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a b s t r a c t

The transversal nature of the Boson peak in crystals and glasses is investigated by using a model

inspired from rigidity theory of glasses. By tuning the rigidity of the network using second-neighbor

interactions, we show that the transversal van Hove singularity – associated with the Boson peak –

arises when the transverse dispersion branch touches for the first time the boundary of the first

Brillouin zone, leading to an anomaly in the low frequency region. The frequency of the singularity is

determined by the rigidity of the network. For the disordered version of the model, the singularity

arises when the transversal dispersion branch touches the limit of a pseudo-Brillouin zone, suggesting

that the Boson peak in glasses has a similar origin. Increasing rigidity shifts the position of the Boson

peak towards high frequencies while its intensity decreases. This provides an important clue to

understand pressure effects on the Boson peak in glasses and crystals.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Thermodynamics as well as dynamical properties of glasses
have been subjects of intense studies, since they are significantly
different from those of crystals, specially at low temperatures
[1,2]. Glasses also present an excess of low frequency vibrational
modes (LVFMs) relative to the Debye crystal model, known as the
Boson peak (BP). It appears in the THz range of frequencies, as
confirmed for example by Raman and neutron scattering experi-
ments [1–4]. However, it is not so well known that crystals can
also present a Boson peak, like in SiO2 [5–8]. Furthermore, very
recently it has been given experimental evidence [9] that the
Boson peak in glasses is equivalent to the transverse acoustic van
Hove singularity in crystals, supporting some analytical and
computer models [10–15]. This suggests that theoretical models
based on features beyond acoustic dynamics or driven by the
distinction between disorder and order [3,16–19] are not totally
valid. Almost at the same time, in a previous work we obtained
that the Boson peak can be explained in a unified way in glasses
and crystals if Phillips and Thorpe Rigidity Theory [20,21] is used
to understand the changes in the elastic properties due to a
reduction in the number or strength of atomic bonds [21]. In fact,
very recently it has been found that rigidity is a very powerful
tool to design glasses, as those used in tablet screens [22–24].
Using these kinds of rigidity ideas, we were able to prove that in
the case of small disorder in periodic systems, the modes that
contribute to the Boson peak arise either from a reduction or a
weakening of the bonds in an otherwise overconstrained atomic
ll rights reserved.

: þ52 56 22 50 08.
network [25]. We also showed that the position of the Boson
peak, O, can appear at most at one-third of the Debye frequency
oD [25]. In almost all glasses O¼ 0.1oD [26]. In addition, we
found [25] that the position of the peak scales as ðZ�ZcÞ

1=2, where
Z is the coordination of the network and Zc a critical coordination.
A similar result has also been found for strong disorder using the
coherent potential approximation [27].

However, in our previous works [25,28–32] we did not con-
sider a well-established fact: the transverse nature of modes at or
near the Boson peak [9]. Here we extend our work [25] to show
that rigidity allows us to obtain the transverse nature in a simple
way. To do this, here we will consider a model in which we can
tune the rigidity, and in which elastic order or disorder can be
included at will [33]. The model consists in a square lattice, with
boundary periodic conditions, where nearest neighbors (NN)
atoms are joined by harmonic springs. In principle, this lattice is
isostatic. To modulate rigidity, we introduce next nearest neigh-
bors (NNN) interactions. The stiffness of the NNN bonds will be a
fraction of the NN elastic constant joins. It is worthwhile men-
tioning that our model is also able to explain in a qualitative
way the experimental results by Chumakov et al. [9] and other
groups [34], concerning the movement of the Boson peak as
pressure is applied. The outline of the paper is the following. In
Section 2 we develop the crystalline version of the model, while in
Section 3 we present the disordered version. Finally, the conclu-
sions are given in Section 4.
2. Crystalline model

Explicitly, our crystalline model to study rigidity consists in a
square lattice of N masses (m) joined by harmonic springs k0 for

www.elsevier.com/locate/physb
www.elsevier.com/locate/physb
http://dx.doi.org/10.1016/j.physb.2013.02.041
http://dx.doi.org/10.1016/j.physb.2013.02.041
http://dx.doi.org/10.1016/j.physb.2013.02.041
mailto:gernaumis@gmail.com
mailto:naumis@fisica.unam.mx
http://dx.doi.org/10.1016/j.physb.2013.02.041


H.M. Flores-Ruiz, G.G. Naumis / Physica B 418 (2013) 26–31 27
first neighbor interactions, as seen in Fig. 1. In order to tune the
rigidity of the network and the Boson peak position, we introduce
the second nearest neighbor interactions by harmonic springs
k1 ¼ gk0, as shown with dash diagonal lines in Fig. 1. g is a rigidity
tuning dimensionless parameter between 0 and 1. When g¼ 0, we
have an isostatic lattice, since it has 2N constrictions and
2N degrees of freedom. When gA ð0,1� we increase the average
coordination of the lattice and as a consequence, the network is
more rigid [25,33].

The dynamical matrix of this model can be written down in
the wave vector space q as

DðqÞ ¼
o2

xxðqÞþ
g
2o

2
xyðqÞ

g
2o

2
xyðqÞ

g
2o

2
yxðqÞ o2

yyðqÞþ
g
2o

2
yxðqÞ

0
@

1
A, ð1Þ

where o2
xxðqÞ ¼ ð4v2

s =a2Þ sin2
ðqxa=2Þ, o2

yyðqÞ ¼ ð4v2
s =a2Þ sin2

ðqya=2Þ
and o2

xyðqÞ ¼o2
yxðqÞ ¼ ð4v2

s =a2Þ sin2
½ðqxþqyÞa=2�, where a is the

lattice constant and vs the speed of sound, given by vs ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
k0=m

p
.

The dispersion relation is obtained by diagonalizing Eq. (1)

o2
7 ðqÞ ¼

1

2
½17ZðqÞ�o2

xxðqÞþ
1

2
½18ZðqÞ�o2

yyðqÞþ
g
2
o2

xyðqÞ, ð2Þ

with

ZðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg2

o2
xyðqÞ

o2
xxðqÞ�o2

yyðqÞ

" #2
vuut : ð3Þ

The signs in o2
7 ðqÞ are used to denote two branches. The branch

with plus (minus) sign is labeled as the longitudinal (transverse)
branch. Such identification is obtained by looking at the acoustic
limit qa51 in Eq. (2),

o7 ðqÞ � f 7 ðyÞðvsqÞ, ð4Þ

where f 7 ðyÞ is a directional modulation of the speed of sound,
depending on the polar angle y as,

f 2
7 ðyÞ ¼

ð1þgð1þsin 2yÞ7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 2yþg2ð1þsin 2yÞ2

q
Þ

2
: ð5Þ

The minus sign leads to a lower phase velocity when compared
with the plus. Usually, this implies transversal modes. In the
present model, this point can be confirmed by comparing the
directions of the atomic vibrations relative to the wave vector of
the phonon propagation. To do such comparison, we write the
Fig. 1. Square lattice with nearest-neighbors and second nearest-neighbors

harmonic springs of constant k0 and k1 ¼ gk0 respectively. Periodic boundary

conditions are used. g is a rigidity dimensionless parameter.
dynamical matrix for qa51 in polar coordinates,

DðqÞ ¼ v2
s q2

cos2 yþ g
2 ð1þsin 2yÞ g

2 ð1þsin 2yÞ
g
2 ð1þsin 2yÞ sin2yþ g

2 ð1þsin 2yÞ

0
@

1
A: ð6Þ

The atomic displacements are given by the corresponding eigen-
vectors u7 of the previous matrix. For g different from zero, these
eigenvectors can be written as u7 ¼ ðsin a7 ðyÞ,cos a7 ðyÞÞ, where
a7 ðyÞ is an angle defined by

tan a7 ðyÞ ¼
gð1þsin 2yÞ

1�2 cos2 y7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 2yþg2ð1þsin 2yÞ2

q : ð7Þ

To determine the transversal or longitudinal nature of the
modes, we perform the dot product of u7 with the vector
q̂ ¼ ðcos y, sin yÞ to obtain

q̂ � u7 ¼ sinðyþa7 ðyÞÞ: ð8Þ

For y¼ p=4, it is easy to see that q̂ � uþ ¼ 1, while q̂ � u� ¼ 0. This
implies that for this direction, the branch with the minus sign
corresponds to pure transversal modes since the propagation
vector is perpendicular to the vibrations for any value of g (except
of course, for g¼ 0, in which modes are always longitudinal, see
below). As y is varied, there is a certain amount of mixing
between transversal and longitudinal modes, although the
lower branch has always a predominant transversal character.
This mixing can be further reduced by using another set of
perpendicular diagonals in the direction y¼�p=4 to increase
rigidity, leading to an overconstrained lattice. Here we study the
transition from isostatic, which is more interesting because
transversal modes appear gradually, and the transition can be
followed in a more detailed way.

The evolution of the longitudinal and transverse branches in
the first Brillouin zone is shown in Fig. 2 for g¼ 0 and g¼ 1. Both
represent the extremal rigidity cases of the model.

Let us first study the limiting case g¼ 0 corresponding to the
isostatic lattice. Immediately we observe that Eq. (1) is already
diagonal and the dispersion relation corresponds to two uncoupled
linear chains in the x- and y-directions

oxðqÞ ¼
2vs

a
sin

qxa

2

� ���� ���, oyðqÞ ¼
2vs

a
sin

qya

2

� �����
����: ð9Þ

Eq. (9) is shown in Fig. 2(a) and (b). As it is easy to see that there are
no transverse modes since there is no coupling between vibrations in
the x- and y-directions. Thus, the branches of the dispersion relation
degenerate and the nature of the vibrational DOS is purely long-
itudinal. As we will see next, there is a finite vibrational DOS at o-0
for the isostatic case. This can be proved by taking the acoustic limit
in Eq. (9) or in Eq. (4). Since the dispersion goes as oxðqÞ ¼ vsqx and
oyðqÞ ¼ vsqy, it follows that the vibrational density of states is
rðoÞ ¼ 1=ðpvsÞ, i.e., is constant at low frequencies. This is anomalous
for a two-dimensional system, and is basically due to the fact that o
does not scale as qd, where d is the dimensionality. This unusual
behavior can be traced back to the accumulation of zero frequency
modes due to the lack of mechanical constraints [25]. The addition of
constraints by putting diagonals pushes these states to non-zero
frequency [25], as can be seen from Eq. (4) for ga0. This restores the
usual relationship o� qd and thus rðoÞ-0 as q-0. From the
reduced DOS rðoÞ=o, it is clear that for g¼ 0 we expect
rðoÞ=o¼ 1=ðpvsoÞ-1 as o-0, while for ga0, we expect
limo-0 rðoÞ=o¼ C, where C is a constant. This suggests that the
Boson peak modes are transformed into floppy modes at zero
frequency, as has been obtained using perturbation theory
[25,35,36], or can be observed in Fig. 3, where rðoÞ=o-1 as g goes
to zero, indicating an excess of modes.
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Fig. 2. Dispersion relation for a square lattice with first neighbor interactions, g¼ 0, and second neighbor interactions, g¼ 1. Contour plots are shown below each surface.

In the first case, g¼ 0, two branches are found in Eq. (2), however they are uncoupled in the x and y directions, and they behave as one-dimensional vibrational longitudinal

branches in x (a) and y (b). In the second case, g¼ 1, two newly branches are found in Eq. (2), (c) corresponds to the longitudinal branch (labeled with a plus sign), and

(d) the transverse branch (labeled with a minus sign).

Fig. 3. Reduced vibrational density of states (rðoÞ=o) as a function of the

frequency for a square lattice at various values of g. (a) Total reduced vibrational

DOS rðoÞ=o, and (b) the partial contribution from the longitudinal modes to

rðoÞ=o, labeled by rLðoÞ=o. Notice that in the frequencies range 0–1.085

(a) shows a Boson peak which changes with the tuning rigidity parameter g.

In the same range of frequencies one does not observe any peak in (b).

Fig. 4. Reduced transverse vibrational density of states (rT ðoÞ=o) as a function of

the frequency, for a square lattice at different values of g. Notice how the position

of the Boson peak moves to high frequencies when the rigidity of the lattice is

increased, g-1, and at the same time, the height of the Boson peak decreases.

This phenomenology is in qualitative agreement with experiments in which

pressure is applied [9,34]. We also see the decay of rT ðoÞ=o away from the

Boson peak position, as observed experimentally [37].
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As our main point, consider now the reduced vibrational
density of states for different degrees of rigidity, i.e., for various
values of g. In Fig. 3 we present the corresponding reduced
vibrational DOS, rðoÞ=o, and the reduced longitudinal DOS
rLðoÞ=o. In Fig. 3(a) one can see how the Boson peak sits at a
maximal frequency o¼ 1:085 when g¼ 1, and then it is shifted to
the left as the rigidity decreases (g-0). At the same time, the
height of the peak increases. At g¼ 0, it finally touches zero
frequency. As a counterpart, in Fig. 3(b) we observe a constant
behavior of rLðoÞ=o in the range of frequencies 0–1.085, while a
Boson peak appears in the total rðoÞ=o.

Now we will prove the transverse nature of the Boson peak.
To do this, in Fig. 4 we present the reduced vibrational transverse
DOS rT ðoÞ=o. It is clear that the Boson peak has a transverse
nature, since no peak appears in the longitudinal branch
(see Fig. 3(b)). Here we can understand its transversal origin just
by analyzing the dispersion relation. To do this, in Fig. 5 we
present contour plots of Eq. (2) for the transverse branch at three
different values of g, 0.01, 0.5 and 1.0. The Boson peak arises in
rT ðoÞ=o when the transverse dispersion branch touches for first
time the boundary of the first Brillouin zone. This leads to the first
van Hove singularity since the transverse group velocity vanishes.
Thus here we can identify the Boson peak as a consequence of
such singularity. This phenomenon can be clearly seen from the
integral definition of the vibrational DOS [38]

rðoÞ ¼
X

s

Z
dS

ð2pÞd
1

9rosðqÞ9
, ð10Þ

where s labels the branch, rosðqÞ the group velocity, d the space
dimension and the integral is over that surface in the first zone on
which osðqÞ ¼o. When rosðqÞ vanishes, the critical points of the
surface osðqÞ ¼o could be minima, maxima or saddle points.
These critical points lead to singularities in rðoÞ. We are inter-
ested in the first singularity, which is related to the transversal



Fig. 5. Contour plot of the transverse branch at three values of g. (a) g¼ 0:01, (b) g¼ 0:5 and (c) g¼ 1:0. The black circles represent the saddle-points that correspond

to singularities in rT ðoÞ=o.

Fig. 6. Log–log plot of the Boson peak position O (fuchsia-fill points), and the Van

Hove singularity position using the approximation given by Eq. (11) (green

squares) as functions of g. The O points were obtained from the numerical results

of the reduced vibrational DOS. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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branch. Of course the main question is why the first singularity in
the vibrational spectrum arises in the transverse branch and not
in the longitudinal. The answer is simple but deep. The transverse
group velocity is always smaller than the longitudinal one, thus,
the transverse branch will always touch the Brillouin zone at a
lower frequency than the longitudinal one. To have such trans-
versal modes, the lattice needs to present a minimal rigidity.
A similar argument can be invoked for disordered systems, since
the transverse velocity is always lower than the longitudinal one,
and it has been pointed out that it is possible to define a pseudo
Brillouin zone even in the presence of disorder [39–41]. In the
present case, the first van Hove singularity turns out to be a
saddle-point for each of the four equivalent points which are
marked with a black circle in the three cases of Fig. 5. We label the
frequency associate with these saddle-points in the transverse
branch by on

T . Now we proceed to determine on
T analytically.

To do that, we take the transverse branch which corresponds to
the minus sign in Eq. (2). In the limit qx-0 and g-0, the
dispersion relation of the transverse branch can be written
approximately as o2

� � 2k0q2
x a2=mþg4k0 sin2

ðqya=2Þ=m. This
expression automatically gives

on

T � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0g=m

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
k1=m

q
: ð11Þ

From Eq. (11), it is clear that the frequency position of the first
van Hove singularity is a function of the elastic constant k1, which
gives origin to the transverse branch. Fig. 6 shows a comparison
between Eq. (11) and the position of the Boson peak, O, directly
obtained from the reduced vibrational DOS (see Fig. 4). According
to Fig. 6, we can see that Oton

T . It is important to point out that
on

T is not just roughly the Boson peak or first Van Hove singularity
frequency; it also gives a crossover frequency which defines
a rigidity behavior of the lattice with the frequency [42,43].
For oron

T we have a rigid case (linear evolution of the total
vibrational DOS rðoÞ with o), however, for o4on

T we have a
kind of isostatic behavior (constant evolution of rðoÞ with o).
3. Disordered model

In order to have a glass model with different degrees of
rigidity, we begin with a network similar as the illustrated in
Fig. 1 but this time every single site is bonded each other with a
spring of elastic constant k0 ¼ 1. In contrast to the previous
section, where the rigidity of the network was reduced by means
of a dimensionless parameter g, here we obtain lattices with less
rigidity by randomly choosing a concentration (c) of bonds,
regardless if they are in the diagonal, vertical or horizontal
position. Once we have chosen such bonds, its elastic constants
k0 are reduced by a dimensionless factor ao1, namely, k1 ¼ ak0.
In this paper, we will use a¼ 0:1. To obtain the longitudinal and
transverse vibrational density of states, first we calculated the
longitudinal and transverse dynamical structure factors, SLðq,oÞ
and ST ðq,oÞ [11], defined respectively as

SLðq,oÞ ¼ kBTq2

mo2

X
l

EL,lðqÞdðo�olÞ ð12Þ

and

ST ðq,oÞ ¼ kBTq2

mo2

X
l

ET ,lðqÞdðo�olÞ, ð13Þ

where

EL,lðqÞ ¼
X

j

q̂ � elðjÞ expðiq � RjÞ

������
������
2

,

and

ET,lðqÞ ¼
X

j

q̂ � elðjÞ expðiq � RjÞ

������
������
2
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where q̂ ¼ q=q, el is the eigenvector at the eigenvalue l and fRg
are the particles equilibrium positions. From Eqs. (12) and (13),
we obtain the generalized vibrational density of states [44] in the
transverse and longitudinal contribution

rLðq,oÞ ¼ mo2

kBTq2
SLðq,oÞ ð14Þ

rT ðq,oÞ ¼ mo2

kBTq2
ST ðq,oÞ: ð15Þ

In order to get either the longitudinal vibrational density of states
or the transverse one, an average can be performed over all
available q belonging to a particular range, namely

rLðoÞ ¼
1

Nq

X
q

rLðq,oÞ ð16Þ
Fig. 7. Evolution of the reduced vibrational DOS rðoÞ=o, at a concentration c¼0.5

of randomly diluted bonds, for longitudinal (open triangles) and transverse (open

circles) modes. The dashed and continuous lines correspond to the longitudinal

and transverse reduced vibrational DOS in the crystalline case. At c¼0.5, we notice

at OT � 0.4 and OL � 0:45 a Boson peak in rT ðoÞ=o and rLðoÞ=o respectively,

however the contribution of the transverse modes is bigger than the longitudinal

ones.

Fig. 8. Contour plot of the generalized vibrational DOS, rðo,qÞ, averaged over all dire

transverse one. We notice in (a) an average longitudinal branch in the range q� 0:0�2:0 a

and oT � 0:0�0:5. We have marked with a fuchsia horizontal line in (a) and (b) the

OT � 0:4 respectively, meanwhile with a vertical line we represent the border of the p
and

rT ðoÞ ¼
1

Nq

X
q

rT ðq,oÞ, ð17Þ

where Nq represents the number of terms in the sum.
In order to get the numerical values of the eigenvectors and

eigenvalues needed to feed Eqs. (12)–(17), we used square lattices
of 80�80 sites at concentrations in the range that spans from
c¼0.0 to c¼0.5. Due to the size of these networks, we diagona-
lized the dynamical matrices of 12,800�12,800 sites using the
LAPACK [45] routines, where each result was averaged over 10
disorder realizations. Fig. 7 shows the reduced vibrational density
of states for c¼0.0 and c¼0.5. A Boson peak is observed
(for c¼0.5) at OL � 0:45 in rLðoÞ=o and at OT � 0:40 in
rT ðoÞ=o, however, the amount of modes in rT ðoÞ=o at either
OL or OT is bigger than in rLðoÞ=o. It is interesting to observe that
the values of OL and OT in this disordered model are closer to the
value O� 0:41 at g¼ 0:1 in the ordered model (see Fig. 4). In this
last case, we observe a well-defined peak in comparison to the
disordered case, where the peak is wider. Also, in Fig. 7 we can
notice an accumulation of modes at o� 0, due to a proliferation
of soft modes in the network.

A detailed analysis of the generalized vibrational DOS allows
us to show that in fact, the same mechanism that works for
crystals is behind the singularities in the disordered model, i.e., a
well-defined dispersion relationship can be defined till the
transversal branch touches the limit of a pseudo-Brillouin zone,
which is basically of the same size of its crystalline counterpart.
To support this observation, in Fig. 8 we present a contour plot of
the generalized vibrational DOS (14) and (15) averaged over all
directions in q for c¼0.5. In Fig. 8(a) we can see a well-defined
average acoustic longitudinal branch in the range q� 0:0�2:0 and
oL � 0:0�0:5. On the other hand, in Fig. 8(b) we show the
evolution of oT versus q. We can clearly see an average acoustic

transverse branch in the range of q� 0:0�3:0 and oT � 0:0�0:5.
On the same plot, we have marked with a fuchsia horizontal line
the frequency of the transverse Boson peak, OT � 0:41, and with a
vertical one the boundary of the pseudo-Brillouin zone. This
boundary is defined as the q in which the transversal acoustic
branch ends in Fig. 8, at q� 3:1. The Boson peak in rLðoÞ=o (see
Fig. 7) is due to the contribution of modes around a plateau that
appears in the region that spans from q� 1:5 to q� 2:0.
ctions in q at c¼0.5. We see in (a) the longitudinal contribution and in (b) the

nd oL � 0:0�0:5, meanwhile in (b) an average transverse branch around q� 0:0�3:1

frequency position of the longitudinal and transverse Boson peak OL � 0:45 and

seudo-Brillouin zone.
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4. Conclusions

In conclusion, we have extended our previous work concern-
ing the rigidity origin of the Boson peak to support the idea of its
transverse nature. We can summarize the analytical and numer-
ical results as follows: (i) The Boson peak in crystals arises when
the transverse branch touches for first time the boundary of the
first Brillouin zone. (ii) The transverse Boson peak in our
disordered model arises when the averaged transverse branch
touches the boundary of a pseudo-Brillouin zone. (iii) The posi-
tion (OT ) and intensity of the Boson peak are functions of the
rigidity. Increasing rigidity pushes OT to higher frequencies,
meanwhile the intensity decreases. (iv) Finally, these results
allows us to understand qualitatively pressure effects on the
Boson peak. Experimentally, when a pressure is applied, the
frequency of the Boson peak moves to high frequencies and at
the same time, its intensity decreases [9,34]. This tendency is
similar to the evolution of the Boson peak in our model as rigidity
is increased, g-1 (see Figs. 3(a) and 4). The pressure effects on
the Boson peak can be explained qualitatively by rigidity argu-
ments, since when pressure is applied, the second neighbor
interaction increases due to a reduction in the distances between
atoms. The same effect happens for the first neighbors, however,
the non-linear character of the potential does not preserve the
ratio g between elastic constants of NN and NNN. This leads to a
pressure dependent g, and as a consequence, the system is more
rigid as experiments confirm [46,47].
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