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The jump of the heat capacity in chalcogenide glasses during glass transition is estimated using the number
of floppy modes as a free energy. A comparison with experimental data shows good agreement, without using
any free parameter. This result allows a determination of the change of the glass fragility and excess thermal
expansivity as a function of the average coordination number.

Glass transition is one of the most fascinating problems irthe fraction of floppy modes available in a networkfis 2
physics, but also it remains as one of the most challenging- (5(r)/6), where(r) is the average coordination number.
ones. Although this transition has considerable practical an®f special importance is the poifit)=2.4, where the num-
technological importance, still there is no consensus abouier of floppy modes is zero. This point was recognized by
which thermodynamical and structural factors determine th&horpe to be a “rigidity transition,™ between a floppy net-
glass transition temperatur%).1 For chalcogenide glasses, work and a rigid one; it corresponds to a strong tendency for
attention has been devoted to corref@ewith other physi-  making glass. Although the introduction of the floppy modes
cal and chemical propertiéssince such glasses have electricand the average coordination number has stimulated much
and infrared transmission properties that make them useful iwork to test this theory, not so much effort has been done in
technological application’s.One of these interesting prob- order to test the theory in a quantitative way.
lems is the change in the properties of the glass as the chemi- In this paper, | report the use of the floppy mode theory in
cal composition is changed. For examplg,andAC, (the  order to obtain the jump in the specific heat of the glass as a
jump in the specific heat in the glass transijioan be raised function of(r). To do this, we will consider the number of
or lowered by adding impurities, and the fragility of the glassfloppy modes as a free energy. The idea is to connect the
can be changed from fragile to strohgor the first case, a entropy of the liquid phase, with the range of possible disor-
method based on the statistics of agglomeration procESses dered structures, since rigidity percolation operates more ef-
has succeeded in obtaining the empirical modified Gibbstfectively in the liquid state of the chalcogenide systéfhas
DiMarzio law, that allows a calculation of the changeTof ~ we will also see, this idea also allows an explanation of the
as a function of the concentration of modifiéfurthermore, change in fragility of the glass—which in some sense gives
the method predicts the correct value of the constant thaan idea of the “difficulty degree” for making the glass—and
appears in the Gibbs-DiMarzio law for almost any chalco-the functional form of the excess expansion coefficient.
genide glas$,and shows its topological orighThe changes We start by making the observation that beldy, the
of AC, and fragility as a function of the composition has specific heat of the glass must bal8~6 (cal/mol K), inde-
been less studied, but there is some experimental work on thgendent ofr ), if the constraints do not affect the total num-
subjectt0411:12 ber of degrees of freedom for harmonic vibrations. This

Of fundamental importance to all of these problems is thecomes from the equipartition of energy, since the kinetic and
constraint theory introduced by Philliffsand further refined vibration energy contributes each witikT/2, as in the
by Thorpe!*!® Phillips considered the mechanical con- Dulong-Petit law. The experimental data by Senapati and
straints experienced by an atom in order to explain the abilitw/arshney&® show thatC, is nearly 6 calimol K) for all (r)
for making glass. Constraints produce floppy modes in thén the glassy state. Thus, in this case the floppy modes do not
network, which have zero frequency. By considering aaffect the internal energy. The observance of the Dulong-
Kirkwood-Keating type of potential, it can be shotérihat  Petit law for the glass also means that the problem can be
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treated as classical, and that floppy modes do not have . 49 y v y y y y v
perfect zero frequency, because in such a case, from statist
cal mechanics, we can expect a reduction of the internal ;5L
energy proportional to the number of constraints.

In the liquid melt, there is more room for the system to
explore the energy landscape. This fact suggests that flopp
modes can be more important since they produce regions (ﬁ g
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less rigidity, and thus these regions are more suitable to pros zs /f' -
duce a richer landscape. The idea is to relate floppy mode;: o’

with the presence of local regions with less stress in the®

system, i.e., we relate low-frequency vibrational modes with 1
disorder, since configurational modes have been shown t¢ o)

explain the additional specific heat of the mé&liand these 15
configurational modes are identified with the degree of
stress. Observe that in principle, floppy modes are eigenvec |, . . . ®
tors of the dynamical matrix with zero frequency in the glass, 2% 210 230 230 240 230 260 270
but in the supercooled and normal liquid phase, this matrix is
not well defined, except if we consider that the eigenmodes FIG. 1. AC, as a function ofr). The line corresponds to Eg.
can be identified witlinstantaneous normal mod&sHow- (3). Experimental data from Ref. 4 are shown with squares. The star
ever, rigidity is a static concept, involving virtual displace- corresponds to ASe;. A best fit line is shown with a dashed line.
ments, so while it is useful to use a dynamical matrix for aThe circles correspond to the data of,Se _ from the work of
given potential, any set of pair potentials would give theFenget al* The dotted line corresponds to the best fit of their data.
same results for geometric aspects of rigidityhich are the ~ Other symbols correspond to the data of Chang and Bédtlib-
ones that concern us in the present work. mond and Moyniharet al™ (stap.

In order to test these ideas, we start by evaluating the

internal energy of the liquid melt as a sum of various terms: Finally, we will assume thaly,, is a function of the
number of floppy modes. We suppose that each mode acts as

U=Uin+ Uparm® Yannarmt Ysio » (1) an effective extra degree of freedom for relaxation in the
region where(ry<2.4. According to the equipartition theo-
rem, each mode contributes wikT/2 to U. Thus, Uy, is
proportional tof BNk T. This idea is consistent with the work
of Duxbury et al, who showed that the number of floppy

whereU;, is the contribution from the kinetic energy of the
atoms, Up,rm comes from the harmonic vibrations, and
Uanharm iS the contribution from anharmonic terms of the

intera}tomic potential. FinallyUs,, is the contribution that modes behaves as a free energy for both connectivity and
we will assume depends on the number of floppy modes. Thggidity percolation'® In fact, a specific heat can be defined

fact that we separate anharmonic and floppy modes deserv: ing the second derivative of the free enefyRy adding

some words. As was said previously, the shape of the paaqe contributions, we find the specific heat to be,
potential does not affect the existence of floppy modes, it

only changes the small finite frequency of these modes. In 7NK 5(r)

fact, these modes we expect to be more related with terms in Cp(mel)= ——+3Nkl 2— —/,
. 2 6

the potential that produce stress, as for example what hap-

pens in the modified soft model, where a linear term is addeffom where the jump in the specific heat between the glass

in order to account for stred8 As we will see, anharmonic and the melt AC)) is given by

terms are related to melting, while we suppose that floppy

@

. . . 5 r
;r::);jiﬁs are related to configurational modes and relaxation of AC,=C,y(melt— 3NKT= Nk( 13— (2 ))_ 3)
Now we can use the equipartition theorem which gives
the contribution of the kinetic energy),;,=3NkT/2. For In Fig. 1 we plot Eq(3), andAC,, from the experimental

the harmonic contribution, we must remember that liquidsdata of AgsGe,Se _,_, and GgSe _,; taken from the work
cannot withstand shear stress, and thus they cannot sustaih Tatsumisagoet al* (squares Feng et all! (circles,
transverse modes of vibration, therefore, they have dhly Chang and Bestlil (diamond and Moynihan et al?°
vibrational modes, corresponding to longitudinal phononsAs,Gg,Se ,, and GgSe _, systems are used because
The contribution from this term i¥),,,m=NkT/2. The third they are a benchmark test for the constraint theory; espe-
and fourth term are responsible for nucleation and crystallicially the first system since a given average coordination
zation. However, when we are at the rigidity threshald)( number can be reached with many different compounds. For
=2.4), we expect the last term to vanish since there are ndhis reason, in the A&¢gSg _,_, system, each set of data
floppy modes available. In such a cakk,,,arm Can be cal-  corresponds to several chemical compositions which give the
culated using an argument put forward by Philfpsie sup-  same(r). From the figure, we observe that although E).
posed that this term must be roughly equal to the first neadoes not have free parameters, it gives a good fit of the
the glass transition, i.el  harm=3NkT/2, since the first experimental data. One special exception is the binary
term corresponds to the activation energy barrier for locaAs,Se; (shown as a starwhich is atypical in the sense that
melting and the anharmonic term is the thermal driving forceit does not follow the isocoordination rule in its properties.
of unrelaxed configurational enerdy. Probably, this is related to its “raft”like structures of two
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FIG. 2. D as a function ofr). The squares are from Ref. 4. The *%0 210 220 230
circles are the values obtained from E8), and the line is a visual <>
guide.

FIG. 3. Aa as a function ofr). The line corresponds to the best

dimensional aspeétlf we exclude this point, then a linear
regression of the experimental data from the work of Tat- . . .
su?nisagoet al. gives 21 slope of-5.07 calfmol K), with a with a functional form_of the .typrlT,23 whereB is a con-
correlation of 0.993, which is very similar to the value of stant that must be adjusted in order to account for the total
—4.96 calfmol K) predicted by the floppy mode approach. Value ofAC:
This best fit is shown as a dashed line in Fig. 1. The data
from the work of Fenget al, give a slope for the best fit of
—4.76, with a correlation of 0.98&hown as a dotted line
For the overconstrained regiofr§>2.4), there is a work by
Phillips which gives the form of the internal enerjgﬁbut we  andT,, is the temperature Whe|@p begins to descend. Us-
can observe that in this regimenC,, is also linear with a ing this expression and E¢f), the constanb of the Volger-
slope of 4 callmol K) and correlation 0.991. Fulcher law is given by

The magnitude of the jump i€, at the glass transition is
also related with the fragility of the glass. Strong glass form- To—Tk
ing liquids are resistant to changes in the medium range D=C ()| (8)
ordert because the amount of configurational entropy in the NKT«Tm (13_ _>
liquid is relatively small. Fragile glass forming liquids have a 2

high entropy. The relation of this configurational entropy o )
(S.) with AC, comes from the expressidéh, which is a measure of the strength of the liquid. Higher val-

ues ofD correspond to strong glasses. The relation defined
T by Eq. (8) betweenD and(r) can be tested with the experi-
SCZJ AC,d(InT), (49 mental data, if the constat is fixed from one of the ex-

T perimental points. For pure Se, the experimental‘dsttaws
whereT, is the Kauzmann liquid-crystal isoentropy tempera-that D =10, Tx=240 K andT;~1.05T;=320 K, to give
ture. In the present approach, from E8) it is clear thatS; C=38400 cal/mol. Using this constant and the value3 jof
has a linear dependence (n, i.e., fragility is related with ~and T, from the experiment)* from Eq. (8) we obtain the
the number of floppy modes. A key quantity that allows topoints that are shown with circles in Fig. 2. The experimental
classify the fragility of the glass is the behavior of the vis-data of Tatsumisaget al* are shown with squares in Fig. 2.
cosity. Fragile glasses forming liquids follow the Volger- As it can be seen, there is a good correspondence between
Fulcher law! the prediction of Eq(8) and the experimental data.

Another quantity of interest is the excess expansion coef-

n=70eXpPDTo/(T—Ty)), (5) ficient (A @). The present approach allows to obtain its func-

tional form, although we cannot obtain the values of the

onstants. According to the free volume theory, we expect
atAa/AC,~const, thusA« is of the form:

TKTm

&) TcTm 7

= Nk( 13- 7 1.

where D and T, are constants. Strong glasses follow an
Arrhenius law. However, both behaviors are to be expecte
from the Adam-Gibbs equatidf,

n=710expC/ITS) (6) Aa=~Cy—Cx(r), 9

since ifAC, is small, from Eq.(4), S; is almostT indepen-  whereC; andC, are two constants. This can be corroborated
dent and Eq.(6) follows an Arrhenius form. The Vogel- in Fig. 3, where we show a plot of the experimental data for
Fulcher law is recovered from E¢6) whenAC, is bigger, Aa in the AsGeSe -y systent and the corresponding
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linear regression, which has the following form:>AQv/K changes in fragility and expansion coefficients as a function
=19.05-5.83r), with a correlation coefficient of 0.936.  ©f the average coordination number are obtained.

We have used the number of floppy modes as a free en- | \would like to thank R. Kerner, R. Barrio, and M.
ergy in order to obtain the jump in the specific heat. Thisyicoulaut for enlightening discussions, DGAPA-UNAM
approach reproduces the experimental slopé& Gf, versus  Project Nos. IN-119698 and IN-108199, and CONACyT
(r), without any free parameter. Using this result, theGrant No. 25237-E for financial help.
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