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A renormalization method is proposed to analyze the electronic band structure of disordered Fibonac-
ci chains. The perfect (quasiperiodic) chain is contemplated as a particular case. Both bond and on-site
problems are considered. The method is computationally efficient and suitable to deal with large chains
in real space. It can be useful for the study of electronic properties of random tilings.

I. INTRODUCTION

The electronic properties of Fibonacci and generalized
Fibonacci chains have been exhaustively studied. One
effective method is the renormalization-group technique,
which was developed to study the physical properties of
periodic and quasiperiodic systems!'? even before the
discovery of the first quasicrystalline alloy in 1984.° It
has been proven that the spectrum of a Fibonacci chain is
a Cantor set of zero Lebesgue measure®’ and it is be-
lieved that all the eigenstates are neither localized nor ex-
tended, but critical.*"® A similar situation holds for a
class of generalized Fibonacci chains, but here there is
the possibility of the spectrum being locally smooth and
that extended states exist.” The renormalization-group
method has also been applied to two-dimensional quasi-
periodic lattices®® where singular continuous spectra and
critical eigenstates are also found (for a review see Ref.
10).

Fibonacci chains provide a simplified tool for examin-
ing the effects of quasiperiodicity,*!! and their study has
been strongly motivated by molecular-beam epitaxy ex-
periments yielding the first experimental realization of a
Fibonacci system.!?> Less attention, however, has been
paid to random systems in the sense of a random tiling.
The one-dimensional realization of a perfect quasicrystal
is the Fibonacci chain whose Fourier-transform consists
of a dense set of delta peaks, although it must be borne in
mind that there is still controversy about the true nature
of quasicrystallinity. In addition to the perfect quasicrys-
tal model, there exists the random tiling model which has
successfully explained most features of quasicrystalline
alloys (for a review see Ref. 13). The Fourier transform
of a random tiling structure consists of delta peaks plus
diffuse scattering and their one-dimensional realization is
a disordered Fibonacci chain preserving the same re-
ciprocal space properties.

The main purpose of this paper is to provide a
renormalization-group procedure which is useful to study
the local electronic properties of large random Fibonacci
chains in a simple and efficient computational way. This
method was previously implemented to tackle the locali-
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zation problem in Fibonacci chains,'* and was also ap-
plied to two-dimensional Penrose tilings. 15 Here, we
present a generalization where the Fibonacci chain is
only a particular case, and has the advantage of being ex-
tendible to treat the case of random Penrose tilings.
Since no experiment has yet been devised to tell which of
the major competing quasicrystal models (quasiperiodic
vs random tiling) is correct to describe real quasicrystals,
the method proposed here can shine some light onto this
matter by describing the effect of phason disorder on
electronic spectra of quasiperiodic structures.

The outline of the paper is as follows. In Sec. II we de-
scribe the construction of random Fibonacci chains and
derive their renormalization-group equations. In Secs.
II A and II B we apply the derived transformations to cal-
culate the local density of states (LDOS) at a central site
in random Fibonacci chains with varying degrees of dis-
order. Section III is devoted to results and discussion.

II. RENORMALIZATION GROUP

The Fibonacci sequence describes the alternation of
“words” L and S, with lengths /; and /4. Let us call F,
the sequence obtained according to the following con-
catenation rule:

F,=F,_,%F,_, F,=S, F,=L, (1)

where the asterisk denotes string concatenation. The
words F, converge to an infinite word F, called the Fi-
bonacci sequence which is related to the golden mean
r=(1+Vv'5)/2 by F,./F,—7 when n—> . F, ., can
also be obtained from F, by applying the following sub-
stitution rule:

L—->LS, S—L.

The Fibonacci chain is built by putting atoms on posi-
tions x, in such a way that the bond lengths, x, —x, 1,
take two values, namely, /; and I;. It is well known that
the deterministic chain constructed in this way is neither
periodic nor random, but quasiperiodic, and constitutes
the one-dimensional realization of a perfect quasicrystal.

The one-dimensional case of a random tiling is a ran-
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dom Fibonacci chain, which can be constructed as fol-
lows. Let us consider the same words L and S with the
following random concatenation rule:

R, xR, _, with probability p

R (2)

n~ |R,_,%R,_, with probability g=1—p .

R,=S, R{=L, and 0=p =1 is a fixed probability. So,
for instance,

LS with probability p
R>=1sL with probability ¢

and

LSL with probability p2+gq?
R,= SLL with probability pg
LLS with probability pg .

In this way, the infinite R ., can be viewed as a random
reshuffling of words L and S in F . We shall consider
the linear random Fibonacci chain built by associating a
bond of length /; to L and Igto Sin R .

The so constructed random Fibonacci chain can be de-
scribed by the one-electron tight-binding Hamiltonian:

H=§_‘,|i>e,.<i +3 i>t,-,~(j| ,
i 5]

where |i) is the Wannier state associated with the ith
vertex of the chain and ¢;; is the nearest-neighbor hop-
ping integral. In the bond problem (nondiagonal disor-
der) the hopping integrals take two values ¢, and ¢,. For
the case of on-site problem (diagonal disorder) the site en-
ergies consist of €, and € arranged in Fibonacci se-
quence. The matrix elements of the Green’s function
G,;=(ilG(Z)|j) satisfy the following set of equations:

(Z —‘6,- )G’]:8U+2 tkakj’ l:O, 1,2, ceey (3)
k

where Z =FE +in, n—0.

A. Bond problem

Following Barrio and Wang,'* the renormalization
procedure consists of eliminating the coordinates of the
central site from the equations of motion for the Green’s
function (3) in each iteration. This allows us to handle
only the atoms at the boundaries of the bonds in order to
construct the next generation. The first three iterations
are shown schematically in Fig. 1.

The chain in the second iteration consists of three
atoms with self-energies: €}, €@’ =€’+€, and €, re-
spectively (subscripts L, C, and R stand for left, center,
and right sites and the number in parenthesis labels the
iteration), and hopping integrals 7' and 7*. The coor-
dinates of the central site can be eliminated from equa-
tion (3), and one gets a single effective bond with two
effective atoms. The renormalization-group equations for
this iteration are
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FIG. 1. Scheme showing the renormalization procedure for
eliminating the coordinates of the central site in the second and
third iteration of the concatenation process for growing the Fi-
bonacci chain. The three atoms and the two bonds of the chain
are replaced by two effective atoms with a single effective bond.

T 'T
Ep=ep'+ (D 0
Z—(eR +6L )
0) (0
Ef=ep+——ToT @
b
Z — (e’ +€)
2) T(l)T(O)

’

Z—(e(R”—i—e?))

where E and ¢ are used for renormalized € and 7 parame-
ters. In the third iteration we have €?=E*, and the
equations for the nth step can be written in terms only of
renormalized variables as

t(n—l)t(n—l)

Z _(EI({n*l)_*_Ein*Z))
t(n—Z)t(n —2)

Z “(EI(Q"—“'}‘E[(‘”_”)
t(n—l)t(n~2)

Z __(El(anl)_FEin—Z))

El(‘n):El(‘n—l)_*_

’

EI(("):EI(in 72)_',_

>

t(n):

’

with the initial values
E£°’=E£”=E}(°)=E}¢”=O
and (5)

1O=¢, H=¢

s ¢

This renormalization procedure in a deterministic Fi-
bonacci chain can be extended to the random concatena-
tion rule given in (2). Figure 2(a) shows how the second
iteration of Fig. 1 looks in the random case. By renor-
malizing the two possible configurations of the chain and
averaging self-energies and hopping integrals; these
configurations can also be replaced by a single effective
bond with two effective atoms. The renormalized (and
averaged) self-energies and hopping integrals of the single
chain are now
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FIG. 2. Scheme of the renormalization pro-
cedure of the random Fibonacci chain accord-
ing to the concatenation rule (2). Two kinds of
defects are introduced. (a) For type I disorder
the renormalization of the two possible
configurations is carried out prior to average.
(b) Type II disorder arises when the two possi-
ble configurations are averaged prior to renor-
malization.
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In terms of the renormalized parameters, the general
formulas for the nth iteration read

t(n*l)t(n—l)
_(EI(Qn*l)_f_El(ln—Z))

EI(‘n)szI(‘n*l)+qEI(dn—2)+pZ

l(" —Z)t(n —2)
Z —(El‘in_2)+EI(,n_”)

+q ;
t(n ~2)t(n —2)

Z_(EI(Q"_I)+E£n_2))

EI(Q")=PE1(Q”_2)+¢]E§¢"_”+P

t(n—l)t(n—l)
zZ _(El(in —2)+E£n*1))

+q , (6)

(n)— 4(n—1)4(n—2) p
t t t (n—1) (n—2)
Z —(Ey +E; )

+ q
zZ _(E}(zn——2)+El(‘n—l))

>

with the initial condition (5).

The above procedure yields the self-energies and hop-
ping integrals of disordered chains constructed according
to the concatenation rule given in (2), whose properties in
reciprocal space are those of a random tiling.!%!” Ob-
serve, however, that a different kind of disorder can be in-
troduced if the two possible configurations are averaged
prior to renormalization, as depicted in Fig. 2(b). Note
that in this iteration there is a finite probability of getting
LL and SS configurations. Consequently, in larger
chains, one is actually averaging arbitrarily large crystal-
line regions, yielding random chains that have lost the
random tiling reciprocal space properties. These two
kinds of disorder will be alluded to as type I [Fig. 2(a)]
and type II [Fig. 2(b)]. We shall consider type II disorder
for comparison purposes only.

The corresponding recurrence formulas for type II dis-
order are

e N R T o i

b

Z_Eén)
— _ ( t(n~2)+ t("_”)z
EI(?n):PEj({n 2)+qE1({' l)+j Z_Eq(n) ’ )
C
t(n)zipt(n_l)_i_qt(n—Z))(pt(n*l)_*_qt(an))
Z—E((:") ’

where
E((;")zp(E}Q”*1)+EI(‘n-2))+q(El(‘zn~2)_+_El(ln—1)) ) 8)

Since each diagonal matrix element of the Green’s
function gives the LDOS at the corresponding site, the
LDOS at the central site of the Fibonacci chain is given
by18

1 ..
p,~(E)=—;7171‘12)ImG,-,-(Z) , 9)
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where Im stands for the imaginary part. It is straightfor-
ward to obtain the renormalized equation for the Green’s
function at the central site, which reads

pn—=1p(n—1) -1

Z“EI(‘n_l) - Z—EI({I_Z)

t(" —Z)t(n —2)

GCC= Z _E((jn)_

(10

where the self-energies and hopping integrals at step n
are given by (6) and (7) for disorder types I and II, respec-
tively, and E{ is given by (8) for both types of disorder.

B. On-site problem

The above renormalization procedure can be imple-
mented to solve the on-site problem in an analogous way.
In this case, we have two different site energies, € , and
€g, and a real bond T which must link chains » —1 and
n —2. This makes a difference to the renormalization
procedure of the precedent section since now, for disor-
der type I, the two renormalized chains are joined by a
bond T in the proper (with probability p) or reverse (with
probability q) way. These two possible configurations are
renormalized separately by eliminating the coordinates of
the two central sites to get a single effective bond with
two effective atoms. Finally, the two resulting possibili-
ties are averaged.

The general nth step formulas for the on-site problem
with the type I disorder are
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Ein)=pE£n~1)+qE£n—2)
t(n—l)t(n—l)(z_EL(‘n42))
+p (n—1) (n—2 2
(Z—Ef~YN(Z—E{")—T
t("_z)t("az’(Z—E}j'_”)
+q - — )
(Z—ERQ )Z—E{"")-T1?
E]({n)szI({n_2)+qE1({n_l)
t(n~2)t(n~2)(Z_EI(tn—l))
+p -1 (n—2 2
(Z—EY "'NZ—E{"?)~-T
t(n—l)t(n~1)(Z_E1(zn—2))
Z_El(zn—Z))(Z_El(‘n—l))__TZ ’
t(n)=Tt(n—l)t(n—2)

+q( (11)

p
(Z _El(in_l))(z _Ein_Z))—Tz

+ q
(Z—ERy ~NZ—E{" ")—T?

’

with the initial conditions
EI(.Z):GA’ E1(22)=EB’ t(Z)zT ,

2
=_T )
Z '_GB

(3) — 3)—
EL)——E}(Q)—GA‘FZ_G ,
B

The corresponding recurrence formulas for the type II
disorder are

(pt(n—1)+qt(n~2))2[z __(pE}ln—Z)_i_qu(‘n*—l))]

E]En):PEI(‘n-I)+qE1(‘n72)+ S(n)

’

(pt(n—2)+qt(n—l))2[z _(PEI({n_l)+qE1(zn *2))]

El(zn)=PE1((n_2)+qE1((n_”+ S(n)

(pt(n‘2)+qt(n*1))(pt(n—1)+qt(n~—2))T

(n)
t S(n)

b

where

’ (12)

S(n}:[z —(pEl(,n _2’+qE£"—”)][Z —(PEI(zn_l)+qE1(2n —2))]_T2

.Given that now one has to retain two central sites in the last renormalization step, the LDOS must be evaluated in
one of the two central sites. The Green’s function at the central site nearest to the left atom is given by

t(n~1)t(n~1)
Gaa= Z_E}(zn—l)_ —

T2

-1

Z_EI(‘n~1)

Z __El(’n—Z)_t(n—2)t(n—2)/(Z _El(zn~2))

The self-energies and hopping integrals at step n are given by (11) and (12) for disorder types I and II, respectively.

III. RESULTS AND DISCUSSION

As discussed above, the local Green’s functions of ran-
dom Fibonacci chains can be calculated, in a given step
n, in terms of the renormalization-group equations (6) or

(7) for the bond, and (11) or (12) for the on-site problems.
The site energy € in the bond problem was initially set to
zero for all sites with ;,=—1.0 and #,=—1.5. Regard-
ing the on-site problem we selected € , =1, ez =—1 and
T =—1. The following calculations were made for 100
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FIG. 3. LDOS, in arbitrary units, for different values of p, for
the bond problem with type I disorder. (a) p =1 (Fibonacci
chain), (b) p =0.95, (c) p =0.75, and (d) p =0.5. Note that the
gross features of the Fibonacci chain of the spectrum are
preserved, and the spectrum is smoothed.
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FIG. 4. Band structure as function of p for the bond problem
with type I disorder.

iteration chains ( ~ 10%° sites).

Figure 3 shows typical examples of LDOS for the bond
problem at the central site of a chain with the type I dis-
order for p =1 (perfect Fibonacci chain), 0.95, 0.75, and
0.5, respectively. The spectrum at p =1 is the same ob-
tained using other approaches and found to be a Cantor
set. 476 As p decreases, the gross features of the spec-
trum are preserved and the spectrum is smoothed. Many
of the characteristics of the underlying Fibonacci chain
survive even for p =0.5. The features of the smoothed
spectrum have a close resemblance with the spectrum of
rational approximants of the Fibonacci chains, !’ it is also
interesting to observe that the phonon spectrum of a 3D
Penrose tiling is also smoothed when randomized.?® The
band structure of the spectra at different values of p can
be better appreciated in Fig. 4, where energy is plotted vs
p- Observe that the gap at E =0 (absent in a Fibonacci
chain) opens up as p decreases. In contrast with type I,
when the type II disorder is introduced, slight deviations
from p =1 change the main features of the spectrum.

LDOS
w

J.J.JJ bl L IL

0+ t
-3.0-2.5-2.0-1.5~ 10 0.5 0.0 05 10 1.5 2.0 25 3.0

ENERGY (arb. units)

FIG. 5. LDOS, in arbitrary units, at p =0.95 for the bond
problem with type II disorder. The features of the spectrum are
changed severely with respect to the Fibonacci one.
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FIG. 6. Band structure as function of p for the on-site prob-
lem with type I disorder.

Figure 5 shows the case at p =0.95.

For the on-site problem, the LDOS obtained when
p =1 with formulas (11) or (12) coincides with previous
calculations.?"?? Figure 6 shows the bands of the spectra
as a function of p for type I disorder. As in the bond
problem, in this case the gross structure of the spectrum
preserves the characteristics of the underlying Fibonacci
chain. Also, for the type II disorder, small variations of p
change the structure of the spectrum, in a similar fashion
to that reported in Ref. [21], where the authors consider
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random site energy fluctuations in Fibonacci chains.

Summarizing, we have introduced a renormalization-
group scheme to calculate the electronic spectrum of ran-
dom Fibonacci chains, with the following characteristics.

(1) The method is computationally simple and efficient,
enabling it to treat long chains with minimum effort.

(2) The Fibonacci chain is treated as a particular case;
disorder is introduced dynamically during chain growth,
and consists of phason defects which preserve the ran-
dom tiling properties of the chain.

(3) Although the LDOS was calculated at the central
site, it is not difficult to obtain equations for any other
chain site. In fact, one can, in principle, obtain the total
trace of the Green’s function as in the case of a perfect
chain,!* but in this case the accuracy and computation
time is heavily dependent of the number of sites.

(4) The method can be extended to two dimensions and
can be useful to study still unknown random tiling effects
on the localization problem.

ACKNOWLEDGMENTS

We would like to thank C. Wang and R. Barrio for
many illuminating discussions on the electronic proper-
ties of the Fibonacci chain. We are grateful to David
Romeu for assistance in the preparation of the
manuscript. One of us (J.L.A.) wishes to thank
DGAPA-UNAM and CONACYT of México for its
financial support through Grant Nos. IN-104989 and
1759-E9210.

*Author to whom correspondence should be addressed.

IM. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett.
50, 1870 (1983).

28. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, and E. D.
Siggia, Phys. Rev. Lett. 50, 1873 (1983).

3D. Schechtman, 1. Blech, D. Gratias, and J. W. Cahn, Phys.
Rev. Lett. 53, 1951 (1984).

43.P.Lu, T. Odagaki, and J. L. Birman, Phys. Rev. B 33, 4809
(1986).

SA. Siitd, J. Stat. Phys. 56, 525 (1989).

6M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35,
1020 (1987).

7G. Y. Oh, C. S. Ryu, and M. H. Lee, J. Phys. Condens. Matter
4, 8187 (1992).

8J. A. Ashraff, J. M. Luck, and R. B. Stinchcombe, Phys. Rev. B
41, 4314 (1990).

97. Q. You, J. R. Yan, J. X. Zhong, and X. H. Yan, Europhys.
Lett. 17, 231 (1992).

10T, Fujiwara and H. Tsunetsugu, in Quasicrystals: The State of
the Art, edited by D. P. Divicenzo and P. J. Steinhardt (World
Scientific, Singapore, 1991), p. 343.

113, M. Luck and Th. M. Nieuwenhuizen, Europhys. Lett. 2, 257
(1986).

12R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K.
Bhattacharya, Phys. Rev. Lett. 5, 1768 (1985).

13C. L. Henley, in Quasicrystals: The State of the Art (Ref. 10),
p. 429.

14R. A. Barrio and C. Wang, in Quasicrystals and Incommensu-
rate Structures in Condensed Matter, edited by M. José-
Yacaman, D. Romeu, V. Castafio, and A. Goémez (World
Scientific, Singapore, 1990), p. 448.

15C. Wang and R. A. Barrio, Surface Science, Vol. 62 of
Springer Proceedings in Physics (Springer, Berlin, 1992), p. 67.

165, P. Lu and J. L. Birman, Phys. Rev. Lett. 57, 2706 (1986).

17C. Godreche and J. M. Luck, J. Stat. Phys. 55, 1 (1989).

18E. NI. Economou, Green’s Functions in Quantum Physics, Vol.
7 of Springer Series in Solid-State Sciences, 2nd ed. (Springer,
Berlin, 1983).

19p. Villasefior-Gonzalez, F. Mejia-Lira, and J. L. Moran-
Lépez, Solid State Commun. 66, 1127 (1988).

203, Los, T. Janssen, and F. Gibhler, J. Non-Cryst. Solids (to be
published).

21y, Liu and R. Riklund, Phys. Rev. B 35, 6034 (1987).

223, X. Zhong, T. Xie, J. Q. You, and J. R. Yan, Z. Phys. B 87,
223 (1992).



