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Abstract Rigidity plays an important role on the relaxation properties of glass forming melts, yet it 

is usually determined from the average coordination number through the chemical compositio n. A 

discussion is presented on how viscoelasticity can be used as an alternative way to determine glass 

rigidity and to give clues about the relaxation processes. It is shown that the transverse current 

dynamical structure factor of dense glass and crystal forming fluids contain rich information about 

rigidity that can be related with the presence of a dynamical-gap for transversal vibrational-modes. 

Then, the number of floppy modes can be related with the dynamical gap size and with the liquid 

relaxation time. Furthermore, a dynamical average effective coordination number can be defined. 

Numerical simulations for hard-disks in a dense fluid phase are provided. A discussion is 

presented on the need to improve glass viscoelasticity models to describe consistently 

non-exponential stress and strain relaxation. 
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PACS: 

 

One of the most important problems in glass formation is the understanding of structural relaxation 

mechanisms near glass transition [1–7], as well as how supercooled liquid relaxation wins over 

crystal nucleation [8]. Certainly a huge body of research has been focused on the subject (see 
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[9–16] and in particular [17] and references therein), yet there is not a definitive consensus. As is 

well known, experiments and simulations still have many feats to achieve [18]. 

Relaxation is related with one of the key features of glass formation: the minimal speed 

required in order to make a glass, a property known as glass forming ability [3]. Phillips and 

Thorpe’s rigidity theory gives good insights on how this problem is related to network topology 

[19, 20]. These ideas can be extended to include non-directional potentials [21–23]. Eventually, 

the pioneering work of Gupta and Mauro [1] led ridigidty theory to produce a new and highly 

accurate viscosity model, known in the literature as the Mauro-Yue-Ellison-Gupta-Allison Model 

(MYEGA) [24]. This allows us to understand the chemical composition and temperature effects on 

the viscosity of glass-former melts [24]. As a result, we are closer than ever to an age of glasses 

obtained by design [25, 26] . This goes together with the advances made by Micoulaut and Bauchy 

who had extensively studied how to define rigidity for realistic potentials (see for instance [27]). 

Previous efforts were made in simple models by Huerta et. al.[21, 22, 28, 29]. Stochastic models 

also provided a different pathway to include chemical composition effects [30, 31]. From an 

experimental point of view, Boolchand and coworkers have extensively studied the optical, 

mechanical and thermodynamical properties in terms of rigidity [32, 33]. Theoretical models 

allows an understanding of some general properties of thermodynamics in terms of rigidity [34, 

35] and there are suggestions of a connection with the boson peak [36–38]. 

As a matter of fact, any symmetry-breaking thermodynamic phase transition involves the 

development of some kind of generalized rigidity by the system [39]. This allows the given system 

to preserve the phase order against thermal fluctuations [39]. In spite of this fundamental 

character, it is surprising to find that in general such observation is not emphasized when phase 

transitions are studied. A fluid is different from a solid precisely due to its rigidity, and thus a 

simple first-order fluid-solid phase transition must also contain a rigidity transition as its main 

signature. Moreover, the lack of rigidity is the defining property of a Newtonian fluid, i.e., the 

absence of elastic behavior against shear stress. This leads to the absence of transversal waves in a 

fluid. 

The main aim of this work is to emphasize the need to decode how the rigidity of glass 

forming melts depends upon the time and spatial scales in which the system is probed or perturbed. 

Moreover, to accomplish this feat we need to understand rigidity transitions not only in glasses, but 

for crystallization and in cluster nucleation at the kinetic spinodal temperature [40]. 
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A lot of knowledge on these aspects could be obtained by looking at the similarities and 

differences between rigidity in organic and inorganic glasses, all of them above 
gT  and close to 

the mechanical vitrification point [41]. For organic glasses there is a vast literature concerning 

flexible and rigid polymer models in which relaxation has been tested [41–43]. On the 

experimental side, modulated differential scanning calorimetry (MDSC), dielectric relaxation and 

rehology measurements have been very succesful for the understanding of relaxation processes 

[44]. For inorganic glasses, a series of different experiments such as MDSC and Raman scattering 

among others, as well as computational simulations reveal interesting aspects of the rigidity 

transition [32, 45–47]. However, results on chalcogenide glasses frequency-dependent rheology 

are recent [48–51]. 

One may wonder what is the fundamental difference between rigidity in organic and 

inorganic glasses above gT . Many years ago the answer to this question was not clear. Above gT  

and due to their polymeric nature, organic glasses display transitions from the folded to the 

stretched chain forms and thus present viscoelasticity [44]. On the other hand, inorganic glass 

melts were thought to be purely Newtonian fluids [41]. Yet, inorganic glasses, as polymeric 

systems, were expected to display viscoelasticity. This apparent paradox was solved by the 

observation made by G. M. Bartenev, who started by adscribing the prominent differences 

between the gT  of inorganic and organic glasses to the much higher rotation flexibility of the C-C 

bonds [41]. Therefore, it was concluded that viscoelasticity was also possible for inorganic 

glasses, although happens to be smaller than in its organic counterparts due to their somewhat 

limited angular bond excursions. This sole fact explained why the viscoelastic response in 

inorganic glasses remained for a long time unnoticed [41]. 

For organic glasses, the key to understand the relationship between relaxation and rigidity 

is given by measuring the viscoelasticity using rheological experiments [44]. In viscoelasticity, the 

relationship between the stress ( )   and strain ( )   is measured as a function of the frequency 

 . For ( ) = cos t   , we have ( ) = cos sinG' t G'' t    , and thus a complex modulus 

( )G   is obtained [49]. The real part of ( )G  , denoted by ( )G'  , is the storage modulus while 

the imaginary part ( )G''   gives the loss modulus. The phase lag between strain and stress is 

given by tan ( ) = ( ) / ( )G'' G'    , while a frequency-dependent viscosity is obtained from 
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2 2( ) = ( ) ( ) /G'' G'     . 

Above the glass transition and for low frequencies[48–51], the viscosity ( )   is strongly 

frequency-dependent and ( ) << ( )G' G''  . At these frequencies, the system behaves as a viscous 

fluid as ( ) ( ) /G''    . In the limit of high frequencies, denoted by =  , we have that 

( ) ( ) > ( )G G' G''     and mainly a purely elastic response is obtained. The lesson taken from 

these rheology experiments is that at high-frequencies, the system is rigid- like, while at low 

frequencies is non-rigid. Thus, rigidity in melts involves the time-scale in which the system is 

probed. Moreover, this aspect means that there must also be a transition concerning the 

propagation of transversal waves. As the dispersion relationship of waves involves   as a 

function of the wavevector k, is clear that rigidity involves time and space density-density 

fluctuations. A striking demonstration of this phenomena is the report of transversal-wave branchs 

in the dynamical structure factor [52–54]. The transversal part of the dynamical structure factor is 

defined as [52], 

 
0

( , ) = ( , ) .i tS k dte C k t




  (1) 

where ( , )C k t  is the transversal current density correlation function, 

 *( , ) = ( , ) ( ,0) ,T TC k t J k t J k   (2) 

and the brackets ...   represent an ensemble average. The function ( , )TJ k t  is the transversal 

density current averaged over the different directions of k given the wavenumber =| |k k , 

  
=1

1
( , ) = ( )exp ( ) .

2

N

T i i

i

J k t t i t
Nk

 k v k r  (3) 

Here, ( )i tv  and ( )i tr  are the velocity and position of the thi  particle of a given system at 

time t . The 1/ 2  factor takes into account the two transverse currents in three-dimensional 

systems, and is replaced by one in two dimensions. 

As an example, in Figure 1 we present the transversal part of the dynamical structure factor 

( , )S k   for the simplest imaginable system: hard-disks. This result was obtained from a 

molecular dynamical simulation of 2500  hard-disks. Once the simulation was thermalized, we 

ran the simulation 2000 times for different velocities and positions. The transversal current density 

correlation function, Eq. (2) was averaged over these 2000 simulation samples in order to reduce 
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the noise. We used the event driven molecular dynamics simulation called DynamO [55]. It is 

important to remark that the presented results in Figure 1 were obtained for a packing fraction 

= 0.68 , where the system is in a very dense fluid phase, close to the freezing point which is 

known to be at 0.72C  . [56, 57] 

In the upper panel of Fig. 1, we show the resulting contour plot of ( , )S k  . We can see that 

for small wavenumbers, shear waves do not propagate as expected for the fluid phase. However, 

Fig. 1 reveals a threshold 
ck . Whenever > ck k , shear waves indeed propagate in the system. In 

the lower panel of Fig. 1, we show the transversal part of the dynamical structure factor vs   for 

different wavenumbers k  given in terms of the lowest wavenumber = 4 /mink N . Notice 

how as k  increases, the peaks in ( , )S k   shift to larger values of  . Furthermore, there is a gap 

between the peaks for 3 mink k  and = 4 mink k . From the upper panel in Fig. 1 we can see that 

2 2( ) ck k k    in agreement with a recent theoretical solid-state approach to liquids [53, 58, 

59]. 

Fig. 1 shows another viewpoint to look at viscoelasticity, but here the change from a 

fluid- like to a solid- like behavior is revealed by the presence of a dynamical gap [52, 53, 60]. 

Transversal wave propagation is only possible for modes with > ck k . For < ck k , in Fig. 1 we 

observe that ( , ) ( )S   k , where ( )   is the Dirac delta function. As for < ck k  we have 

= 0 , we can consider these states in terms of rigidity as floppy, i.e., the system is flexible. 

In general we can estimate a relationship between ck  and the number of floppy modes as 

follows. Since the fluid is isotropic, the number floppy modes in three dimensions is, 

 2 3

0

8
( ) 2 4 =

3

k
c

f c cN k k dk k


   (4) 

The fraction of floppy modes ( f ) with respect to the total number of modes is then, 

 

3

2

3

c

D

k
f

k

 
  

 
 (5) 

The normalization factor ( )D ck k  is the Debye wavevector [60]. We thus arrive to the 

conclusion that floppy modes are related with a dynamical gap. Moreover, as =1/ ( )ck c T , 

where c  is the transverse sound speed and ( )T  is the average time at temperature T  it takes 
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for a molecule to diffuse a distance equal to the inter-atomic separation [60], we can further relate 

floppy modes with this characteristic time, 

 
3 3

2 1

3 ( )D

f
T 

 
  

 
 (6) 

where =D Dck . Although floppy modes in principle reduce the internal energy [61, 60], this will 

not happen in all cases, as entropy has two sources, vibrational and configurational [34]. 

As a matter of fact, floppy regions favor the maximization of vibrational entropy [34] and 

thus under certain conditions domains of floppy regions appear [35]. This in turn has huge 

consequences for relaxation [62–65] and it becomes difficult to characterize rigidity using a 

mean-field approach above glass transition. Nevertheless, following the spirit of a mean field , we 

can define a mean coordination number < >r  of an effective topological lattice [20]. The 

fraction of floppy modes is = (3 ) / 3f N c N , where c  is the number of constrains. When 

angular and radial forces are present, this results in = 2 5 < > /6f r , while =1 < > /6f r  for 

radial forces. By using Eq. (5) we arrive to a possible and alternative definition for a “dynamical” 

mean coordination number in the melt when angular forces are present, 

 

3

12 1
< >= 1

5 3

c

D

k
r

k

  
   
   

 (7) 

and for pure radial forces, 

 

3

2
< >= 6 1

3

c

D

k
r

k

  
   
   

 (8) 

We remark that here = 0ck  implies < >= 2.4r  whenever angular forces are present. In a 

similar way, = 0ck  implies < >= 6r  for pure radial forces. These are the magical coordinations 

for rigidity transitions [19] and thus contain and highlight what we expect for a transition from a 

liquid to a solid. When there is a hierarchy of forces, these coordination numbers are not inte nded 

to necessarily caracterize glasses below gT  as the solidified network can be already classified as 

floppy, isostatic or rigid. This task requires a more involved treatment, yet the present ideas 

suggest a path to be followed. 

 

Figure 1: The transversal part of the dynamical structure factor ( , )S k   in a system of 2500  
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monodisperse hard disks with periodic boundary conditions and packing fraction = 0.68 , which 

is in the fluid phase but close to the threshold where the system freezes. Upper Panel: Contour 
plot of the normalized transversal part of the dynamical structure factor as a function of   and the 

wavenumber k , given in terms of = 4 /mink N . The red points correspond to the maximal 

dynamical structure factor values, and the lines through them are visual guides. The dashed curve 

2 2

ck k  is presented for comparison purposes. Lower Panel: The transversal part of the 

dynamic Structure Factor vs   for different wavenumbers k  (see legend). For wavenumbers k  

equal to 
mink , 2 mink  and 3 mink , the transversal part of the dynamical structure factor has a peak at 

= 0 . For wavenumber 4 mink k , the transversal part of the dynamical structure factor has peaks 

at 0  . The dynamical k -gap satisfies the inequality 3 < < 4min c mink k k , i.e., for wave numbers. 

The lines connecting the plotmarkers are meant as visual guides. 
 

Let us discuss these dynamical results in the context of the usual invoked arguments 

relating relaxation time ( ) and Newtonian viscosity (
0 ) above gT . This characteristic time at 

glass transition is estimated by setting 12

0 10 Pa s   in the Maxwell relationship 0 / ( )G'   . 

This comes from the simplest model of viscoelasticity: a spring with a dashpot connected in series. 

However, the Maxwell model automatically implies exponential stress relaxation [66]. Glasses 

and glass- forming melts are known to have non-exponential relaxation [66], as for example, 

streteched exponential relaxation 
0( ) = exp[ / ]t t     where   depends upon the range of the 

interaction [6], as happens for relaxation in other topologically connected lattices [67, 68]. To be 

consistent, is paramount to search beyond the Maxwell picture. The task can be performed by 

using an extensive collection of models [41, 66]. Several paths are envisioned which include the 

use of fractional derivatives and generalized Maxwell-Voigt-Zener models with many spring 

dash-pots circuits to accurately reproduce all frequency decades [69]. This is in agreement with the 

use of Prony series to represent many relaxations times in order to obtain an accurate SER [70]. 

However, even for organic glasses is difficult to obtain models able to reproduce all kind of 

possible protocols for elasticity measurements [69]. Moreover, for inorganic glasses the 

relationship between rigidity and elasticity protocols is still a work in progress. For chalcogenide 

glasses, recent works add to viscoelasticity a plastic response [50] or a delayed elasticity [48] to 

account for the results on specific protocols. Any advance in this area is essential, as elastic 

stresses are related to thermodynamic driving forces for crystallization [71]. In this regard, Grassia 

et al. have made significant progress [72–76]. By linking viscoelasticity and the 

phenomenological KAHR model for structural relaxation, developed by Kovacs, Aklonis, 
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Hutchinson, and Ramos [77, 78], they were able to characterize amorphous polymers and, in 

particular, predict the isobaric and isothermal glass transition for polystyrene [79]. 

Finally, we conclude by observing that for the system presented in Fig. 1, the dynamical 

gap goes to zero ( 0ck  ) as the hexatic to solid second order phase transition is approached. It 

remains to determine how the transition to rigidity occurs in glass forming melts, for example, by 

considering polydisperse disks. Also, we need to perform simulations on realistic Hamiltonians 

with angular dependent potentials. For organic glasses, it is known that such contributions increase 

relaxation times by steric shielding [43]. Cuts of the polymer chains and therefore, chain length, is 

an important parameter for relaxation in organic glasses [41, 42], yet is a factor that still needs to 

be addressed in time-dependent constraint theory for inorganic glasses. 
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