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In this work, we introduce the idea of cage formation probability, defined by considering the angular
space needed by a particle in order to leave a cage given an average distance to its neighbors.
Considering extreme fluctuations, two phases appear as a function of the number of neighbors and
their distances to a central one: Solid and fluid. This allows us to construct an approximated phase
diagram based on a geometrical approach. As an example, we apply this probability concept to hard
disks in two dimensions and hard spheres in three dimensions. The results are compared with
numerical simulations using a Monte Carlo method. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2899732�

I. INTRODUCTION

During the last decades, systems composed of hard-core
particles �platelets, spheres, and rods� have been the subject
of continuous and intense research,1–7 since they are used as
a benchmark tool in order to understand the behavior of
simple fluids.1 Recently, they gained a lot of attention due to
the interest in colloids,8 nanostructured, granular media,4,7

disordered systems,9,10 and even in the assembly of virus
capsids.11 Old ideas were challenged, and for example, the
concept of random close packing, which was considered as
the paradigm of a disordered structure with nondirectional
bonds,12 was replaced with the idea of maximally random
jammed state.5 A system is jammed when for all of the par-
ticles, it is not possible to move one without fixing the posi-
tions of all other particles. The concept of jamming has been
proved to be very important,10 not only for practical reasons
in granular media, but because is also relevant for hard-core
potential and colloids. Also, it is related with the unsolved
problem of the glass transition.13 More recently, the connec-
tion between jammed systems and low frequency vibrational
modes has been explored,14,15 resulting in a possible expla-
nation to the excess of low frequency modes in glasses,16

which are fundamental to determine the glass transition
temperature.17 The dynamical formation of cages is another
related concept which has been explored in connection to
phase transitions. It is well known that the fluid-solid phase
transition for hard spheres and hard disks �HPs� is due basi-
cally to the trapping of particles inside cages formed by its
neighbors.18 When the packing fraction is diminished, the
cages are open and a phase transition occurs.18 From a dif-
ferent point of view, the phase transition is entropically
driven: Entropy is increased by forming cages.19 Some old
theories assumed the formation of an underlying lattice with

cells, and the entropy was calculated by using free volume
ideas.20 However, the main problem is that cage formation is
a collective effect, in which each particle is trapped by a cage
and at the same time it forms the wall of a different cage.
Later on, the density functional theory �DFT� was much
more successful in predicting fluid-crystal phase
transitions21,22 and was even able to anticipate the existence
of quasicrystals.23 Within DFT, a functional is build from
some knowledge of the fluid properties.24 Functionals for
hard spheres25 and HDs �Ref. 26� are available. The DFT can
be improved by using some geometrical principles to con-
struct a functional.27 This approach leads to a very powerful
method known as the fundamental measure theory.27,28 Fur-
thermore, the DFT has been used to understand the formation
and stability of hard-sphere glasses by Wolynes and
co-workers.29–31

In spite of the previous advances, not so much effort has
been made in order to actually understand how dynamical
cage formation is behind a fluid to solid transition, at least
from a simple and transparent geometrical point of view.
There are some previous efforts to study cage formation
from the point of view of jamming,32,33 where there are con-
tacts between particles. Here we adopt a different approach
since we allow the particles to move inside the cages. We do
this by using a mean field approach to understand how cages
are related with the coordination number, average separation
between particles, and packing fraction. Notice that in our
mean field theory, we do not consider the strong coupling
between angular and radial effects. The reason is that here
we always adopt a worst case scenario approach, i.e., basi-
cally we provide bounds for the cage effect. Thus, here we
will look at the most extreme angular fluctuations. So for
example, if even in the most rare angular fluctuation a par-
ticle remains caged, then is clear that a fluidization cannot be
observed. In reality, such extreme fluctuations are rare so the
theory only provides a bound. However, our main objectivea�Electronic mail: naumis@fisica.unam.mx.
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here is to explore how far we can go using this simple mix-
ing of geometrical arguments and extreme fluctuations com-
pared with more sophisticated theories. By comparing with
such theories, we can understand to what extent cage forma-
tion is behind a solid to fluid transition. Thus, the aim of this
work is not the determination of where a transition occurs.
There are much better theories to do this.25 Instead we focus
on how much such theories differ from assuming a simple
mean field approach to cage formation. Eventually, this will
clarify a hierarchy of important aspects in the phenomena of
cage formation. This mean field approximation does not give
information about the long-range order nature of the solid
phase. This approach is developed in Sec. II by defining a
cage formation probability. The idea is tested for a HD
system, and then it is extended in Sec. III to hard spheres.
Finally, the conclusions and perspectives are given in
Sec. IV.

II. CAGE FORMATION PROBABILITY
IN TWO DIMENSIONS

In this section, we will define the concept of cage for-
mation probability. To start, let us consider the most simple
case: A system of HDs. Take any HD at random. Such disk
will be surrounded by Z first neighbors, where Z can be
determined using different methods such as a Voronoi poly-
hedra or using the radial distribution function. For such disk,
which we will call central, there are two possibilities: It can
be trapped inside a cage produced by these Z neighbors, or it
can leave the cage if enough space is available to do so. For
the first case, there are also two possibilities: The particle can
be jammed or it can be moved inside the cage. The trapping
effect depends crucially in the lack of available space needed
by a particle in order to leave the cage. However, the geom-
etry of the available space is also important. For example, in
Fig. 1 we show a HD in contact with three other disks. In
Fig. 1�a�, the central disk can leave the cage while in

Fig. 1�b� is trapped. In both cases, the sum of the angular
sectors not covered by the neighbors is the same. If one
considers all possible angular distributions of the surround-
ing three disks, only when they form a equilateral triangle
the central will be jammed. In a pure HD fluid, the possibil-
ity of such perfect configuration is remote compared with
other distributions of the disks. Our example shows the fun-
damental relationship between orientational order and cag-
ing. As we observe in Fig. 1�c�, the distance between the
central one and the first shell of neighbors also affects the
cage effect, since if the triangle of Fig. 1�b� is expanded, the
central particle will eventually leave the cage. Notice how in
our line of argumentation, we are supposing that all these Z
neighbors are at the same distance. This is of course not true
for real fluids. However, from the fact that there is a first
peak in the pair distribution function g�r�, one can assume
that the distance of the neighbors is on average given by this
peak with a dispersion around a given value. This average
distance will be denoted by �r�.

The previous discussion shows that two ingredients are
responsible for caging, one is the distance from the first shell
of neighbors and the second their angular configuration. In a
fluid, the cage effect is time dependent, in contrast with the
previous discussion. However, it is known that when a fluid
approaches a transition to a solid, the local structural arrest
can be described in terms of averaged quantities.34 This sug-
gests to define a probability that Z neighbors cage a fixed
particle j. If �r� is the average distance from j to the first
shell of neighbors, such probability can be defined as
follows:

pj,Z��r�� �
� j

c�Z,�r��
� j�Z,�r��

, �1�

where � j
c�Z , �r�� is the number of angular configurations in

which the particle j is caged by Z neighbors at an average
distance �r�, while � j�Z , �r�� is the total number of
configurations available with the same fixed Z and �r�. The
quantity � j

c�Z , �r�� can be interpreted as the phase space con-
tribution of a local cage, compared with � j�Z , �r�� which is
the phase volume accessible to the local configuration. One
can obtain � j�Z , �r�� using configurational integrals on the
angular sectors as follows:33

� j�Z,�r�� =� d�1� d�2 ¯� d�Z�

�	

j=1

Z

� j − 2�����1 − ��

���2 − �� ¯ ���Z − �� , �2�

where �i is the angle between the neighbor i of particle j and
the next one taken in a counterclockwise direction, � is the
minimal separation angle between hard-core neighbors as
shown in Fig. 2�b�, ��x� is the Dirac delta function that as-
sures that the sum of all angles is 2�, and ��x� is the theta
function which takes value zero if x�0 and one otherwise.
The corresponding number of caged configurations is just
obtained by observing that a particle is not caged whenever

FIG. 1. A central particle and three neighbors. In �a�, the central particle can
leave the cage, as shown by the arrow. In �b�, the neighbors trap the central
particle, but if the distance of the first shell of neighbors is changed, as
shown in �c�, the cage is broken as indicated by the arrow.
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the free angular space is such that for at least one �1 it is
observed that �1	�, from where it follows that

� j
c�Z,�r�� = � j�Z,�r�� −� d�1� d�2 ¯� d�Z�

�	

j=1

Z

� j − 2�����1 − ��

���2 − �� ¯ ���Z − �� . �3�

The caging probability allows us to construct a diagram in Z
and �r� observing the following.

�1� If pj,Z��r��=0 for all particles, the system is for sure
fluid.

�2� If 0
 pj,Z��r��
1, the fluid can be in coexistence with
the solid.

�3� If pj,Z��r��=1 for all particles, the system is for sure a
solid.

Consider condition 1. For having a fluid, it is required a
zero cage probability: This happens if even in the best trap-
ping configuration of the cage, the central disk has the op-
portunity to leave it after a long time. The best possible trap
is the configuration in which the exterior shell forms a regu-
lar polygon, since all the available free space is distributed
equally and thus all “holes” in the cage are repaired �see Fig.
1�b��. However, if this best trapping configuration is ex-
panded, as in Fig. 1�c�, there is a critical distance at which
one needs to put a new particle in the shell to have the cage
effect, since the holes are so big that they are not able to
block the central particle. Using the cosine law applied for
regular polygons �see Figs. 1�b� and 1�c��, this critical radius
�r� is related with the minimal Z required to have at least the
possibility to cage,

�r� = �� 2

1 − cos�2�/Z�
. �4�

The inverse of this equation gives the coordination as a func-
tion of the radius for which there is a transition from a “sure”
fluid �condition 1� to condition 2. The other possible transi-
tion is from a sure solid �case 3� to case 2, so we need to
proceed in the opposite direction.

Thus, consider now condition 3. To have the particle in a
cage with probability one, we need to assure that even for the
best escaping configuration of disks, the particle will be
trapped. Such best escape configuration, created by a rare
fluctuation, is obtained when all the available free space is
used to produce a big hole, as shown in Fig. 2. This big hole
is made by joining all the disks in the surrounding shell in
such a way that they produce a chain of disks in contact.
Again, it is clear that such escape configuration is only able
to work up to a certain radius, since at a bigger one a new
neighbor is needed to repair the hole. Thus, there is a rela-
tionship between the minimal number of neighbors required
to trap a particle and a certain radius. Now we will calculate
such relationship. By calling � to the angle defined by the

central particle and the two contiguous disks in the chain
�see Fig. 2�, the maximal distance �r� for which the caging
works is given by

� = 2 sin−1	 �

2�r�� . �5�

Using that the angular size of the hole ��� is related with � as
�=2��− �Z−1���, we obtain the following trascendental
equation:

�r� = �� 2

1 − cos�2�� − �Z − 1�2 sin−1��/2�r����
, �6�

which can be solved by using an iterative procedure. As a
result, one gets the minimal number of neighbors required to
cage a particle for a given distance. The resulting plot is
shown as a line in Fig. 3. The region pj,Z��r��=1 is indicated
with the word “solid,” where the average coordination of the
particles is defined as

�Z� =
1

N


j=1

N

Zj , �7�

which is taken equal to �Z�=Z, since we assume that all
neighborhoods of the particles are almost similar.

Equation �6� produces the geometrical phase diagram
shown in Fig. 3, in which the average distance between
neighbors gives the required coordination needed to form a
cage. This diagram can be compared with the results ob-
tained from a simulation. To do so, we made Monte Carlo
simulations for a system of 100 HDs using an NVT ensemble
at different packing fractions =N��2 /4S, where S is the
area of the simulation box and N is the number of particles.
Once the systems were equilibrated, the radial distribution
function g�r� was calculated. The average coordination of the
lattice was obtained from

FIG. 2. In �a� the central particle is trapped, but as the configuration is
expanded, it reaches a point in which there is enough room for the central
particle to escape. The critical radius at which such escape occurs is given
by Eq. �6�.
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�Z� = 2��
0

rc

g�r�rdr , �8�

where rc is a cut-off radius used to determine the end of the
first shell of neighbors. There are several possible criteria to
do this: Voronoi polyhedra, the first local minimum of g�r�,
or the contact region.9 �r� can be calculated from g�r� in a
consistent way with the criteria used to determine rc. In
general, �r� can be calculated from

�r� =
0

rcg�r�r2dr

0
rcg�r�rdr

. �9�

In Fig. 3 we present the results of the simulation using as
cutoff rc the first minimum of g�r�. Each triangle corre-
sponds to a pair of Z and �r� for a given . Starting with
�Z��6 and �r��1.1, the system evolves as the lattice is
expanded and �Z� decreases. According to the diagram, the
end of the solid region is obtained by the intersection of the
condition given by Eq. �6�, and the evolution of the system,
denoted by triangles. The intersection obtained is =0.674,
which is below the known melting point for HDs, at8 c

�0.72. Although the error is about 6.4%, it shows that the
geometrical criteria provide a rough estimation of the melt-
ing point, and it gives a simple picture based in the cage
effect. Notice that we compare with the melting point be-
cause in our line of thought we considered a solid in which
all the particles were caged. Then, as the density decreases,
there is a certain point in which caging is impossible even in
the best trapping configuration. Thus it is impossible to hold
a solid under such condition.

As stated previously, there is a certain degree of ambi-
guity in the cut-off criteria. It is natural to ask how the results
depend upon such election, and if there is any way to im-

prove the estimation of �r�. We proceed as follows: First,
observe that for a given r, g�r� contains contributions from
different shells of neighbors. One can remove such contribu-
tions by deconvoluting g�r� using, for example, Lorentzians
of the type

f�r� =
An��

Bn�� + �r − rn���2 ,

where An�� and Bn�� are fitting constants, and rn�� is the
position of the peak with label n, starting with n=1 for the
fist peak of g�r�, n=2 for the second, and so on. Notice that
the position of each peak depends upon the packing fraction.
Using the proposed deconvolution, a new g*�r� can be
defined by

g*�r� =
A0��

B0�� + r2 .

Using g*�r�, �Z� and �r� are easily obtained from Eqs.
�8� and �9� by replacing g�r� with g*�r� and rc→�. The
resulting evolution of �Z� vs �r� is displayed in Fig. 3, show-
ing a higher coordination for a given r. This seems to be
paradoxical, because the contribution from the second shell
was removed. However, a detailed analysis shows that, in
fact, such increased coordination is due to the different cut-
off. The calculation of �Z� and �r� with g�r� uses a cutoff at
the first minima, while g*�r� is integrated to a high rc. The
intersection between this correction and Eq. �6� occurs at
=0.704, which gives a much better approximation, with an
error of 2.3%.

Also, the geometrical cage diagram can be used to get
information about the nature and stability of the lattices. For
example, from Fig. 3 is clear that the first solid lattice ap-
pears for �Z�=4. However, the resulting lattice must be dis-
ordered, since from Fig. 3, for �Z�=4 the disks are in contact,
and a configuration with a central disk caged by four neigh-
bors forming a perfect square is unstable. A slight angular
displacement of the perfect square cage will produce enough
free space for the central disk to leave the cage. It is worth-
while mentioning that such disordered arrangement will be
basically jammed, since the particles are in contact. It is
known that disordered packing of disks or spheres are isos-
tatic in the sense of rigidity.35 A lattice is isostatic when the
number of mechanical contacts �Nc� is equal to the number
of degrees of freedom in the configurational space �ND�. In D
dimensions, ND=DN. Since each contact is shared by two
disks or spheres, in a mean field approximation Nc

��Z�N /2. Applying the isostatic condition Nc=ND, we have
that �Z��2D. For two dimensions �Z��4. This number is in
agreement with the one obtained by our simple geometrical
approach. Other disordered packings are possible with differ-
ent coordination numbers, but g�r� is not regular and a well
defined first shell is difficult to extract.36 It is important to
remark that our approach does not allow us to distinguish
between crystalline and amorphous phases, since it does not
take into account long-range information. However, geom-
etry still provides some tentative answers. For example, a
crystal can be obtained for �Z�=6, while it is not possible to
have a periodic arrangement with �Z�=5.

FIG. 3. �Color online� Minimal number of neighbors �Z� required to cage a
particle as a function of the average distance �r� to the first neighbors. The
solid line separates the region where the system is solid, and the zone where
there is an escape probability different from zero. The solid line was ob-
tained by solving Eq. �6�. The symbols represent the evolution of a Monte
Carlo simulation using 100 disks. For the triangles, �r� was obtained using
as cutoff �rc� the first minimum of g�r�. The circles were obtained from
g*�r� as described in the text. The arrows indicate the intersection points
with the solid line, corresponding to =0.674 and =0.709 for the triangles
and circles, respectively.
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Finally, Fig. 3 allows us to obtain the approximate pack-
ing fraction of the melting point using pure geometrical ar-
guments, without using numerical simulations. From the pre-
vious discussion, we can speculate about the formation of a
crystalline lattice by local caging. According to Fig. 3, the
solid can only exists for �Z�=6 when 1� �r��1.19. The
maximal expanded hexagonal lattice occurs at �r��1.19.
Thus a transition to a no-caging condition happens if �r�
	1.19. Using that the packing fraction for a hexagonal lat-
tice with lattice constant �r� is

 =
�

2�3�r�2
, �10�

we obtain that �0.64, a value that underestimates c by
11%. Such prediction requires only two simple equations,
Eqs. �6� and �10�. Thus, simple geometric arguments are able
to locate the approximate location of the solid melting point.
The difference with the real value arises in the widening of
the peaks in g�r�, which leads to fluctuations in �r�, and the
radial-angular coupling effects.

III. A THREE DIMENSIONAL CASE: HARD SPHERES

In this section, we show how to extend the present ap-
proach to the case of three dimensions. As an example, we
explore the cage diagram of hard spheres with diameter �.
Following the path developed for HDs, the first ingredient is
the identification of densities in which all spheres are trapped
in cages with probability 1. This can be done considering a
central sphere and a first neighbor sphere at distance �r�. This
first neighbor, due to the hard-core repulsion potential, ex-
cludes an area Aexc to the central particle. The area available
for the central particle to leave the cage is the area of a
sphere with radius �r� minus the excluded volume by its first
neighbor,

Aeff � 4��r�2 − Aexc, �11�

where Aexc is the area of a spherical cap,

Aexc = �r�2�
0

2� �
0

�

sin �d�d� = 2��r�2�1 − cos �� , �12�

and � is the arc defined by the first neighbor sphere as seen
from the central particle,

� = sin−1	 �

2�r�� . �13�

When �Z� neighbors are present, the area available can
be written as a first approximation just by considering that
each sphere excludes an area Aexc,

Aeff � 4��r�2 − �Z�Aexc. �14�

A solid is obtained when Aeff
Aexc since there is not
available space for the central particle to leave the cage. The
separatrix between the solid and the fluid is thus given by

4��r�2 − ��Z� + 1�Aexc � 0. �15�

By feeding Eq. �15� with Aeff as given by Eqs. �12� and
�13�, we obtain that

	2 − ��Z� + 1��1 − cos sin−1	 �

2�r���� � 0. �16�

However, the previous equation is valid only in a mean
field sense, since the excluded volume must take into ac-
count two things: The central particle must be caged even for
the configurations of neighbors that let the maximal open
space on the sphere of radius �r�, and in such configurations,
there are contacts between the neighbors. The configurations
that produce a maximal open space consist in putting all the
spheres of the shell in a maximal packing arrangement. Since
the intersection of a shell of radius �r� with a sphere pro-
duces a disk, this problem turns out to be similar to the
problem of finding the optimally close packed coverage of a
sphere with disks. In the mathematical literature, such ques-
tion is known as the Tammes problem.37 Results are avail-
able for small numbers of disks in an exact or numerical
form.38 Using these ideas, the total excluded area must be
replaced by

Aexc → Aexc/T��Z� + 1� , �17�

where T�N� is the packing fraction of Tammes for N disks
in a sphere. T�N� oscillates between38 0.9 and 0.78. The
new excluded area can be inserted into Eq. �16� which is
finally written as

	2 −
��Z� + 1�

T��Z� + 1��1 − cos sin−1	 �

2�r���� � 0. �18�

Equation �18� has solutions for �r��� only for �Z�	10. For
�Z�=11, �r�=� and for �Z�=12, �r�=1.053�. Since there are
not regular lattices with �Z�=11, we can assume that a solid
with �Z�=12 is the one to be formed, which we can speculate
that it corresponds roughly to a fcc structure. The packing
fraction of a fcc structure with lattice parameter �r� is given
by

 =
�3�

8
	 �

�r�
�3

. �19�

According with the present approach, cages begin to be bro-
ken at �r�=1.053� and thus melting happens at m�0.582.
This value is 6.8% higher than the one obtained from other
sources, which report39 m�0.545. Notice that we compare
with the melting point because our line of reasoning is the
following: When the system is dense packed, all cages are
not destroyed even by the biggest available angular fluctua-
tion. The system is thus a solid. When  decreases, angular
fluctuations that are able to destroy cages appear at �r�
=1.053� and thus some fluidization is possible. This corre-
sponds to melting. It is also worthwhile mentioning that
hard-sphere numerical simulations tend to slow down at 
�0.58, which is usually associated with the formation of a
glass.39 At the moment, the origin of the coincidence be-
tween the value obtained with the geometrical approach and
the onset of glass transition is not clear. The glass transition
is a kinetic crossover and here we do not have access to the
dynamics, so making any possible connection is for the
moment a speculation.
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IV. CONCLUSIONS

In conclusion, we have shown that the escape probability
of a caged particle can serve as a tool to develop a kind of
phase diagram based in pure geometric considerations. Using
these ideas, it is possible to deduce the approximate location
of the melting point. For HDs, the melting point was located
within 11% from the accepted value, while for hard spheres
it gives 6.8%. In this last case, the value seems to coincide
with the place where the glass transition appears, but maybe
this is just a coincidence. For the moment the method is not
very accurate, but instead it sheds some light in the process
of cage formation, a fact that is usually obscured in more
sophisticated treatments of the problem. In future works, we
will use molecular dynamics to test the idea of escape prob-
ability using a study of the distribution of dynamic contacts,
and the relationship with the orientational order parameters,
which is an essential ingredient to improve the ideas
presented in this work.
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