case.

In the uniform FPUT model, quasi-resonances occur for cubic and quartic nonlinearities
[21, 22]. For the cubic nonlinear term, we have

ωk1 ± ωk2 ± ωk3 = 0, (α-FPUT). (1.64)

In alternating chains, mismatch due to δ(k,∆m) or δ(k,∆κ) alters this balance, reducing available
resonant interactions [23, 24]. Then, a measure of mismatch for a three-wave coupling is

|ωk1 + ωk2 − ωk3 | > δ(∆m) |ωk1 + ωk2 − ωk3 | > δ(∆κ) . (1.65)

Therefore, to drive energy from a low mode up to the next, it must happen in both cases that

|ωk1 + ωk2 − ωk3 | ≈ 0 . (1.66)
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1. MATHEMATICAL AND PHYSICAL FOUNDATIONS

in the case of a three-Wave resonance. Resonance, according to [17] can occur only if the ratio
between two heavy and light masses is less than 3 in the case of an α−FPUT chain and in 3-wave
interactions (in particular, interaction between two acoustic and one optical mode). In this case,
thermalization can occur faster than the monoatomic case, as interactions between acoustic and
optical modes are mediated by the values of ∆m or ∆κ.

For a Four-Wave resonance, the idea is similar and we get, [21, 22]

ωk1 ± ωk2 ± ωk3 ± ωk4 = 0, (β-FPUT).. (1.67)

and from a similar argument we have,

|ωk1 + ωk2 + ωk3 − ωk4 | > δ(∆m) |ωk1 + ωk2 + ωk3 − ωk4 | > δ(∆κ) . (1.68)

This shift affects the resonance conditions, crucial for energy transfer. It is worth noting that if
δ(k,∆m), δ(k,∆κ) ∼ 0, then resonances for uniform FPUT are recovered.

For the special case of m1 = 1+∆m and m2 = 1−∆m, we found that ∆m < 1
2 . Therefore,

it is expected that for ∆m < 1
2 the thermalization time decreases and once this condition is

broken, the thermalization time remains the same or even increases.

1.3.1.2. Thermalization Time Scaling

Following [19], we estimate thermalization time using the Fourier-transformed Hamiltonian
for an alternating linear chain. Reference [19] introduces the next canonical transformation

qn =

√
2

N + 1

N∑
k=1

[
zk − z∗k
i
√
2ωk

]
sin

(
πkn

N + 1

)
, pn =

√
2

N + 1

N∑
k=1

[√
ωk

2
(zk + z∗k)

]
sin

(
πkn

N + 1

)
..

(1.69)
and then Eq. (1.11) with β = 0 (α-FPUT case) can be rewritten as

H =
∑
k

ωk|zk|2 +Hint(z, z
∗), . (1.70)

where

Hint(z, z
∗) =

iα

12
√
N + 1

N∑
k1,k2,k3=1

Sk1k2k3Π
3
j=1

√
ωkj (zk1 − z∗k1), . (1.71)

and
Sk1k2k3 ≡ δk1+k2−k3,0 + δk1−k2+k3,0 + δk1−k2−k3,0 − δk1+k2+k3,2N+2.. (1.72)

A full rewriting of this canonical transformation can be seen in [25]. Now, we define the specific
energy as:

ε =
E

N
, . (1.73)
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1.3 Effects in the generalized Fermi-Pasta-Ulam-Tsingou chains

and estimate the highest excited mode kc in which equipartition can be achieved over time.
According to [19] and [26] it follows the next equation for the homogeneous α-FPUT chain:

kc ∼ α−1/2ε−1/4.. (1.74)

After a canonical transformation of (1.70 of the form,

zk = exp

(
iπk

N + 1
t

)
ξk z∗k = exp

(
iπk

N + 1
t

)
ξ∗k . (1.75)

we obtain a Hamiltonian of the form

K̄ =
∑
k

Ωk|ξk|2 + H̄3(ξ, ξ
∗). (1.76)

where H̄3 defines the nonlinear terms in the new canonical transformation (see [17, 19] for a
complete derivation) . With this expression it is possible to compute the resulting thermalization
time [19], given by:

τth ∼ |ξk|2∣∣∣∂H̄3
∂ξ∗k

∣∣∣2 .. (1.77)

which is a measure of how strong are the nonlinear terms and coupling terms, given by ξk in

respect to the linear terms
∣∣∣∂H̄3
∂ξ∗k

∣∣∣2. For the homogeneous α−FPUT case, it has been found that
an estimation for the thermalization time takes the next form:

τth ∼ 1

α3/2ε3/4
.. (1.78)

Meanwhile, for a β−FPUT chain, the thermalization time has been found to follow a similar law,
supported by numerical simulations [27]

τth ∼ 1

εp
.. (1.79)

where p = 1, 2, 4 depending on the values of ε (we can find then two regimes for thermalization
time depending on the energy).

However, in an alternating chain, the energy transfer is limited by the acoustic-optical gap,
requiring nonlinear interactions to compensate for missing resonances [23, 25, 28]. The bigger
∆m or ∆κ, the acoustic-optical gap is bigger and therefore there are fewer resonances.

With this background in mind, we can guess the thermalization time τth will grow up in
respect to the acoustic-optical gap. Therefore, a first ansatz could be

τth ∼ τ(0)th · g(∆m), . (1.80)

where τ(0)th is the thermalization time for the homogeneous case (∆κ = 0,∆m = 0), and g(∆m)
is a function depending on ∆m. Using (1.54) as a first approximation, we can try to fit g(∆m) as
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1. MATHEMATICAL AND PHYSICAL FOUNDATIONS

a quadratic function of ∆m, given by

g(∆m) = 1 +A(∆m) +B(∆m)2. (1.81)

in a regime for weak ∆m, and in the limit ∆m → 0, the homogeneous case should be recovered,
and A,B are coefficients to determine, such as its dependence of other parameters. This idea can
be extrapolated to different springs,

τth ∼ τ(0)th · h(∆κ), . (1.82)

where h(∆m) is a function depending on ∆κ, and similarly

h(∆κ) = 1 + C(∆κ) +D(∆κ)2. (1.83)

in a regime for weak ∆κ, and being C,D coefficients to determine. An important point to clarify
here is the importance of small values of α, β, as referred to in [17] for the validity of this expression.
If this condition breaks the calculations for thermalization times could not be validated at all.
Therefore, the importance of small values of ∆k/∆m and α is crucial.

For the case of a β-FPUT chain, studies [18] have shown that the thermalization time
scaling remained the same as for the monoatomic case. This is reasonable because with quartic
interactions, the leading energy transfer process is still a four-wave interaction. Simply having two
branches (acoustic/optical) may not create any new three-wave processes (since the nonlinearity
order forbids them), and the four-wave resonant networks might still be similarly sparse.

These results suggest that the introduction of alternating masses/springs inhibits equi-
partition, significantly delaying or even preventing energy redistribution. If numerical results
show increased recurrence and lower entropy once alternating masses or springs are introduced,
analytical predictions can be confirmed.
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Capítulo 2

On the relaxation for the case of different
masses

Building upon the theoretical framework developed in earlier chapters, this chapter exa-
mines the relaxation dynamics of a modified Fermi-Pasta-Ulam-Tsingou (FPUT) system incor-
porating mass heterogeneity. The study is conducted under both fixed and periodic boundary
conditions, with the system initialized using excitations in low- and high-frequency modes to
explore their distinct thermalization pathways.

The chapter begins by analyzing the case of fixed boundary conditions. After revisiting
the original FPUT problem to establish a reference, the dynamics of low-frequency excitations
are explored, revealing that resonance phenomena play a central role in energy redistribution.
Thermalization time is quantified using spectral entropy, demonstrating that stronger mass
asymmetry enhances energy localization and delays thermalization. The analysis then shifts to
high-frequency excitations, which disrupt recurrence patterns and generate energy cascades. This
behavior excites a broader range of modes and leads to higher entropy values, illustrating the
complex interplay between mass alternance and nonlinear interactions.

The second part of the chapter focuses on periodic boundary conditions. In this context,
low-frequency excitations exhibit modified resonance behavior due to the modification of boundary
constraints, often resulting in persistent energy localization. High-frequency excitations, meanwhile,
continue to exhibit broad spectral spreading and more rapid entropy growth.

Through numerical simulations and entropy-based diagnostics, this study demonstrates
the critical role of boundary conditions and excitation modes in determining thermalization
behavior. These results deepen our understanding of energy transport, recurrence, and relaxation
in nonlinear lattices with structural alternance of masses, offering new insights into the FPUT
problem when mass heterogeneity is introduced.
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2. ON THE RELAXATION FOR THE CASE OF DIFFERENT MASSES

a) Energy per modes over time, integrating the equations of motion
(1.40) and (1.41) for N = 32 particles and α = 0.25.

b) Displacement of the FPUT system for different times, integrating
Eqs. (1.40) and (1.41) for N = 32 particles and α = 1.0 with fixed
boundary conditions.

Fig. 2.1: Selected results for the α-FPUT system. Figure 2.1a) presents the evolution of energy distribution across
normal modes over time, while Figure 2.1b) illustrates the displacement of particles in the system. These results closely
follow the original findings reported in [3], capturing the recurrence behavior characteristic of the FPUT problem.

2.1. Fixed Boundary Conditions

2.1.1. The Original Fermi-Pasta-Ulam-Tsingou Problem

Before delving into the study of a Fermi-Pasta-Ulam-Tsingou Chain with different masses,
it is important to review some key aspects of the original FPUT system. These key aspects
involve the transfer of energy between normal modes, the recurrence phenomena and conditions
to relaxation of the system.

Figure 2.1a) shows the energy per modes for an α-FPUT system with particular initial
parameters as studied in [3]. This system is given by Eq. (1.11). Figure 2.1a) illustrates transfer
of energy between different modes as a consequence of the introduction of a nonlinear term, as
pointed out in Eq. (1.13). The consequence of this coupling in the motion of the system is shown
in Fig. 2.1b) where one can see the motion of the system for different time steps.Furthermore,
we can see that the system seems to return to the initial state after certain time. This is the
recurrence phenomena observed by Fermi, Pasta, Ulam and Tsingou.

Another critical observation is the energy transfer between uniquely the first 5 modes of
vibration, leaving the subsequent modes without energy transfer. This can be observed in Fig
2.1a), where beyond the third mode, energy transfer is barely noticeable. This suggests a lack of
ergodicity in the original problem. Fermi et al. initially assumed that introducing a nonlinear
term would induce chaos, ensuring ergodicity. However, as shown in Figure 2.1a), energy remains
confined to the first few modes, indicating that nonlinearity alone is insufficient to guarantee
ergodicity.

Connecting these observations, the appearance of recurrence and the lack of ergodicity,
suggest a violation of the equipartition theorem, which predicts uniform energy distribution among
modes in thermal equilibrium. Instead, the energy remains localized in the first few low-frequency
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2.1 Fixed Boundary Conditions

a) Time evolution of the average energy per mode for a system of
N = 32 particles with α = 0.25. The equations of motion (1.40) and
(1.41) were integrated with an initial amplitude of A = 1.

b) Same as (a) but with an initial amplitude of A = 10. It can be
observed that energies on the long run tend to reach a stable value,
possibly reaching energy equpartition for longer times.

Fig. 2.2: Selected results for the α-FPUT system. Figure 2.1a) presents the evolution of energy distribution across
normal modes over time, while Figure 2.1b) illustrates the displacement of particles in the system. These results closely
follow the original findings reported in [3], capturing the recurrence behavior characteristic of the FPUT problem.

modes, indicating that the system does not reach a state of thermal equilibrium within the
observed timescales. To further investigate this, Fermi et Al. computed the average energy over
time for a particular system, given by (1.19). The result is shown in Fig. 2.2a). The decay of
average energy for different modes suggests the system is going to relaxation, but energy does
not seem to tend to the same value for all modes (The first mode still retains most of the energy
despite decay). Further studies [29] showed that equipartition can be achieved if sufficient initial
energy is given in the system. (See Fig. 2.2b)).

Fig. 2.3: ⟨η(t)⟩ defines as in (1.23) for a system of N = 64 particles with and amplitude of A = 10 with fixed boundary
conditions. As t → ∞, ⟨η(t)⟩ tends to zero, indicating the possibility of equipartition on the long run.

Previous studies [4] suggest that energy localization depends on initial conditions, par-
ticularly the excited mode, its amplitude, and the strength of nonlinear parameters α and β.
Additionally, the system exhibits non-chaotic behavior, remaining confined to low-frequency
modes with recurrent dynamics. This challenges the notion that nonlinearity inherently leads

19



2. ON THE RELAXATION FOR THE CASE OF DIFFERENT MASSES

to chaos or ergodicity, highlighting the complex relationship between nonlinear interactions and
energy redistribution.

To further investigate thermalization in this chapter, two approaches are considered. First,
introducing mass alternance to assess its impact on energy redistribution. By varying the mass
distribution along the chain, we aim to explore how structural alternace between masses influences
the recurrence phenomena and the transition to thermal equilibrium. Second, modifying initial
conditions, particularly by (i) varying the amplitude A of the excited mode and (ii) exciting low
and high-frequency modes separately to explore its role in energy transfer. These modifications
allow us to study how different energy inputs and mode excitations affect the system’s relaxation
dynamics and whether they can overcome the observed localization effects.

Building on these approaches, we now turn our attention to the specific dynamics of
low-frequency modes and their role in thermalization.

2.1.2. The Role of Low-Frequency Mode Dynamics in Thermalization

In this section, we explore thermalization in a nonlinear chain with alternating masses and
fixed boundary conditions. The equations of motion (1.40) and (1.41) are solved numerically in
MATLAB (see A). The system consists of alternating masses, m = 1±∆m, with 0 ≤ ∆m < 1,
introducing heterogeneity that influences energy transport and thermalization. Simulations are
performed for various nonlinearity strengths α and β , which control the cubic and quartic
interactions. Figures 2.4 and 2.5 display the normalized energy per mode over time for different
mass distributions ∆m and different values α and β. From this, we can observe certain key
behaviors.

Fig. 2.4: Normalized energy per mode over time for a system of N = 64 particles with fixed boundary conditions. The
columns represent different mass difference levels: ∆m = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying
nonlinearity strengths: α = 0.3, 0.6, 0.9 (top to bottom). The system is initialized with energy localized in the second
mode with an amplitude of A = 10.

Let’s start by exploring how mass differences and nonlinearity influence energy dynamics in
our system. From Fig. 2.4, we observe that for α = 0.3, 0.6. increasing ∆m reduces the recurrence
time typical of the Fermi-Pasta-Ulam-Tsingou problem. At the same time, energy spreading
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2.1 Fixed Boundary Conditions

across modes diminishes, suggesting that structural heterogeneity localizes energy. However, when
nonlinearity α increases closer to 1, energy redistribution accelerates, pushing the system closer
to thermalization. Interestingly, thermalization emerges under moderate mass differences and
strong nonlinearity, while large ∆m inhibits it.

Fig. 2.5: Normalized energy per mode over time for a system of N = 64 particles with fixed boundary conditions. The
columns represent different mass difference levels: ∆m = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying
nonlinearity strengths: β = 1, 3, 5 (top to bottom). The system is initialized with energy localized in the second mode
with an amplitude of A = 10.

Now, let’s shift our focus to the case where α = 0 and β ≠ 0, as shown in Fig. 2.5. Here,
the results are less straightforward. For ∆m = 0.9 and β = 1, the system enters a sticky state
where relaxation is absent—a phenomenon previously observed in few-mass FPU systems [30].
Even when β increases to 3 or 5, energy sharing improves, but recurrence persists, highlighting
the system’s resistance to full thermalization.

This means energy remains trapped in specific modes, preventing full thermalization—a
behavior consistent with findings in [13, 14], where the introduction of alternating masses generates
invariant manifolds, where the motion of the system is trapped, and therefore, showing recurrence
according to KAM theorem.

To better understand these effects, we turn to spectral entropy (Equation (1.17), as depicted
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2. ON THE RELAXATION FOR THE CASE OF DIFFERENT MASSES

Fig. 2.6: Time evolution of the spectral entropy for a system of N = 64 particles with fixed boundary conditions,
showing the variation of spectral entropy for different values of ∆m. Each panel corresponds to different values of the
nonlinear parameter α, increasing from left to right and top to bottom: α = 0, 0.3, 0.6, 0.9. The system is initialized
with an excitation in the first mode, with an initial amplitude of A = 10.

in Figs. 2.6 and 2.7. In systems with alternating masses, and for both cases α and β the spectral
entropy stabilizes at lower values, signaling partial energy localization and a lack of equipartition.

The entropy analysis reveals contrasting behaviors between the two systems. For the
α-FPUT case, systems with α = 0.3 and 0.6 show decreasing maximum entropy values as ∆m
increases. However, this pattern breaks at α = 0.9, where the ∆m = 0.3 configuration achieves
entropy values comparable to - and sometimes exceeding - the homogeneous (∆m = 0) case. The
β-FPUT system exhibits markedly different dynamics, with more pronounced oscillations and
instability, particularly at β = 3 and 5. In these cases, entropy systematically decreases with
increasing ∆m, clearly demonstrating how mass alternation influences the system’s accessible
states.

In summary, our analysis reveals a delicate balance: while nonlinearity promotes energy
redistribution, large mass differences and persistent recurrence hinder thermalization, leaving
energy localized and the system far from equilibrium.
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2.1 Fixed Boundary Conditions

Fig. 2.7: Time evolution of the spectral entropy for a system of N = 64 particles with fixed boundary conditions,
showing the variation of spectral entropy for different values of ∆m. Each panel corresponds to different values of the
nonlinear parameter β, increasing from left to right and top to bottom: β = 0, 1, 3, 5. The system is initialized with an
excitation in the first mode, with an initial amplitude of A = 10.

2.1.2.1. Analyzing Thermalization Times

Using the last results obtained, we can try to compute a first approximation of the
thermalization time of the system, i.e. the minimum value where d⟨η⟩

dt < 10−6, as pointed out in
section 1.

For the α-FPUT system (Fig. 2.8a)), entropy decreases monotonically with increasing
∆κ for all values of α, with higher nonlinearity leading to initially higher entropy than the
homogeneous (∆m = 0) case, and then, diminishes more steeply. These results indicate that mass
heterogeneity suppresses thermalization more effectively in the α-FPUT model compared to the
homogeneous case, promoting energy localization across a broad range of nonlinearities.

For the β-FPUT system (Fig. 2.8b)), entropy also decreases with increasing ∆m, but follows
a more gradual, nearly linear trend. Notably, larger values of β yield higher equilibrium entropy
across the range, suggesting delayed localization, while increasing mass difference consistently
lowers the final entropy reached. This pattern indicates that although mass heterogeneity reduces
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2. ON THE RELAXATION FOR THE CASE OF DIFFERENT MASSES

a) Entropy values reached in thermalization for different values of
∆m varying values of α = 0.3, 0.6, 0.9 with fixed boundary conditions,
using the initial conditions of Fig. 2.5.

b) Entropy values reached in thermalization for different values of
∆m varying values of β = 1.0, 3.0, 5.0 with fixed boundary conditions,
using the initial conditions of Fig. 2.5.

Fig. 2.8: Entropy values reached in thermalization for different values of ∆m with fixed boundary conditions. (a)
Varying α values. (b) Varying β values.

a) Relaxation time vs different values of ∆m varying values of α =
0.3, 0.6, 0.9 with fixed boundary conditions, using the initial conditions
of Fig. 2.5.

b) Relaxation time vs different values of ∆m varying values of β =
1.0, 3.0, 5.0 with fixed boundary conditions, using the initial conditions
of Fig. 2.5.

Fig. 2.9: Relaxation time for different values of ∆m with fixed boundary conditions. (a) Varying α values. (b) Varying
β values.

thermalization in both systems, the β-FPUT model exhibits a softer suppression, with a less
abrupt transition into localized regimes.

In summary, both the α- and β-FPUT systems exhibit reduced entropy as mass difference
increases, pointing to a suppression of thermalization and enhanced localization. However, the
α-FPUT system shows a stronger and more nonlinear sensitivity to ∆m, suggesting a more
prominent interplay between nonlinearity and heterogeneity. To verify this, we consider now the
thermalization time for each case previously shown, starting with the α-FPUT case.
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Figure 2.9a) shows the results for the α-FPUT system. For α = 0.3, thermalization time
clearly decreases with increasing mass difference ∆m. For α = 0.6 and α = 0.9, the behavior
is more complex, with oscillatory patterns. Still, a general trend emerges: thermalization time
decreases with ∆m for α = 0.6, but increases for α = 0.9. This suggests a regime shift where
increasing ∆m can either speed up or slow down thermalization, depending on the nonlinearity.

In Figure 2.9b), the β-FPUT system shows a more consistent decrease in thermalization
time as ∆m increases. This is especially clear for β = 1.0. For larger values of β, thermalization at
a timescale of 103 is not achieved for small ∆m; higher mass differences are needed. For example,
the decrease begins around ∆m = 0.3 for β = 3.0 and around ∆m = 0.5 for β = 5.0, both
showing slight oscillations.

a) Thermalization time τth as a function of ∆m for low values of α
and ∆m. Initial conditions correspond to those in Fig. 2.9a)

b) Normalized thermalization time τth/τth(∆m = 0) versus ∆m for
α = 0.1 (low ∆m regime). A polynomial fit is included, with data
points extracted from Fig. 2.10a).

Fig. 2.10: Thermalization dynamics in the low-parameter regime. (a) Dependence of τth on ∆m; (b) Normalized
thermalization time with polynomial fit.

As a final result of this section, we can plot τth/τ0, where τ0 is the thermalization time for
the homogeneous case exploring the regime of weak values of ∆m.

For the case of ∆m, we can see a decrease in the thermalization time for α = 0.1, showing
a clear tendency for decreasing thermalization time around all values of ∆m. However, as we
increase α, even keeping α in low values, this tendency of a smooth thermalization decay breaks,
and an oscillating behavior starts to show in this case. However, for the case α = 0.3 if we observe
2.9a) we can see that, for higher values of ∆m a decay in thermalization time as ∆m increases
can be seen. Deeper studies in low values of α are necessary for clearing this behavior.

In the previous case, τth exhibits a smooth decay compared to other cases for α = 0.1. This
suggests that Eq. (1.81) describes, as a first approximation, the change on thermalization time
when mass difference is introduced and its dependency for a linear and quadratic term of ∆m.
Further studies are needed to determine the limiting behavior of this phenomenon, as discussed
in Chapter 1.

In summary, the α-FPUT system exhibits distinct regimes where thermalization time
either decreases or increases with ∆m, while the β-FPUT case shows a more uniform decreasing
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2. ON THE RELAXATION FOR THE CASE OF DIFFERENT MASSES

trend. These results highlight the subtle interplay between nonlinearity and mass heterogeneity
in thermalization dynamics.

To better understand the mechanisms behind these thermalization regimes, we now
examine how energy redistributes across high frequency modes. In particular, the behavior of
high-frequency excitations provides crucial insights into whether energy remains localized or
spreads efficiently throughout the system, surprisingly underexplored despite its fundamental
importance in nonlinear lattice dynamics applied to fields like solid state.

2.1.3. Exploration of High frequency Mode Dynamics

While acoustic modes have dominated FPUT system studies since their inception, their
optical mode counterparts present unique challenges and opportunities. Our analysis of Figs. 2.11
and 2.12 reveals three key distinctions. Let us analyze it the dynamics of energies case by case.

Fig. 2.11: Normalized energy per mode over time for a system of N = 64 particles with fixed boundary conditions.
The columns represent different spring difference levels: ∆m = 0.3, 0.6, 0.9 (left to right). The rows correspond to
varying nonlinearity strengths: α = 0.3, 0.6, 0.9 (top to bottom). The system is initialized with energy localized in the
last mode with an amplitude of A = 0.1.

For the α-FPUT system (Fig. 2.11), mass difference (∆m) proves more influential than
nonlinearity (α) in exciting high-frequency modes. The extreme case of α = 0.9 with ∆m = 0.9
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2.1 Fixed Boundary Conditions

demonstrates two notable features: a late-time energy cascade characterized by rapid multi-mode
excitation, and the potential breakdown of recurrence phenomena.

Fig. 2.12: Normalized energy per mode over time for a system of N = 64 particles with fixed boundary conditions.
The columns represent different spring difference levels: ∆m = 0.3, 0.6, 0.9 (left to right). The rows correspond to
varying nonlinearity strengths: β = 1, 3, 5 (top to bottom). The system is initialized with energy localized in the last
mode with an amplitude of A = 0.1.

The β-FPUT (see 2.12) system exhibits even more pronounced behavior, where the energy
cascade becomes particularly evident at large mass differences. When ∆m = 0.9, the system shows
complete disappearance of recurrence and possible transition to chaotic dynamics. Furthermore,
increasing β leads to greater mode excitation and significantly reduced recurrence times.

These results demonstrate that while stronger nonlinearities accelerate energy transfer
between modes – consistent with known acoustic mode behavior [28, 31] – high-frequency modes
display unique characteristics. Moderate mass differences permit partial energy localization,
whereas greater alternance promotes mode mixing, especially in β-FPUT systems. Unlike their
acoustic counterparts, high-frequency modes maintain persistent energy diffusion rather than
exhibiting clear recurrence cycles.

However, these dynamics present computational challenges, as high nonlinearity combined
with large mass differences often leads to numerical instabilities. This limitation underscores the
need for more robust simulation techniques to properly capture these complex behaviors.
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2. ON THE RELAXATION FOR THE CASE OF DIFFERENT MASSES

To quantitatively characterize these observed energy dynamics, we compute the spectral
entropy S(t). The spectral entropy reveals striking differences from the low-frequency case,
providing crucial insights into the system’s energy evolution.

Fig. 2.13: Time evolution of the spectral entropy for a system of N = 64 particles with fixed boundary conditions,
showing the variation of spectral entropy for different values of ∆m. Each panel corresponds to different values of the
nonlinear parameter α, increasing from left to right and top to bottom: α = 0, 0.3.0.6, 0.9. The system is initialized
with an excitation in the last mode, with an initial amplitude of A = 0.1.

For the α-FPUT system (Fig. 2.13), the highest entropy values consistently appear at
∆m = 0.9 when α ̸= 0. The most extreme case (α = 0.9, ∆m = 0.9) shows particularly interesting
behavior: the entropy becomes unstable within the observed time window and exhibits strong
oscillations. These oscillations, present in all α ̸= 0 cases but most pronounced at ∆m = 0.9,
may reflect either numerical stiffness in our simulations or long-timescale recurrent behavior not
visible in shorter observations.

Turning to the β-FPUT system (Fig. 2.14), the entropy behavior differs qualitatively.
While oscillations persist, they are less prominent than in the α-FPUT case. More significantly,
the ∆m = 0.9 configuration shows substantially higher entropy than other mass differences across
all β values. The sharp entropy increase between ∆m = 0.6 and 0.9 strongly suggests a dynamical
transition, possibly indicating the onset of an energy cascade regime at large mass differences.
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2.2 Periodic Boundary Conditions

Fig. 2.14: Time evolution of the spectral entropy for a system of N = 64 particles with fixed boundary conditions,
showing the variation of spectral entropy for different values of ∆m. Each panel corresponds to different values of the
nonlinear parameter β, increasing from left to right and top to bottom: β = 0, 1, 3, 5. The system is initialized with an
excitation in the last mode, with an initial amplitude of A = 0.1.

2.2. Periodic Boundary Conditions

2.2.1. Low Frequency Mode Dynamics and Its Effects

In the original FPUT problem, fixed boundary conditions were considered. However,
subsequent studies have also explored periodic boundary conditions due to their relevance in
various physical systems, mainly disordered materials. In this work, we extend our analysis to
include periodic boundary conditions, allowing us to compare their effects with those of fixed
boundaries.

A direct comparison with the case for fixed boundary conditions reveals some points. While
fixed boundaries impose constraints leading to stronger energy localization, periodic boundaries
reduce confinement effects. This distinction influences the long-term behavior of high-frequency
excitations and the rate of energy cascading through nonlinear interactions. The results for
periodic boundary conditions are shown in Figs. 2.15 and 2.16.
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2. ON THE RELAXATION FOR THE CASE OF DIFFERENT MASSES

Fig. 2.15: Normalized energy per mode over time for a system of N = 64 particles with periodic boundary conditions.
The columns represent different mass alternance levels: ∆m = 0.3, 0.6, 0.9 (left to right). The rows correspond to
varying nonlinearity strengths: α = 0.3, 0.6, 0.9 (top to bottom). The system is initialized with energy localized in the
second mode with an initial amplitude of A = 5.

For the α-FPUT system (Fig. 2.15), recurrence is observed in most cases. However, for
specific parameter combinations—such as α = 0.6, ∆m = 0.6 and α = 0.9, ∆m = 0.6—recurrence
appears to be disrupted by mass differences rather than nonlinearity. This is further supported
by the reappearance of recurrence for ∆m = 0.9.

As in the fixed boundary case, increasing nonlinearity reduces energy localization in the
first modes, promoting energy redistribution across the system. For the β-FPUT system (α = 0),
recurrence persists under periodic boundary conditions, except for the case of ∆m = 0.9, β = 1.0,
where a sticky state emerges, similar to the fixed boundary scenario. Increasing nonlinearity
restores the recurrence phenomenon and shortens the recurrence time. Additionally, higher mass
alternance leads to energy spreading, with energy localizing in a pair of modes rather than
concentrating in the first few.

These findings have important implications for modeling materials and studying thermali-
zation in systems with alternating masses. They confirm a complex relationship between mass
differences, nonlinearity, and thermalization, highlighting how boundary conditions and structural
heterogeneity influence energy dynamics.
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2.2 Periodic Boundary Conditions

Fig. 2.16: Normalized energy per mode over time for a system of N = 64 particles with periodic boundary conditions.
The columns represent different mass alternance levels: ∆m = 0.3, 0.6, 0.9 (left to right). The rows correspond to
varying nonlinearity strengths: β = 1, 3, 5 (top to bottom). The system is initialized with energy localized in the second
mode with an initial amplitude of A = 5.

To further explore these relationships, particularly the interplay between nonlinearity,
mass alternance, and boundary conditions, we turn to the spectral entropy as a quantitative
measure as we did in the case for fixed boundary conditions. This approach allows us to analyze
how energy distributes across modes and provides deeper insights into the system’s approach to
thermal equilibrium.

For the α-FPUT system, we observe in Fig. 2.17 that at low nonlinearity values, the
entropy behavior resembles that of the fixed boundary case. However, as α increases, the entropy
for ∆m = 0.3 grows over time, reaching higher values than for ∆m = 0. This may indicate
a phase transition near ∆m = 0.3, a hypothesis supported by [25], which reports a resonance
phenomenon around the mass ratio M/m ≈ 2 in diatomic chains. Here, M and m represent the
large and small masses, respectively. This mass ratio corresponds to ∆m ≈ 0.3 in our study, and
it is associated with shorter thermalization times compared to other mass ratios. Future work
could employ numerical tools such as Lyapunov exponents and wave turbulence theory to confirm
this hypothesis.

Exploring now the β-FPUT system, seen in Fig. 2.18, we observe similar trends at low
nonlinearity values (β = 1), where higher ∆m reduces the entropy peak. However, as nonlinearity
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2. ON THE RELAXATION FOR THE CASE OF DIFFERENT MASSES

Fig. 2.17: Time evolution of the spectral entropy for a system of N = 64 particles with periodic boundary conditions,
showing the variation of spectral entropy for different values of ∆m. Each panel corresponds to different values of the
nonlinear parameter α, increasing from left to right and top to bottom: α = 0, 0.3, 0.6, 0.90. The system is initialized
with an excitation in the second mode, with an initial amplitude of A = 5.

increases, the spectral entropy rises over time, even after reaching an apparent steady state.
Notably, for β = 5 and ∆m = 0.3, the entropy increases after a period of stability, surpassing
the values observed for ∆m = 0. This behavior suggests the possibility of a phase transition at
specific ∆m values or mass ratios (1 +∆m)/(1−∆m) ≈ 2 or ∆m ≈ 0.3, consistent with findings
in [25].

2.2.2. Exploration of High Frequency Mode Dynamics

For the α-FPUT case, increasing ∆m generally leads to excitation of more modes. This
effect is particularly pronounced at α = 0.9 and ∆m = 0.9, where we observe a distinct mode
excitation cascade over time – suggesting accelerated thermalization. Additionally, recurrence
time decreases significantly at higher α values.

In contrast, the β-FPUT system exhibits even more dramatic effects. Here, higher values
of β enhance mode excitation and further shorten recurrence time. This behavior is particularly

32



2.2 Periodic Boundary Conditions

Fig. 2.18: Time evolution of the spectral entropy for a system of N = 64 particles with periodic boundary conditions,
showing the variation of the spectral entropy for different values of ∆m. Each panel corresponds to different values of
the nonlinear parameter β, increasing from left to right and top to bottom: β = 0, 1, 3, 5. The system is initialized with
an excitation in the second mode, with an initial amplitude of A = 5.

striking as ∆m increases: energy spreads faster and more uniformly across the spectrum. At the
extreme limit (∆m = 0.9), we observe a fully developed mode excitation cascade, where nearly
all modes participate in energy transfer. Notably, this regime is characterized by an apparent
disappearance of recurrence phenomena, suggesting that strong nonlinearity and mass alternance
together can suppress long-term energy localization.

This contrast between the α-FPUT and β-FPUT systems underscores how different
nonlinear interactions govern energy redistribution in mass-alternating chains. While the α system
progressively unlocks new modes, facilitating a gradual transition toward equipartition, the β
system exhibits a more abrupt transition into a fully excited state. This distinction suggests that
nonlinearity plays a dual role, either enhancing localization effects at lower values or accelerating
thermalization at sufficiently high nonlinear strengths.

To quantitatively assess these effects and confirm the observed transitions, we now turn to
the spectral entropy of the system.
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2. ON THE RELAXATION FOR THE CASE OF DIFFERENT MASSES

Fig. 2.19: Normalized energy per mode over time for a system of N = 64 particles with periodic boundary conditions.
The columns represent different mass difference levels: ∆m = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying
nonlinearity strengths: α = 0.3, 0.6, 0.9 (top to bottom). The system is initialized with energy localized in the second
mode with an initial amplitude of A = 0.1.

In the α-FPUT system (Fig. 2.21), the entropy values remain remarkably low, growing
linearly rather than saturating. Notably, ∆m = 0.9 cases consistently show the highest entropy
values.

The β-FPUT system (Fig. 2.22) exhibits more conventional behavior, with entropy ap-
proaching asymptotic values. Again, ∆m = 0.9 configurations reach the highest entropy levels,
supporting the energy cascade hypothesis at large mass differences.
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Fig. 2.20: Normalized energy per mode over time for a system of N = 64 particles with periodic boundary conditions.
The columns represent different mass difference levels: ∆m = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying
nonlinearity strengths: β = 1.0, 3.0, 5.0 (top to bottom). The system is initialized with energy localized in the second
mode with an initial amplitude of A = 0.1.
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Fig. 2.21: Time evolution of the spectral entropy for a system of N = 64 particles with periodic boundary conditions,
showing the variation of the spectral entropy for different values of ∆m. Each panel corresponds to different values of
the nonlinear parameter α, increasing from left to right and top to bottom: α = 0, 0.3, 0.6, 0.9. The system is initialized
with an excitation in the last mode, with an initial amplitude of A = 0.1.
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Fig. 2.22: Time evolution of the spectral entropy for a system of N = 64 particles with periodic boundary conditions,
showing the variation of the spectral entropy for different values of ∆m. Each panel corresponds to different values of
the nonlinear parameter β, increasing from left to right and top to bottom: β = 0, 1, 3, 5. The system is initialized with
an excitation in the second mode, with an initial amplitude of A = 0.1.
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Capítulo 3

On the relaxation for the case of different
springs

Following the analysis of mass heterogeneity, this chapter extends the study to the
case of alternating spring constants. While less explored than the case of varying masses, this
scenario presents distinct challenges and opportunities for understanding energy transport and
thermalization in nonlinear lattices. Its relevance extends to various real-world applications,
including disordered materials, biological systems, and engineered structures, as highlighted in the
Introduction. Additionally, the interplay between nonlinearity and spring alternance provides a
compelling framework for addressing fundamental questions in statistical mechanics and dynamical
systems.

Unlike previous studies, this work considers a system where nonlinear parameters are not
homogeneous, allowing for a more comprehensive exploration of the effects of varying spring
constants. However, this generalization introduces additional computational complexity. By
systematically varying both the alternance strength and nonlinearity parameters, we examine
the system’s thermalization dynamics, energy localization, and spectral entropy. Our results
demonstrate how variations in spring constants influence energy transport and thermalization,
offering new insights into the role of heterogeneity in nonlinear systems.

3.1. Fixed Boundary Conditions

3.1.1. Low Frequency Mode Dynamics and Its effects on Thermalization

As in Chapter 2, we begin with fixed boundary conditions, focusing on the behavior of
low-frequency modes. For the α-FPUT system, introducing alternance in spring constants shortens
recurrence times and leads to minor excitations of higher modes. However, spring alternance
increases system stiffness, which can cause numerical instabilities and requires careful handling in
simulations, such as reducing time steps or using adaptive algorithms.

For the α-FPUT chain, as nonlinearity increases, energy distributes more evenly across
modes. For example, at α = 0.9 and ∆κ = 0.3, the recurrence phenomenon appears to vanish but
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3. ON THE RELAXATION FOR THE CASE OF DIFFERENT SPRINGS

reemerges as ∆κ increases. Notably, higher values of ∆κ strengthen recurrence, reducing the time
between cycles.

High levels of nonlinearity, combined with weak spring alternance, promote partial ther-
malization, where energy gradually redistributes across modes. In contrast, stronger spring
alternance enhances energy localization, delaying or preventing thermalization altogether. These
findings underscore the significant role of spring alternance in shaping thermalization dynamics,
complementing the well-studied effects of mass alternance.

Fig. 3.1: Normalized energy per mode over time for a system of N = 64 particles. The columns represent different
spring difference levels: ∆κ = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying nonlinearity strengths:
α = 0.3, 0.6, 0.9 (top to bottom). The system is initialized with energy localized in the second mode with an amplitude
of A = 5.

Turning to the β-FPUT chain, we can see that as ∆κ increases, recurrence time decreases.
On the other hand, as β increases, the excitation of higher modes is more prominent. For β = 5.0.
and ∆κ = 0.6, the recurrence seems to disappear for long times, showing that for high values of
β and medium values of ∆κ, thermalization occurs faster.

To further explore these dynamics, we compute the spectral entropy for the system. This
analysis illuminates how thermalization evolves across different values of ∆κ and β, revealing the
interplay between spring alternance, nonlinearity parameters (α and β), and thermalization rates.

40



3.1 Fixed Boundary Conditions

Fig. 3.2: Normalized energy per mode over time for a system of N = 64 particles with fixed boundary conditions. The
columns represent different spring difference levels: ∆κ = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying
nonlinearity strengths: β = 1, 3, 5 (top to bottom). The system is initialized with energy localized in the second mode
with an amplitude of A = 10.

Starting with the α-FPUT system, Fig. 3.3 reveals key insights about the α-FPUT system
under spring alternation (∆κ). At ∆κ = 0.3, we observe a behavior qualitatively similar to mass
difference cases, where greater differences typically reduce entropy values. For ∆κ = 0.3, entropy
values initially approximate those of ∆κ = 0, but ultimately tend to exceed the homogeneous
case (∆κ = 0). This pattern persists across multiple α values, suggesting a systematic effect. The
observed entropy enhancement implies spring alternation may facilitate energy redistribution.
This effect becomes more pronounced over time. It also contrasts with mass difference cases,
where entropy typically decreases.

Nevertheless, difficulty for getting numerical stability, and therefore, for getting reliable
results, becomes increasingly a challenge for the study.

On the other hand, for the β-FPUT case, the results are shown in Fig. 3.4. In particular, for
the case of β = 3, we observe an apparent stabilization of entropy at early times, followed by an
increase at later times. Interestingly, this late-time excitation is not clearly visible in the heatmaps
shown in Figures 3.1 and 3.2. To fully understand this behavior, further refinements in numerical
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Fig. 3.3: Time evolution of the spectral entropy for a system of N = 64 particles with fixed boundary conditions,
showing the variation of the spectral entropy for different values of ∆κ. Each panel corresponds to different values of
the nonlinear parameter α, increasing from left to right and top to bottom: α = 0, 0.3, 0.6, 0.9. The system is initialized
with an excitation in the first mode, with an initial amplitude of A = 10.

methods are necessary. These improvements will help distinguish between numerical flaws and
genuine physical phenomena, ensuring the reliability of our observations and conclusions. Another
possibility is the existence of a ’phase transition’ behavior for the case β = 3 and ∆κ = 0.9, but
further studies are necessary. Due to a lack of literature for this case, a conclusion is rather bold
in this case.

3.1.1.1. Thermalization Time Analysis

Using the latest spectral entropy results, we compute the reached values of spectral entropy
when the system is thermalized, and thermalization time as previously done for the case of
different masses with fixed boundary conditions.

The results for the thermalization time are shown in Figure 3.6, while the results for the
values of the spectral entropy are shown in 3.5.
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Fig. 3.4: Time evolution of the spectral entropy for a system of N = 64 particles with fixed boundary conditions,
showing the variation of spectral entropy for different values of ∆κ. Each panel corresponds to different values of the
nonlinear parameter β, increasing from left to right and top to bottom: β = 0, 1.0, 3, 5. The system is initialized with
an excitation in the first mode, with an initial amplitude of A = 10.

The spectral entropy S(τth) as a function of spring constant heterogeneity ∆κ reveals
distinct behaviors between the α and β-FPUT systems. On one hand, the α-FPUT system (Fig.
3.5a)) exhibits a more systematic trend: entropy decreases monotonically with increasing ∆m
across all values of α. Notably, higher nonlinearity (α=0.9) leads to initially elevated entropy
values that decline more steeply with heterogeneity. These results suggest that spring alternance
effectively suppresses thermalization in the α-FPUT model, promoting energy localization over a
broad range of nonlinearities.

On the other hand, the β-FPUT system (Fig. 3.5b)) displays a more abrupt, non-monotonic
response. A sharp drop in entropy occurs only at intermediate nonlinearity (β=3.0), indicating a
threshold-like transition toward localization as alternance increases. In contrast, for weak (β = 1.0)
and strong (β = 5.0) nonlinearities, entropy remains nearly constant, suggesting limited sensitivity
to spring heterogeneity in those regimes.

In summary, the α-FPUT system exhibits a clear suppression of thermalization as spring
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a) Spectral entropy at equilibrium times vs different values of ∆κ
for different values of α = 0.3, 0.6, 0.9 for fixed boundary conditions.
The initial conditions are the same as Fig. 3.1.

b) Spectral entropy at equilibrium times vs different values of ∆κ
for different values of β = 1.0, 3.0, 5.0 for fixed boundary conditions.
Initial conditions are the same as Fig. 3.2.

Fig. 3.5: Values of spectral enetropy when thermalization time is reached for different values of ∆κ with fixed boundary
conditions. (a) Varying α values. (b) Varying β values.

a) Thermalization time vs different values of ∆κ for different values of
α = 0.3, 0.6, 0.9 for fixed boundary conditions. The initial conditions
are the same as Fig. 3.1.

b) Thermalization time vs different values of ∆κ for different values
of β = 1.0, 3.0, 5.0 for fixed boundary conditions. Initial conditions
are the same as Fig. 3.2.

Fig. 3.6: Thermalization time for different values of ∆κ with fixed boundary conditions. (a) Varying α values. (b)
Varying β values.

alternance increases, with entropy decreasing steadily across all nonlinearities. In contrast, the β-
FPUT system shows this effect only at intermediate nonlinearity, suggesting a threshold behavior.
These differences reflect how each type of nonlinearity uniquely mediates the impact of spring
difference on energy localization.

Once this explored, we analyze now the thermalization times.

For the α-FPUT system (Fig. 3.6a)) ) we can see a similar pattern to the ∆m case. We
can see a clear tendency for decreasing thermalization time around all values of ∆m for the cases
α = 0.3 and α = 0.6. However, for the case of α = 0.9, we can see two different regimes, the first
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one between ∆κ = 0.1 and ∆κ = 0.6, in which thermalization time increases, and another regime
where thermalization time decreases for the rest of values of ∆κ.

For the β-FPUT system (Fig. 3.6b)) a tendency is harder to see. The stiffness of the
system shows that thermalization time reaches orders from 102 up to 104. In particular, for
β = 3.0 we can see an abrupt fall in thermalization time for ∆κ = 0.7. While for low values of
∆κ, thermalization time is beyond 104, reaching this regime for ∆κ = 0.4. For other cases, we can
see an oscillating behavior, mainly in β = 1.0, where thermalization time increases, decreases and
increases, for finally decreasing again. For the case of β = 5.0 we can see a tendency to decrease
thermalization time for low to intermediate values of ∆κ, but the absence of thermalization times
for some values of ∆κ indicates that thermalization time is beyond the scope of 104 shown in the
figure, giving clues for an oscillating behavior for β = 5.0.

These results suggest that nonlinearity and alternance interact in fundamentally different
ways depending on the dominant nonlinear term. To gain deeper insight into this interplay, we
now turn our attention to the behavior of high-frequency (optical) modes, where additional
complexities arise due to their distinct dynamical properties.

As a final result of this section, we can plot τth/τ0, where τ0 is the thermalization time for
the homogeneous case exploring the regime for weak spring alternance ∆κ, similar to the case
with different masses.

a) Thermalization time τth as a function of ∆κ for low values of α
and ∆κ. Initial conditions correspond to those in Fig. 3.6a)

b) Normalized thermalization time τth/τth(∆κ = 0) versus ∆κ for
α = 0.1 (low ∆κ regime). A polynomial fit is included, with data
points extracted from Fig. 3.7a).

Fig. 3.7: Thermalization dynamics in the low-parameter regime. (a) Dependence of τth on ∆κ; (b) Normalized
thermalization time with polynomial fit.

For the case of ∆κ, we observe a pattern similar to the previous one: at α = 0.1 and low
∆m, the thermalization time τth exhibits a smooth decay. This suggests that the underlying
mechanism responsible for the decay is analogous in both cases—despite differences in masses
and spring constants—and is initially approximated by Eq. (1.83). Further studies are needed to
determine the limiting behavior of this phenomenon, as discussed in Chapter 1.
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3.1.2. Exploration of High Frequency Mode Dynamics

The analysis of optical modes introduces additional numerical complexities, yet reveals
consistent patterns in respect to previous cases.

The α-FPUT system (Fig.3.8) exhibits distinct recurrence patterns depending on nonli-
nearity strength. At α = 0.3, recurrence is completely absent, while for α = 0.6 it only emerges
at the maximum spring alternation (∆κ = 0.9). The α = 0.9 case reveals an inverse relationship
between ∆κ and recurrence time - a surprising contrast to the α = 0.6 behavior that warrants
further investigation.

Fig. 3.8: Normalized energy per mode over time for a system of N = 64 particles with fixed boundary conditions. The
columns represent different spring difference levels: ∆κ = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying
nonlinearity strengths: α = 0.3, 0.6, 0.9 (top to bottom). The system is initialized with energy localized in the last mode
with an amplitude of A = 0.1.

The β-FPUT system (Fig. 3.9) demonstrates progressive changes with increasing β and ∆κ.
Higher β values excite additional modes while shortening recurrence times, though these effects
diminish in extreme parameter regimes. Most notably, the β = 3, ∆κ = 0.9 configuration exhibits
partial recurrence breakdown, where an emerging energy cascade coexists with intermittent mode-
specific energy oscillations - suggesting a transitional state between localized and delocalized
energy dynamics. Alternative analysis or further refinements on numerical methods are necessary
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for a clear distinction on the study of this case.

Fig. 3.9: Normalized energy per mode over time for a system of N = 64 particles with fixed boundary conditions. The
columns represent different spring difference levels: ∆κ = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying
nonlinearity strengths: β = 1, 3, 5 (top to bottom). The system is initialized with energy localized in the last mode with
an amplitude of A = 0.1.

The analysis of the spectral entropy of this case, is represented in Fig. 3.10 for the α ≠ 0
case.The spectral entropy analysis for the α ̸= 0 case reveals consistent patterns in high-frequency
mode dynamics. Most notably, configurations with ∆κ = 0.9 consistently achieve the highest
entropy values across all parameter sets. These cases exhibit pronounced oscillatory behavior,
particularly strong in early time evolution before weakening, potentially indicating recurrent
dynamics prior to system equilibration.

For the β ≠ 0 case, the results are shown in 3.11. For this case, we observe analogous beha-
vior at β = 1, with ∆κ = 0.9 again yielding maximum entropy values. However, this oscillatory
pattern diminishes with increasing β, converging toward the entropy evolution characteristics
observed in low-frequency cases. The analysis further demonstrates that greater ∆κ values syste-
matically enhance entropy production, suggesting that spring alternation significantly promotes
energy equipartition when high-frequency modes are initially excited.

Having examined the fixed boundary condition cases, we now turn to periodic boundary
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Fig. 3.10: Time evolution of the spectral entropy for a system of N = 64 particles with fixed boundary conditions,
showing the variation of spectral entropy for different values of ∆κ. Each panel corresponds to different values of the
nonlinear parameter α, increasing from left to right and top to bottom: α = 0, 0.3, 0.6, 0.9. The system is initialized
with an excitation in the last mode, with an initial amplitude of A = 0.1.

conditions to investigate how system confinement affects these dynamics.

3.2. Periodic boundary conditions

3.2.1. Low Frequency Mode Dynamics and Its Effects

We begin our analysis with the α-FPUT system. The result can be visualized in Fig. 3.12.
A notable behavior emerges for α = 0.3: as ∆κ increases, fewer modes become excited, leading to
energy localization in the lowest-frequency modes. However, this trend does not persist for larger
values of α. For higher nonlinearities, an increase in ∆κ results in a greater number of excited
modes, facilitating energy redistribution.

In particular, for α = 0.9 and ∆κ = 0.3 (Fig. 3.12, the system exhibits what appears to be
a more chaotic energy transfer for times exceeding t ≈ 0.05. In contrast, for lower values of α,
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3.2 Periodic boundary conditions

Fig. 3.11: Time evolution of the spectral entropy for a system of N = 64 particles with fixed boundary conditions,
showing the variation of spectral entropy for different values of ∆κ. Each panel corresponds to different values of the
nonlinear parameter β, increasing from left to right and top to bottom: α = 0, 1, 3, 5. The system is initialized with an
excitation in the last mode, with an initial amplitude of A = 0.1.

energy follows a more structured pattern: it is initially transferred from the first mode to higher
modes, then redistributed to the second excited mode, repeating this cycle before returning to
the first mode.

Now, for the β-FPUT system, the result is shown in 3.13. For this system, another intriguing
behavior is observed for β = 1, where only two modes are initially excited. As ∆κ increases, the
recurrence time decreases for ∆κ = 0.6, while for ∆κ = 0.9, a lower-frequency mode becomes
excited. Furthermore, as β increases, a progressively larger number of modes participate in the
energy redistribution process.

As with other cases, we decided to explore spectral entropy with the objective to give an
idea of the thermalization of the system. For the α-FPUT case, results are obtained in 3.14. For
α = 0.3, we see a similar pattern viewed on the case of ∆m with fixed boundary conditions, in
which as we increase ∆κ, entropy tends to reach lower values. However, as before, for ∆κ = 0.3,
it seems like entropy tends to reach the values of the case ∆κ = 0 and getting bigger on the long
run. Now, this last observation tends to be more remarkable as α becomes bigger. For the case
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Fig. 3.12: Normalized energy per mode over time for a system of N = 64 particles with periodic boundary conditions.
The columns represent different spring difference levels: ∆κ = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying
nonlinearity strengths: α = 0.3, 0.6, 0.9 (top to bottom). The system is initialized with energy localized in the second
mode with an amplitude of A = 5.

of α = 0.9, we can see that for ∆κ = 0.3, entropy values are beyond the rest of the other cases
of ∆κ, showing a difference with respect to other cases, and what could be a ’phase transition’
around ∆κ = 0.3.

With respect to other cases, numerical stability becomes a major problem due to intro-
duction of stiffness. This reflects the results of these figures. Further refinements on numerical
methods are necessary for this, in light to help discern numerical errors or if we are appreciating
a real behavior of the system.

For the β-FPUT system, results are shown in 3.15. For one hand, for β = 1, we can observe
a similar pattern observed before, in which as we increase ∆κ, entropy values decreases. This is
not the case for the other values of β. For the cases of β = 3 and 5, we can observe an apparent
stability of entropy just for increasing at later times, as we observed before for the case of fixed
boundary conditions. This reflects an initial recurrence and trapped states, for later, possibly
exciting other modes, not observed in figures 3.12 and 3.13.
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3.2 Periodic boundary conditions

Fig. 3.13: Normalized energy per mode over time for a system of N = 64 particles with periodic boundary conditions.
The columns represent different spring difference levels: ∆κ = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying
nonlinearity strengths: β = 1, 3, 5 (top to bottom). The system is initialized with energy localized in the second mode
with an amplitude of A = 5.

3.2.2. Exploration on High Frequency Modes

A complete characterization of the system’s nonlinear dynamics requires examination of
both acoustic (low-frequency) and optical (high-frequency) modes. However, periodic boundary
conditions introduce significant numerical constraints that shape our analytical approach. For the
β ̸= 0 case, simulations remain numerically stable across physically relevant amplitude ranges,
yielding reliable results. In contrast, the α ̸= 0 case presents substantial computational challenges
- only at very small amplitudes (A ≈ 0.05, as the case of β) could stable simulations be performed,
which revealed trivial linear behavior without energy equipartition transitions, as a consequence
of a low energy initial condition.

The simulation results are presented in Fig. 3.16, revealing distinct behaviors compared to
previous cases. Notably, for β = 1, recurrence phenomena are entirely absent, even as ∆κ increases.
As β grows, small energy cascades emerge, where energy briefly redistributes among neighboring
modes before repeating the process (∆κ = 0.3, 0.6). For ∆κ = 0.9, a clear energy cascade develops,
disrupting recurrence and transferring energy predominantly among low-frequency modes. A
similar pattern appears for α = 0.9, reinforcing these observations.

51



3. ON THE RELAXATION FOR THE CASE OF DIFFERENT SPRINGS

Fig. 3.14: Time evolution of the spectral entropy for a system of N = 64 particles with periodic boundary conditions,
showing the variation of spectral entropy for different values of ∆κ. Each panel corresponds to different values of α,
increasing from left to right and top to bottom: α = 0, 0.3, 0.6, 0.9. The system is initialized with an excitation in the
second mode, with an initial amplitude of A = 5.

To quantify these effects, we compute the spectral entropy (see Figure 3.17). For β = 1,
recurrence remains absent within the observed timeframe, but for ∆κ = 0.9, the entropy exhibits
a sharp increase, followed by oscillations and gradual growth. Lower ∆κ values display a more
stable trend. For β = 0.6, the entropy evolves more smoothly for ∆κ = 0.9, trending toward
higher values over time, while other cases oscillate but suggest a tendency toward equilibrium.
At β = 5, entropy rises even more smoothly for ∆κ = 0.9, indicating a well-developed energy
cascade (Figure 3.16). This suggests faster partial thermalization with minimal recurrence effects.
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3.2 Periodic boundary conditions

Fig. 3.15: Time evolution of the spectral entropy for a system of N = 64 particles with periodic boundary conditions,
showing the variation of spectral entropy for different values of ∆κ. Each panel corresponds to different values of β,
increasing from left to right and top to bottom: β = 0, 1, 3, 5. The system is initialized with an excitation in the second
mode, with an initial amplitude of A = 5.
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Fig. 3.16: Normalized energy per mode over time for a system of N = 64 particles with periodic boundary conditions.
The columns represent different spring difference levels: ∆κ = 0.3, 0.6, 0.9 (left to right). The rows correspond to varying
nonlinearity strengths: β = 1, 3, 5 (top to bottom). The system is initialized with energy localized in the last mode with
an amplitude of A = 0.5.
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3.2 Periodic boundary conditions

Fig. 3.17: Time evolution of the spectral entropy for a system of N = 64 particles with periodic boundary conditions,
showing the variation of spectral entropy for different values of ∆κ. Each panel corresponds to different values of β,
increasing from left to right and top to bottom: β = 0, 1, 3, 5. The system is initialized with an excitation in the last
mode, with an initial amplitude of A = 0.05.

55





Conclusions

This work presents a generalization of the Fermi-Pasta-Ulam-Tsingou (FPUT) model,
incorporating site-dependent mass and spring distributions. Two specific cases were analyzed: a
system with alternating masses and a system with alternating spring constants. While the case
of alternating masses has been previously studied in the literature, the case of varying spring
constants remains largely unexplored. This latter scenario is particularly relevant as a model for
polymeric chains and topological insulators, offering new perspectives on wave propagation in
structured materials.

For both cases, different initial conditions (ranging from low- to high-frequency modes)
and boundary conditions (fixed and periodic) were explored. The results indicate that introducing
local variations modifies recurrence behavior and thermalization dynamics in a nontrivial way,
with the effects strongly dependent on the type and strength of the nonlinearity.

A central result is that the role of alternating mass-spring distributions varies with the
nonlinearity parameters α and β, as well as the imposed boundary conditions. The key observations
are:

For weak nonlinearities (α = 0.3, β = 1), in both fixed and periodic boundary conditions,
introducing weak alternation in masses or springs leads to enhanced recurrence and delayed
thermalization, as evidenced by the persistence of low spectral entropy values over long
timescales. Energy remains confined to a few low-frequency modes, and equipartition is
significantly inhibited.

For weak nonlinearities of α and weak values of ∆m, ∆κ the existence of a regime where
thermalization time decreases as a function of ∆m up to a quadratic term is given.

For intermediate to strong nonlinearities, the impact depends on both the type of nonlinearity
and boundary conditions:

• In the α-FPUT case, energy redistribution remains slow, but nonlinear interactions
gradually compensate for the frequency mismatch introduced by alternating masses
or springs, leading to a progressive increase in entropy. This effect is particularly
pronounced for periodic boundary conditions, where entropy increases more rapidly
than in the homogeneous case (∆m = 0,∆κ = 0).

• In the β-FPUT case, stronger nonlinearities (β = 3, 5) facilitate energy transfer across
modes. For different values of β, thermalization accelerates despite disorder, as seen
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3. ON THE RELAXATION FOR THE CASE OF DIFFERENT SPRINGS

in spectral entropy dynamics, which initially stabilizes before increasing significantly
over time. Similar to the α case, this behavior emerges around a threshold of ∆m or
∆κ, and is more pronounced under periodic boundary conditions.

These findings challenge the conventional assumption that mass and spring alternance
always inhibits thermalization. Instead, our results suggest that nonlinearity can counteract site
variability-induced localization, restoring energy mixing and facilitating equipartition in certain
regimes, while in others can inhibit it. This interplay between site variability, nonlinearity, and
thermalization time highlights the importance of considering both mass and spring alternance
when modeling wave turbulence and energy transport in complex systems.

Several open problems and extensions emerge from this study, offering promising avenues
for future work:

A further study of the limit case for weak α and ∆m, ∆κ, where α values around 0.1 are
taken, and the exploration of low β values is also necessary.

Higher-dimensional generalizations: Investigating whether the observed recurrence and
localization effects persist in two- and three-dimensional lattices, where additional degrees
of freedom may modify relaxation behavior.

Chaotic vs. recurrent behavior: Examining the transition between localized and ergodic
regimes in disordered nonlinear systems, using Lyapunov exponents and chaos indicators to
classify dynamical phases.

Extensions to different topologies: Exploring randomly disordered networks, quasicrystals,
and non-periodic lattice structures, to determine whether disorder-enhanced or suppressed
thermalization is a universal phenomenon.

Connections to quantum analogs: Investigating potential links between classical nonlinear
lattices and quantum many-body localization (MBL), particularly the role of Anderson
localization and topological states in energy transport.

Advanced numerical techniques: Developing more efficient computational methods for long-
term integration of nonlinear and disordered systems, including machine learning-based
models, symplectic integrators, and parallelized algorithms.

To address these questions, we propose the following methodological approach:

Performance of more numerical simulations around the values α = 0 and α = 0.2, looking
for the limit of α where quadratic dependence of ∆m breaks for low and high values of ∆m
and experimenting with β values.

Numerical and analytical studies in higher dimensions: Extend the current analysis to
2D and 3D lattices, comparing relaxation times and recurrence behavior with the 1D
case. Implement high-performance computing techniques using Julia or C/C++ to handle
large-scale simulations.
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3.2 Periodic boundary conditions

Characterization of chaos and phase transitions: Apply Lyapunov exponent analysis to
quantify the transition between regular, recurrent, and chaotic dynamics in nonlinear
disordered systems.

Graph-theoretical approaches to disorder: Investigate randomly disordered networks using
graph theory and spectral analysis, to characterize energy redistribution and localization
phenomena.

Cross-disciplinary collaborations: Work with quantum physicists to explore classical-quantum
correspondences, particularly regarding MBL and Anderson localization.

By pursuing these research directions, this study aims to contribute to a deeper understan-
ding of nonlinear energy transport, disorder-induced localization, and thermalization dynamics.
The results have broad implications in fields such as condensed matter physics, materials science,
and quantum computing, providing a foundation for further explorations of nonlinear wave
dynamics in structured media.
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Apéndice A

MATLAB Code for numerical simulations

Listing A.1: MATLAB Simulation Code

% ----------------- Tests -------------------------------------
clear all;
close all;

% ---------------------- Parameters ----------------------
N = 32; % Number of particles
alpha = 0.25; % Nonlinear parameter alpha
beta = 0.0; % Nonlinear parameter beta
TMAX = 12000; % Maximum simulation time
DT = 20; % Time step
tspan = 0:DT:TMAX; % Time range for simulation
delta_t = 0.5; %Delta t for time averaged quantities

%------------------ Spring constants and masses ----------
DeltaMass = 0.0; % Alternating masses
DeltaK = 0.0;

% Spring constants and alternating masses for numerical simulation
k = 1 + DeltaK * ((-1).^mod ((0:N)', 2)); % Alternating masses
m = 1 + DeltaMass * ((-1).^mod ((0:N-1) ', 2)); % Alternating masses

% ---------------------- Normal Modes ----------------------
% Compute normal modes and frequencies
[frequencies , normal_matrix] = find_normal_modes(k, m); %Find

normal modes
sqrt_inv_mass = diag(sqrt (1./ m)); % Find Normal Matrix
U_matrix = sqrt_inv_mass*normal_matrix;

% --------------------- Initial conditions -------------------
%Original state
q0 = sin(pi* (1:N)' / (N + 1)); % Initial positions
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A. MATLAB CODE FOR NUMERICAL SIMULATIONS

%q0 = -10* U_matrix(:, 1);
%5q0 = -U_matrix(:, N);
p0 = zeros(N, 1); % Initial momenta

state0 = [q0; p0]; % Combined initial state [q; p]
% ---------------------- ODE Solver ----------------------
%options = odeset('RelTol ', 1e-12, 'AbsTol ', 1e-15, 'MaxStep ', DT);

% Optimized tolerances
options = odeset('RelTol ', 1e-9, 'AbsTol ', 1e-12, 'MaxStep ', DT); %

For equal masses
%options = odeset('RelTol ', 1e-6, 'AbsTol ', 1e-9, 'MaxStep ', DT); %

For equal springs it should be fine
[T, Y] = ode78 (@(t, state) yoshida_rhs(t, state , k, m, alpha , beta)

, tspan , state0 , options);

% Extract positions (q) and momenta (p)
q = Y(:, 1:N)';
p = Y(:, N+1:end)';

% ---------------------- Energy Computation ----------------------

% Compute scaled time using the first eigenvalue of the dynamical
matrix

scaled_time = T * sqrt(frequencies (1)) / (2 * pi);
%scaled_time = T * sqrt(frequencies (1)) / (2 * pi);

energies_per_modes = find_energies(p, q, frequencies , normal_matrix
, m);

%
% % ---------------------- Plotting ----------------------

% ---------------------- Optimized Grayscale -Friendly Plot
----------------------

indices = 1:5; % First 5 modes to plot
figure;
hold on;

% Define different line styles & markers for better distinction
line_styles = {'-', '--', ':', '-.', '--'};
marker_styles = {'o', 's', 'd', '^', 'v'};

% Select fewer points for markers
num_markers = 10;
marker_indices = round(linspace(1, length(scaled_time), num_markers

));

for idx = 1: length(indices)
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i = indices(idx);

% Plot with fewer markers
plot(scaled_time , energies_per_modes(i, :), 'LineStyle ',

line_styles{idx}, ...
'LineWidth ', 2.0, 'Marker ', marker_styles{idx}, '

MarkerSize ', 7, ...
'MarkerIndices ', marker_indices , 'Color', [0 0 0], ...
'DisplayName ', sprintf('Mode %d', i));

% Compute label position
last_x = scaled_time(end);
last_y = energies_per_modes(i, end);

% Offset labels for visibility
offset = max(energies_per_modes(i, :)) * 0.15 * (-1)^idx;
label_y = last_y + offset;
label_y = max(label_y , min(energies_per_modes(i, :)) * 1.05);

% Add labels slightly above the last point
%text(last_x , label_y , sprintf(' %d', i), 'FontSize ', 14, '

FontWeight ', 'bold ', ...
% 'HorizontalAlignment ', 'left ', 'VerticalAlignment ', '

bottom ', 'Color ', [0 0 0]);
end

% Formatting for grayscale
xlabel('Time (scaled)', 'Interpreter ', 'latex', 'FontSize ', 18, '

FontWeight ', 'bold');
ylabel('Energy ', 'Interpreter ', 'latex', 'FontSize ', 18, '

FontWeight ', 'bold');
legend('show', 'Location ', 'best', 'Interpreter ', 'latex');
set(gca , 'FontSize ', 13, 'LineWidth ', 1.5, 'GridAlpha ', 0.5, '

XColor ', [0 0 0], 'YColor ', [0 0 0]);
grid off;
box on;
hold off;

% ---------------------- Plot Total Energy ----------------------

% ---------------------- Total Energy Computation
----------------------

% Compute total energy using the defined functions
total_energy_over_time = compute_energy(p, q, m, k);

figure;
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plot(T, total_energy_over_time , 'LineWidth ', 1.5);
title('Total Energy Over Time');
xlabel('Time');
ylabel('Total Energy ');

grid on;

% ---------------------- Compute and Plot Cumulative Average Energy
----------------------

avg_energies = average_energy_cumulative(energies_per_modes ,
scaled_time , delta_t);

plot_average_energy(avg_energies , scaled_time);

% ---------------------- RHS Function ----------------------
function dstate = yoshida_rhs (~, state , k, m, alpha , beta)

N = length(m); % Number of particles
q = state (1:N); % Positions
p = state(N+1:end); % Momenta
forces = zeros(N,1);

% Compute forces (dp)
diff_q_left = q(2:end -1) - q(1:end -2); %[0; q(2:end -1) - q(1:

end -2)]; % Left spring elongations
diff_q_right = q(3:end) - q(2:end -1); % [q(3:end) - q(2:end -1);

0]; % Right spring elongations

% Forces calculation
forces (2:end -1) = k(3:end -1) .* diff_q_right - k(2:end -2) .*

diff_q_left + ...
alpha * (k(3:end -1) .* diff_q_right .^2 - k(2:end -2) .*

diff_q_left .^2) + ...
beta * (k(3:end -1) .* diff_q_right .^3 - k(2:end -2) .*

diff_q_left .^3);

% Boundary conditions for left and right springs
forces (1) = -k(1) * q(1) + k(2) * (q(2) - q(1)) + ...

alpha * (k(2) * (q(2) - q(1))^2 - k(1) * q(1)^2) +
...

beta * (k(2) * (q(2) - q(1))^3 - k(1) * q(1)^3);

forces(end) = -k(end) * q(end) + k(end -1) * (q(end -1) - q(end))
+ ...

alpha * (-k(end -1) * (q(end -1) - q(end))^2 - k(
end) * q(end)^2) + ...

beta * (k(end -1) * (q(end -1) - q(end))^3 - k(end)
* q(end)^3);
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dq = p ./ m; % Velocity
dp = forces; % Forces

% Combine derivatives
dstate = [dq; dp];

% Spectral Entropy
spectral_entropy = find_spectral_entropy(avg_energies);
% Compute derivative of entropy
%dS_dt = abs(diff(spectral_entropy) ./ max(diff(scaled_time), 1

e-5));
dS = abs(diff(spectral_entropy));

% Find first index where entropy change stabilizes
%equilibrium_index = find(movmean(dS_dt , window_size) <

threshold , 1);
equilibrium_index = find(dS < threshold , 1)+1;

% Fix: Ensure equilibrium_index is valid before indexing
scaled_time

if ~isempty(equilibrium_index) && equilibrium_index <= length(
scaled_time)
equilibrium_times(i, j) = scaled_time(equilibrium_index);
fprintf (" Equilibrium reached at t= %.2f for alpha = %.2f,

Delta K= %.2f\n", ...
equilibrium_times(i, j), alpha , DeltaK);

else
equilibrium_times(i, j) = NaN; % Assign NaN if no valid

equilibrium found
fprintf (" Equilibrium not reached for alpha = %.2f, Delta K

= %.2f\n", alpha , DeltaK);
end

end

function D = build_dynamical_matrix_fixed(k, m)
N = length(m); % Number of particles
D = zeros(N, N); % Initialize the matrix

% Fill the diagonal and off -diagonal elements
for i = 1:N

D(i, i) = D(i, i) + k(i) / m(i); % Contribution from left
spring

if i > 1
D(i, i-1) = -k(i) / sqrt(m(i) * m(i-1)); % Off -diagonal

term (coupling)
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end
D(i, i) = D(i, i) + k(i+1) / m(i); % Contribution from

right spring
if i < N

D(i, i+1) = -k(i+1) / sqrt(m(i) * m(i+1)); % Off -
diagonal term (coupling)

end
end

end

function [frequencies , normal_coordinates] = find_normal_modes(k, m
)
% Find the normal modes (frequencies and eigenvectors)
D = build_dynamical_matrix_fixed(k, m); % Dynamical matrix
[V, Lambda] = eig(full(D)); % Eigen decomposition
frequencies = sqrt(diag(Lambda)); % Eigenvalues (frequencies

squared)
normal_coordinates = V; % Eigenvectors (normal coordinates)

end

function energies_per_modes = find_energies(p, q, frequencies ,
normal_matrix , m)
% Compute energies for each mode
[N_particles , total_time] = size(q);
energies = zeros(N_particles , total_time); % Preallocate

sqrt_inv_mass = diag(sqrt (1./m));
U_matrix = sqrt_inv_mass*normal_matrix;
v = p ./ m;

for i = 1: total_time
normal_q = U_matrix \ q(:, i);
normal_v = U_matrix \ v(:, i);

energies(:, i) = 0.5 * (normal_v .^2 + (frequencies .^2 .*
normal_q .^2));

end

energies_per_modes = energies;
end

function avg_energies = average_energy_cumulative(energies , t,
delta_t)
[num_modes , time_steps] = size(energies);
avg_energies = NaN(num_modes , time_steps);

for i = 1: time_steps
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t_min = max(t(1), t(i) - t(i)*delta_t);
t_max = min(t(end), t(i) + t(i)*delta_t);
indices = find(t_min <= t & t <= t_max);
if ~isempty(indices)

avg_energies (:, i) = mean(energies(:, indices), 2);
end

end

end

function plot_average_energy(avg_energies , scaled_time)
figure;
hold on;

% Define grayscale -friendly line styles and markers
line_styles = {'-', '--', ':', '-.', '--'};
marker_styles = {'o', 's', 'd', '^', 'v'};

% Select fewer points for markers
num_markers = 10;
marker_indices = round(linspace(1, length(scaled_time),

num_markers));

% Loop through modes and apply grayscale -friendly styles
for i = 1:min(5, size(avg_energies , 1))

plot(scaled_time , avg_energies(i, :), 'LineStyle ',
line_styles{i}, ...

'LineWidth ', 2.0, 'Marker ', marker_styles{i}, '
MarkerSize ', 6, ...

'MarkerIndices ', marker_indices , 'Color', [0 0 0], ...
'DisplayName ', sprintf('Mode %d', i));

end

% Improve readability for grayscale
xlabel('Time (scaled)', 'Interpreter ', 'latex', 'FontSize ', 18,

'FontWeight ', 'bold');
ylabel('Average Energy (Normalized)', 'Interpreter ', 'latex', '

FontSize ', 18, 'FontWeight ', 'bold');
legend('show', 'Location ', 'best', 'Interpreter ', 'latex');
set(gca , 'FontSize ', 14, 'LineWidth ', 1.5, 'GridAlpha ', 0.5, '

XColor ', [0 0 0], 'YColor ', [0 0 0]);
grid off;
box on;
hold off;

end

function plot_particle_positions(time_steps , positions)
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figure;
hold on;

% Define grayscale -friendly markers
markers = {'o', 's', 'd', '^', 'v', 'p', 'h'};
num_markers = length(markers);

% Loop through time steps and plot with different markers
for i = 1: length(time_steps)

marker_style = markers{mod(i - 1, num_markers) + 1}; %
Cycle through markers

scatter (1: size(positions , 1), positions (:, i), ... % X:
particle index , Y: displacement

50, 'k', marker_style , 'filled ', 'DisplayName ',
sprintf('$t = %.1fs$', time_steps(i)));

end

% Labels and formatting
xlabel('Mass Position ', 'Interpreter ', 'latex', 'FontSize ', 18)

;
ylabel('Displacement ', 'Interpreter ', 'latex', 'FontSize ', 18);
legend('show', 'Location ', 'best', 'Interpreter ', 'latex');
set(gca , 'FontSize ', 14, 'LineWidth ', 1.5, 'GridAlpha ', 0.5, '

XColor ', [0 0 0], 'YColor ', [0 0 0]);
grid off;
box on;
hold off;

end

plot_particle_positions ([1, 55, 267, 504, 600], q);

% ---------------------- Heat Map of Energies per Mode
------------------------

% **Heat Map of Energies per Mode with Custom 'sky ' Colormap and
White Lowest Value**

figure;
set(gcf , 'Color', 'w'); % Set figure background to white
ax = gca;
ax.Color = 'w'; % Ensure axes background is also white
initial_total_energy = sum(energies_per_modes (:, 1));
normalized_energies = energies_per_modes / initial_total_energy;

%imagesc(scaled_time , 1:10, normalized_energies); %Low frequency
imagesc(scaled_time , 1:N ,normalized_energies); %High frequency
set(gca , 'YDir', 'normal ');
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% Get the 'sky ' colormap and modify the lowest value to white
cmap = colormap('sky'); % Get current colormap
cmap(1, :) = [1 1 1]; % Set lowest value to white
colormap(cmap);

colorbar;
xlabel('Time (scaled)', 'Interpreter ', 'latex', 'FontSize ', 18);
ylabel('Mode Number ', 'Interpreter ', 'latex', 'FontSize ', 18);
c = colorbar;
c.Label.String = 'Normalized Energy ';

% ---------------------- Total Energy Functions
---------------------

% Compute kinetic energy
function T = kinetic_energy(p, m)

T = 0.5 * sum(p.^2 ./ m);
end

% Compute potential energy
function V = potential_energy(q, k)

diff = q(2:end) - q(1:end -1);
V = 0.5 * sum(k(2:end -1) .* diff .^2);
V = V + 0.5 * (k(1) * q(1)^2 + k(end) * q(end)^2); % k(end) * (

q(1) - q(end))^2;
end

% Compute total energy
function E = total_energy(q, p, m, k)

T = kinetic_energy(p, m);
V = potential_energy(q, k);
E = T + V;

end

% Compute energy over time
function energies = compute_energy(p, q, m, k)

total_time = size(q, 2);
energies = zeros(1, total_time);

for t = 1: total_time
energies(t) = total_energy(q(:, t), p(:, t), m, k);

end
end

% ------------- Functions for periodic boundary conditions --------

clear all;
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A. MATLAB CODE FOR NUMERICAL SIMULATIONS

close all;

% ---------------------- Parameter Sweep Setup
----------------------

N = 64;
alpha = 0.9;
beta = 0.0;
TMAX = 10000;
DT = 20;
tspan = 0:DT:TMAX;

DeltaMass = 0.0;
DeltaK = 0.9;

k = 1 + DeltaK * ((-1).^mod ((0:N-1) ', 2)); % Alternating masses
m = 1 + DeltaMass * ((-1).^mod ((0:N-1) ', 2)); % Alternating masses

% ------------- Normal Modes --------------------
% Compute normal modes and frequencies
[frequencies , normal_matrix] = find_normal_modes(k, m);
sqrt_inv_mass = diag(sqrt(1 ./ m));
U_matrix = sqrt_inv_mass * normal_matrix;

% -------------------- Initial Conditions ----------------------
q0 = -5*U_matrix(:, 2); % Initial positions
p0 = zeros(N, 1); % Initial momenta
state0 = [q0; p0];

%------------------------ Dynamical Matrix --------------
function D = build_dynamical_matrix_periodic(k, m)

N = length(m); % Number of particles
D = zeros(N, N); % Initialize dynamical matrix

for i = 1:N
% Previous and next indices with periodic boundary

conditions
iprev = mod(i-2, N) + 1; % i-1 in MATLAB indexing (cyclic)
inext = mod(i, N) + 1; % i+1 in MATLAB indexing (cyclic)

% Diagonal term
D(i, i) = (k(i) + k(iprev)) / m(i);

% Off -diagonal terms (coupling with neighbors)
D(i, inext) = -k(i) / sqrt(m(i) * m(inext));
D(i, iprev) = -k(iprev) / sqrt(m(i) * m(iprev));

end
end
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% ----------------------- Functions for spectral entropy
-------------

function spectral_entropy = find_spectral_entropy(average_energies)
total_energy = sum(average_energies , 1);
normalized_energies = average_energies ./ total_energy;
spectral_entropy = -sum(normalized_energies .* log(

normalized_energies));
end

% Define stability threshold
threshold = 1e-7; % Stability criterion
window_size = 10; % Moving window for stability check
equilibrium_times = NaN(length(alpha_values), length(DeltaK_values)

);
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