
15 July 2002

Physics Letters A 299 (2002) 660–665

www.elsevier.com/locate/pla

Relationship between glass transition and rigidity
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Abstract

Using Monte Carlo simulations in a binary associative fluid, we study the effects of connectivity on the glass transition. The
results show that this transition occurs near the rigidity transition, when the number of geometrical constraints due to bonding
and excluded volume in a given temperature of the simulation, is equal to the degrees of freedom available in the configurational
space. These results are interpreted within the energy landscape paradigm. We also show that the average coordination number
is a good parameter to describe many thermodynamical properties of the glass formation. 2002 Published by Elsevier Science
B.V.

PACS: 64.70.Pf; 64.60.-i; 05.70.-a

Glass transition (GT) is a process where an amor-
phous solid is formed by supercooling a melt, and re-
mains as one of the most fascinating problems in solid
state [1]. Not all materials are able to form glasses,
and many semi-empirical criteria have been proposed
in order to explain the ability of a material to reach
the glassy state [2], because there are many factors in-
volved in the process. Of these, one important is the
speed of cooling. A slow speed means that the system
has time to explore different states of the phase space
and a glass cannot be formed, since the crystal has a
lower free energy. To form a glass, the melt must be
cooled fast enough. The GT is not considered as a true
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phase transition, although there are jumps in the spe-
cific heat or in the thermal expansion coefficient [3].

A lot of attention has been given to the problem
of finding the physical and chemical factors that de-
termine the temperature where it occurs, called GT
temperature (Tg). Among these factors, the chemi-
cal composition is fundamental. Chalcogenide glasses
(formed with elements of the VI column) are a bench-
mark test for understanding the effects of the chem-
ical composition [4]. For example,Tg can be raised
or lowered by adding impurities, and the fragility of
the glass can be changed from strong to fragile [5].
For these changes, a method based on the statistics of
agglomeration [6,7] succeeded in obtaining the empir-
ical modified Gibbs–DiMarzio law that accounts for
the relation betweenTg and the concentration of mod-
ifiers [8]. The method predicts the characteristic con-
stant that appears in the law for almost any chalco-
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genide glass [9], and gives a topological explanation
to the phenomena.

In all of these problems, the rigidity theory in-
troduced first by Phillips [10] and further refined by
Thorpe [11] has a fundamental role. By consider-
ing the covalent bonding as a mechanical constraint,
within this theory, the ease of glass formation is re-
lated with the proportion of available degrees of free-
dom and the number of constraints. When the glass has
an average atom coordination (〈r〉) below 2.4 in three
dimensions (3D), there are zero frequency vibrational
modes called floppy [12]. Although this theory has
been very successful in explaining qualitative features
of GT, and many experiments confirmed the validity
of the theory [13], not so much effort has been done
to test the theory in a quantitative way. More recently,
it has been proposed that the number of floppy modes
is related with the statistics of the phase space land-
scape [14], since the number of floppy modes is equal
to the number of different configurations of the sys-
tems with nearly equal minimal energies. From this,
a free energy is defined, and many thermodynami-
cal properties can be calculated. Using this approach,
the jump in specific heat during GT for the glass
AsyGexSe1−x−y has been obtained as a function ofx

andy without using any free parameter [14]. However,
still it is not clear how rigidity affectsTg, i.e., if a rigid-
ity transition has an effect in a glass transition [15],
although these effects are now slowly emerging from
experiments, as in the case of the Ge–S–I system [16],
and the Si–Se binary glass [4]. In this Letter, we ad-
dress this question by performing Monte Carlo (MC)
simulations for a binary associative model, which al-
lows to explore the role of connectivity in the GT.

As starting point, we choose the Cummings–Stell
model of a two component system (A and B) of
associating disks in 2D, all of the same size [17,18].
We restrict our attention to the case where the number
density of each component is the same, i.e.,ρA =
ρB = 0.5ρ where ρ is the total number density.
The particles interact via a potential permitting core
interpenetration of theA andB monomer discs, so that
the bond lengthL is less than the core diameterσ .
Without loss of generality we assumeσ = 1. The
interactions are given as follows:

Uij (r) = Uhd
ij (r) + (1− δij )Uas(r),

Uhd
AA(r) = Uhd

BB(r) =
{∞, r < 1,

0, r > 1,

Uhd
AB(r) = Uhd

BA(r) =
{∞, r < L − 0.5w,

D, L − 0.5w < r < 1,

0, r > 1,

Uas(r) =
{0, r < L − 0.5w,

−εas− D, L − 0.5w < r < L + 0.5w,

0, r > L + 0.5w,

where i and j stand for the species of the particles
and take valuesA andB, r is the separation between
centers,L is the bonding distance andw is the width
of the attractive intracore square well. The model
allows the formation of dimer species for small values
of the bonding length parameter, the formation of
chains, if the bonding length is slightly larger, and also
the vulcanization with fixed maximum coordination
number for different bonding length values close to
the diameter of particles, as shown in Fig. 1. In order
to be able to fix a maximum coordination number in
each simulation , we takeD → ∞ as was done before
in other works [18,19]. This choice has the effect that
unlike particles avoid bond-lengths betweenL+ 0.5w

and 1, and thus coordinations higher than a desired
maximum are not allowed. Numerically, this condition
means that in the MC simulations, we never consider
bond distances in the previous range.

Fig. 1. Schematic representation of the Cummings–Stell model.
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Fig. 2. Change of the volume as a function of the scaled temperature.
The symbols specified in the legend correspond to different cooling
rates (30000 and 50000 MC-steps) of a model with maximum
coordination three (cpx3).

To study the model we have applied the Metropolis
Monte Carlo sampling technique in the isobaric-
isothermal ensemble (NPT). Some minor changes
in the scheme of the MC procedure was applied
comparing with previous works [18]. The first consists
in permitting the variation in the length of the unit
cell in x and y directions in order to give the
opportunity to access configurations near close packed
structures. The second is to permit a quite long
thermal equilibrium keeping the volume fixed (NVT
ensemble) between successive changes of volume of
the usual NPT procedure. Using the Monte Carlo step
of the NPT cycle as a time parameter [20], we try
to reproduce in a qualitative way the effect of the
experimental cooling rate at constant pressure that
allows the possibility of visiting the configurational
space accessible in the short time in which is it cooled.
Starting from a fluid temperature configuration, we
gradually slowed down the temperature every certain
MC steps of the NPT procedure for a fixed NVT steps
previously determined.

In Fig. 2, we show the volume of the system as a
function of the scaled temperature (T ∗ = kT /εas) for
the potential condition that allows maximum coordi-
nation three (cpx3). We can observe that for different
cooling rates, there is a characteristic inflexion that is a

Fig. 3. Energy fluctuations against reduced temperature for the two
models described in the text.

feature of a GT. To check if this is a GT, we have cal-
culated the energy fluctuations (which give the main
contribution to the specific heat in the NPT ensemble
under these conditions) againstT ∗, as shown in Fig. 3.
As can be seen, these fluctuations have also jump in
the same values ofT ∗. In Fig. 5(b), we show a plot of
the fluctuations as a function of the average coordina-
tion that we will define later, the temperature region
where the jump occurs corresponds to that observed at
the change of slopes in Fig. 2. Furthermore, by using
the radial distribution function and a direct inspection
of the resulting structures, we have verified that the
high density phase is a glass and not a crystal. Thus,
the inflexion that appears in Fig. 2 can be associated
with a GT.

In order to understand the relationship between the
connectivity of the system with some thermodynami-
cal properties, in Fig. 4 we plot the volume as a func-
tion of the average coordination number, defined as

〈r〉 =
∑

r

rxr,

where r is the coordination andxr is the fraction
of particles that are bonded. These proportions are
functions of the temperature, since each new bond
that is formed changes the energy by a fixed amount.
As a consequence, is clear that the total energy is
proportional to the number of bonds formed in each
step of the agglomeration process that occurs when the
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temperature is lowered, and thus is also proportional
to the average coordination number. From Fig. 4,
we observe that for all cooling rates, the volume
follows an isocoordination rule, in the sense that
is a universal function of〈r〉 for different cooling
rates. Furthermore, from Fig. 4 is clear that there is
a change of regime in the behavior of the volume.
The transition occurs at the critical value〈r〉 = 2.01,
obtained by two straight-line fits as shown in the
figure. This point also corresponds to the previous
transition observed in the volume (the corresponding
transitions for the coordination number are marked
with arrows in Fig. 2) and energy fluctuations as a
function of the temperature. The value 2.01 suggests
a strong connection with the rigidity theory of Phillips
and Thorpe for the following reason. In this theory,
the ability for making a glass is optimized when the
number of freedom degrees, in this case 2N whereN

is the number of particles, is equal to the number of
mechanical constraints (Nc) that are given by the bond
length and angles between bonds. These two numbers
allows to calculate the fraction of floppy modes (f )
in a mean-field approximation, known as the Maxwell
counting. This counting goes as follows, since each of
ther bonds in a site of coordinationr is shared by two
sites, there arer/2 constraints. If the angles are also
rigid, in 2D there are(r − 1) constraints, to give

(1)f = 2N − Nc

2N
= 〈r〉

2
+

∑
r

(r − 1)xr,

where the last term corresponds to the angular con-
straints. The rigidity transition occurs whenf = 0. In
2D, this lead to the critical value〈r〉 = 2.0 if all an-
gular constraints are considered, and〈r〉 = 4.0 if the
angular restoring forces are not strong. Although the
value 〈r〉 is very close to the one obtained from our
MC simulations, care must be taken because in the
Cummings–Stell model, the rigidity transition is com-
plicated due to the fact that the angular constraints are
only produced by geometrical hindrance, i.e., the an-
gles between particles can change without a cost in
energy, but within certain limits imposed by the re-
striction of the hard-core interaction between like par-
ticles. In the case of maximum coordination three, this
means that only sites with coordination two and three
have a contribution to angular constraints. To obtain
the fraction of floppy modes in our MC simulation, we
used the mean-field approximation given by Eq. (1),

Fig. 4. Dependence of the volume as a function of the average
coordination number for models with maximum coordination three
(cpx3) and four (cpx4) for the indicated MC-steps.

although a more refined calculation requires the use of
the pebble game algorithm [12]. The contributionsxr

were found directly from the concentrations of sites
with coordination two and three given by the MC sim-
ulations. Fig. 5(a) shows a plot of the fraction of floppy
modes as a function of〈r〉 calculated in this way. As
can be seen, the value wheref = 0 is 〈r〉 = 1.99, in
close agreement with the value obtained from the GT.

In order to check the validity of this result, we per-
formed the same calculations in a system that allows
as maximal coordination four (cpx4 model).When the
maximal coordination is two, we were not able to ob-
tain a glass, but the rigidity transition is also not pos-
sible (due to a limitation of the model or a peculiarity
of 2D). Fig. 4 shows that for the cpx4 model, there
is a transition that occurs at〈r〉 = 2.28, which is also
reflected in the energy fluctuations (Fig. 6(b)). This
value is higher than the expected from the rigidity tran-
sition, and this means that some angular constraints
must be broken. To clarify this point, Fig. 6(a) shows
a plot off as a function of〈r〉—obtained as described
for the cpx3 model—except that now only sites with
coordination three and four contribute to the angular
constraints. Now, the corresponding rigidity transition
occurs at〈r〉 = 2.27, which is very similar to the value
obtained from the thermodynamical quantities. This
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Fig. 5. (a) Number of floppy modes and (b) energy fluctuations as
a function of the coordination number for a model with maximum
coordination three (cpx3).

Fig. 6. The same as in Fig. 5, but for a model with maximum
coordination four (cpx4).

confirms the fact that sites with coordination two have
broken constraints, due to the wider angular flexibility
allowed by the parameters in the cpx4 case (∼ 212◦),
compared with the cpx3 case (∼ 177◦). The geometri-
cal features of the model in question restrict the angu-
lar flexibility of the structures, and this promotes the
self-organization of the particles, as Thorpe remark in
his recent paper [21].

We can understand the relationship between rigid-
ity and glass transition using the statistics of the en-
ergy landscape [22,23]. The landscape is the allowed
region of the phase space for a given temperature. The

glass explores this landscape, but as the temperature is
lowered, it begins to be trapped inside basins, until it
breaks the ergodicity by staying only on a certain re-
gion of the space. This breaking of ergodicity occurs at
the glass transition. At low temperatures, the free en-
ergy contains contributions from the depth and number
of the basins, and the dynamics inside them [14]. It is
possible to separate the configurational contribution to
thermophysical properties,an a Helmholtz free energy
is then given by [22],A = N(φ̄ −kT σ(φ̄)+av) where
φ̄ is the depth of the basins in the phase space explored
by the glass at a given temperature,σ(φ̄) is the num-
ber of basins of a given depth, and the last term is
the contribution form the vibrational component. The
present approach suggest a strong connection between
the number of floppy modes andσ(φ̄). This connec-
tion seems to be natural, since the number of floppy
modes is also the number of different structures with
nearly the same minimal energy [21], and thusσ(φ̄) is
a function off , i.e., there aref different pockets in the
phase space. The number of states in the phase space
in a volumeV andN particles has the following form,
Ω(N,V ) = ((1+f )N)!Ω(N1,V1) where(1+f )! ac-
counts for thef different minima, andΩ(N1,V1) is
the contribution in each minima. However, much more
work is required to further clarify this point.

In conclusion, we have observed that the glass tran-
sition occurs near the rigidity transition in a Monte
Carlo simulation cooling of a simple associative fluid.
This fact is consistent with the landscape energy
model. These results also show that the isocoordina-
tion rule is very useful as a parameter in this kind of
simulations.
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