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Abstract

A statistical method is presented, based on stochastic transition matrices, to describe the growth of non-crystalline

materials. The method is applied to model the growth of a typical covalent network glass like amorphous GexSe1ÿx. As

a result, an analytical relation between the glass transition temperature, concentration of Ge and bonding energies is

found. Ó 1998 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The successive agglomeration of atoms or clusters is a simple process that leads to the growth of numer-
ous materials with very di�erent thermodynamical and structural properties, such as glasses [1], fullerenes
[2] or quasicrystals [3]. Such diversity makes it di�cult to understand how the growth process is related to
the properties of the material. As an example, in the case of glass, there is still no consensus [1] about which
thermodynamical and structural factors are important to determine the glass transition temperature (Tg),
although there is much work on the subject [4,5].

The recently introduced stochastic matrix method (SMM) [6,7], treats the problem of agglomeration in a
generalized way. In this method, it is supposed that the material grows when the atoms agglomerate to form
clusters. Each of these clusters are divided into two parts, the rim and the interior. The entities that com-
poses the rim (atoms or any other building blocks) are found in a certain number of geometrical situations
(called sites) that o�er possibilities for a new entity to stick on them. The new entity sticks on each of these
sites depending on the physical parameters involved in the process (such as temperature and potential en-
ergy). In the SMM, the rim is considered as a vector in which each element is the probability of observing a
certain kind of site. The growth is then described by the application of a matrix on a vector because the rim
is changed after adding one entity to the cluster. This transformation of the rim depends on the sticking
probabilities on each kind of site and thus the matrix has the probabilities of transformation of each kind
of site into others as components.

As it will be shown, the SMM converges to a ®nal con®guration for the material independent of the ini-
tial conditions. It also predicts an oscillatory behavior for the ®rst steps of growing and that the oscillations
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are damped in an exponential way as the solid grows. As all these properties are derived from the eigenvec-
tors and eigenvalues of the stochastic matrix, some of the convergence di�culties often found in numerical
simulations are avoided.

Many di�erent agglomeration processes can be described by the SMM. The di�erence between each ma-
terial comes in the way the stochastic matrix is constructed. In this article, the ideas behind the SMM are
elaborated for modelling a typical covalent network: GexSe1ÿx glass. This glass was chosen because it is one
of the simplest covalent network glasses for which there is a lot of experimental data [8±10], although most
of the relationships between glass transition temperature and structural or physical properties are empirical
[5] (an important exception is the constraint theory introduced by Phillips [11]). Among these empirical re-
lationships, the Gibbs±Di Marzio law is particularly well adapted for predicting Tg [12]. This law is ob-
tained from equilibrium principles. It assumes that the glass is formed by a network of chains (made of
Se atoms) and a cross-linking agent (Ge). In the original Gibbs±Di Marzio law, Tg is related to the
cross-linking density [12]. Later on, a modi®ed version was used by Sreeram and co-workers [8] to relate
Tg to the network average coordination number, hri. This law can be expressed as

Tg � Tg0

1ÿ b rh i ÿ 2� � ; �1�

where Tg0 is the limiting Tg when the concentration of cross-linking agents goes to zero. b is a constant that
depends on the system. Usually, it varies from 0:55 to 0:75 depending on the system [8].

As will be shown, the SMM also produces a similar relationship between Tg and the concentration of cross-
linking agents. For vitreous GexSe1ÿx, this relationship contains the energy di�erences between creating Se±
Se, Ge±Se and Ge±Ge bonds. In the present work, these energies are ®xed using some experimental data.

2. The stochastic matrix method

Glass usually grows from a surrounding medium (such as a liquid or solution) which contains the basic
entities to form the glass. In the case of vitreous GexSe1ÿx; these entities are atoms of Ge and Se with con-
centration cB and cA � 1ÿ cB, respectively (observe that in principle cB is not equal to the concentration in
the glass �x�, although at the end one will demand that cB � x). With only two types of atoms that form
covalent bonds, there are three elementary processes of single bond creation, as shown in Fig. 1. Each pro-
cess involves a characteristic energy for creating a bond between two atoms; each of these energies will be
denoted by E1, E2 and E3 for Se±Se, Se±Ge, Ge±Ge bonds, respectively.

During the cooling process which forms the glass, clusters of di�erent sizes appear; these clusters are the
seeds from which the material grows. When a new atom (Ge or Se) comes close to the cluster, it can be
attached to one of the unsatis®ed bonds that are in the rim. Since the coordination of Ge is four and that
of Se is two, the new atom may encounter four kinds of site, as shown in Fig. 2. Here it will be assumed that
there are no two or three membered rings, i.e., the growth is dendritic. This assumption allows one to sim-
plify the size of the stochastic matrix. It is only valid in the case of concentration x� 1.

Each kind of site has a certain frequency of occurrence (denoted by s; y; z; t) in the rim of the cluster. For
example, a free bond that belongs to a Se has a frequency s in the rim, while a Ge atom with only one free

Fig. 1. The three agglomeration processes: (a) Se±Se, (b) Se±Ge, and (c) Ge±Ge.
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bond has a frequency t. Thus, the distribution of each kind of valency at any stage of the growing process can
be represented by the vector �s; y; z; t�, with its trace normalized to one: s� y � z� t � 1.

The new Ge or Se atom has a certain probability to stick in each of the free bonds in the rim. Once this
atom sticks, a new site on the rim is created and the rim changes. For example, if a Ge or Se atom is added
at a site s, the transformation follows the next scheme,

s� Se! s: P �s; s� � 2cAeÿE1=KT ; �2�

s�Ge! t: P �s; t� � 4cBeÿE2=KT ; �3�
where the probabilities of each sticking process (represented by P�s; s�; P �s; t�) are given by two factors, one
is the purely statistical factor (the number of ways of joining the 4 (2) valencies of Ge (Se) in each kind of
site), and the other is the Boltzmann factor which takes into account the corresponding energy barrier to
form a bond. Similar expressions can be found when a Ge and Se atoms are added to each of the sites,

y � Se! s: P�y; s� � 2cAeÿE2=KT ; �4�

y �Ge! t: P�y; t� � 4cBeÿE3=KT ; �5�

z� Se! s; y: P�z; s� � P �z; y� � 2cAeÿE2=KT ; �6�

z�Ge! t; y: P �z; t� � P �z; t� � 4cBeÿE3=KT ; �7�

t � Se! s; z: P �t; s� � P �t; z� � 2cAeÿE2=KT ; �8�

t �Ge! t; z: P �t; t� � P �t; z� � 4cBeÿE3=KT : �9�
Note that, for creating some kind of site, there are two possible paths with di�erent probabilities (for ex-
ample, for creating one z site there are two ways, stick a Se on a t site or stick a Ge on a t site). In these
cases, the total probability for creating a site is the sum of the probabilities of each path.

The transformation of the rim is written as a matrix that acts on a vector because the total probability
for an atom to stick in a certain site is the sticking probability of the process multiplied by the frequency of
occurrence in the rim of that kind of site. The components of the matrix are the probabilities of transfor-
mation of each kind of site into others. Inserting all the contributions, the explicit matrix is written as

M �

2cAeÿE1=kT 2cAeÿE2=kT 2cAeÿE2=kT 2cAeÿE2=kT

0 0 2cAeÿE2=kT � 4cBeÿE3=kT 0

0 0 0 2cAeÿE2=kT � 4cBeÿE3=kT

4cBeÿE2=kT 4cBeÿE3=kT 4cBeÿE3=kT 4cBeÿE3=kT

0BBB@
1CCCA: �10�

Fig. 2. A typical cluster with four kinds of site in the rim.
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However, this matrix acts on a vector that represents the probabilities of ®nding each class of sites and,
as stated previously, it is normalized. The vector obtained after applying the matrix must also be normal-
ized since it represents a distribution of probabilities. In order to assure this, the sum of elements in each
column of the matrix must be one. After normalizing each column of the matrix, one gets

M �

cA
�cAn�2cBl�

cAn
�cAn�2cBl�

cAn
2�cAn�2cBl�

cAn
2�cAn�2cBl�

0 0 1=2 0

0 0 0 1=2
2cBn

�cAn�2cBl�
2cBl

�cAn�2cBl�
2cBl

2�cAn�2cBl�
2cBl

2�cAn�2cBl�

0BBBB@
1CCCCA; �11�

where n � exp��E1 ÿ E2�=kT �, and l � exp��E1 ÿ E3�=kT �:
The growth of clusters is modelled by a successive application of the matrix on an arbitrary initial vector

(v0). After applying the matrix j times, the ®nal con®guration of the rim is given by

vj � a1k
j
1e1 � a2k

j
2e2 � a3k

j
3e3; �12�

where ei are the eigenvectors of M corresponding to the eigenvalue ki, and ai are the projections of v0 onto
the eigenvectors.

A matrix with all the columns normalized to one has at least one eigenvalue equal to one, while all other
(in general, complex) eigenvalues have their real part always less than one. This means that only the eigen-
vectors with eigenvalue one remain after a successive application of the stochastic matrix. If we suppose
that M has only one eigenvalue one (corresponding to k1 � 1), then, in the limit of big j, vj converges to

vj � e1; �13�
since a1 must be one due to conservation of probability. Thus, the rim attains a stable statistical regime after
successive steps of growing; this regime is governed solely by the statistics of the eigenvector with eigenvalue
one. Observe that before the growing process attains the stable regime, there are ¯uctuations in the ®rst
generations, due to eigenvalues di�erent from one, which are in general complex numbers.

The explicit form of the eigenvector one is obtained by solving the system of equations given by

M ÿ 1� �e1 � 0 �14�
which for the present case yields the following vector,

e1 � 1

4B� 7A
4B;A; 2A; 4A� �; �15�

where A is

A � 2cBn
cA � 2cBn

�16�

and

B � cA

cAn� 2cBl
: �17�

Once the asymptotic regime is attained, the concentration of Se atoms in the rim is given by the statistics
of the only eigenvector that remains. If �s1; y1; z1; t1� is the eigenvector which corresponds to eigenvalue
one, then the proportion of Se atoms in the stable regimen is

1ÿ x � s1
s1 � y1 � �z1=2� � �t1=3� ; �18�

where the factors behind each component of the vector take into account that, for calculating the concen-
tration, one must sum over the atoms that are in the rim instead of the number of free bonds. An important
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point is that the SMM gives information about the evolution of the rim with each step. Thus, information
about some structural property of the interior is obtained by summing over all the layers. In some sense,
this is like di�erential geometry where the interior is the integral of the surface.

In this paper, the composition of the glass is the only structural parameter considered and so the com-
position in the rim must be the same as in the interior. Because of this fact, Eq. (18) can also be considered
as the composition of the interior. In other systems, like vitreous B2O3, obtaining some structural informa-
tion about the interior from the rim can be more complicated, since, for example, the formation of rings
requires at least two or three steps of agglomeration [7].

The concentration obtained from Eq. (18) is a function of the concentration in the liquid (cB), but since
the glass is growing at the expense of the surrounding medium, it is expected that x � cB. This condition is
equivalent to searching for the ®xed points of the transformation. If one puts cB � x in the right-handside of
Eq. (18) three solutions are obtained, x � 0; x � 1 and the following equation for the concentration:

x � 3ÿ 5n
3ÿ 11n� 10l

: �19�

The last equation gives the required relation between the glass transition temperature, concentration and
di�erence of energies for forming the bonds.

3. Discussion

Eq. (19) can be compared directly with experimental data if �E1 ÿ E2� and �E1 ÿ E3� are known. Another
approach is to ®x these energies using the experimental value of Tg and dTg=dx as x goes to zero.

The ®rst energy di�erence, E1 ÿ E2; is ®xed by observing that in Eq. (19), x is zero when n � 3=5. An
extrapolation from experiments on GexSe1ÿx glass [9,10] shows that in the limit x! 0; the glass transition
temperature is Tg0 � 316 K. Thus, the energy di�erence between Se±Se and Ge±Se bonds is

E1 ÿ E2 � kTg0 ln�3=5� � ÿ0:014 eV: �20�
The other energy is obtained by ®xing the slope of the derivative dTg=dx in the limit x! 0: From

Eq. (19), it can be shown that

dTg

dx

����
Tg�Tg0

� Tg0

ln�5=3�
18ÿ 50e�E2ÿE3�=kTg0

15

� �
: �21�

The experimental data taken from Ref. [9,10] show that dTg=dx at Tg0 is nearly 1; 43Tg0: By making
Eq. (21) equal to this number, E1 ÿ E3 � ÿ0:057 eV; is obtained i.e., a bond between two Ge atoms needs
more energy than other kinds of bonds, as also observed in experiments [9] and postulated by a model of a
chemically disordered network [13].

In Fig. 3, a plot of Eq. (19) is shown and is compared with the experimental data. Observe that the
agreement is good for smaller x as expected since the formation of rings was not considered here. Fig. 3
also shows a comparison with the Gibbs±Di Marzio law with b � 0:72 (calculated by a least-square ®t from
experimental data [8]) and rh i � 4xÿ 2�1ÿ x�: As can be seen, for smaller x Eq. (19) is almost the same as
the Gibbs±Di Marzio law.

As a matter of fact, using the following identity for n;

n � e�E2ÿE3�=kTg � eTg0 ln �3=5�=T � 3

5

� �Tg0=T

�22�

and the Taylor's expansion of log�1ÿ x� for x small, Eq. (19) can be written in a similar way to that for the
Gibbs±Di Marzio law,
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Tg � Tg0

1ÿ �2bSx� ; �23�

where

bS �
12
10
ÿ l

n

� �
2 ln�5=3� : �24�

An important point here is that bS also depends on Tg. However, the number found for E1 ÿ E3 means that
l=n is� 1, since l can be written as n3:86 at any temperature and n is always less than one. If the term l=n is
neglected (this corresponds to not considering the e�ect of the less stable Ge±Ge bond), bS is 1:18, which is
larger than the bS found in Ref. [8] (b � 0:72�. A better approximation is obtained by taking l=n as
�3=5�2:86; which is the ®rst term in the expansion of Tg for

l=n � �3=5�2:86Tg0=Tg �25�
with this approximation, bS is 0:72:

4. Conclusions

The stochastic matrix method for studying a covalent network glass has been presented. This method
allows one to model agglomeration processes of glasses in a simple way. Using it, an analytical relationship
between relevant physical parameters of the glass was found. For the a-Ge±Se system, the corresponding
relation is similar to the Gibbs±Di Marzio law in the limit of small x. The method can be also applied
to other systems such as vitreous B2O3 and quasicrystals [7].

Fig. 3. Comparison between Eq. (19) (solid line) and experimental data [9,10], where x is the concentration of Ge. Squares (circles) are

taken from Ref. [9] ([10]). The dashed line corresponds to the Gibbs±Di Marzio law.
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