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The jump of the heat capacity in chalcogenide glasses during glass transition is estimated using the number
of floppy modes as a free energy. A comparison with experimental data shows good agreement, without using
any free parameter. This result allows a determination of the change of the glass fragility and excess thermal
expansivity as a function of the average coordination number.
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Glass transition is one of the most fascinating problem
physics, but also it remains as one of the most challeng
ones. Although this transition has considerable practical
technological importance, still there is no consensus ab
which thermodynamical and structural factors determine
glass transition temperature (Tg).1 For chalcogenide glasse
attention has been devoted to correlateTg with other physi-
cal and chemical properties,2 since such glasses have elect
and infrared transmission properties that make them usef
technological applications.3 One of these interesting prob
lems is the change in the properties of the glass as the ch
cal composition is changed. For example,Tg andDCp ~the
jump in the specific heat in the glass transition! can be raised
or lowered by adding impurities, and the fragility of the gla
can be changed from fragile to strong.4 For the first case, a
method based on the statistics of agglomeration process5–9

has succeeded in obtaining the empirical modified Gib
DiMarzio law, that allows a calculation of the change ofTg
as a function of the concentration of modifiers.3 Furthermore,
the method predicts the correct value of the constant
appears in the Gibbs-DiMarzio law for almost any chalc
genide glass,9 and shows its topological origin.5 The changes
of DCp and fragility as a function of the composition ha
been less studied, but there is some experimental work on
subject.10,4,11,12

Of fundamental importance to all of these problems is
constraint theory introduced by Phillips13 and further refined
by Thorpe.14,15 Phillips considered the mechanical co
straints experienced by an atom in order to explain the ab
for making glass. Constraints produce floppy modes in
network, which have zero frequency. By considering
Kirkwood-Keating type of potential, it can be shown13 that
PRB 610163-1829/2000/61~14!/9205~4!/$15.00
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the fraction of floppy modes available in a network isf 52
2(5^r &/6), where^r & is the average coordination numbe
Of special importance is the point^r &52.4, where the num-
ber of floppy modes is zero. This point was recognized
Thorpe to be a ‘‘rigidity transition,’’14 between a floppy net-
work and a rigid one; it corresponds to a strong tendency
making glass. Although the introduction of the floppy mod
and the average coordination number has stimulated m
work to test this theory, not so much effort has been done
order to test the theory in a quantitative way.

In this paper, I report the use of the floppy mode theory
order to obtain the jump in the specific heat of the glass a
function of ^r &. To do this, we will consider the number o
floppy modes as a free energy. The idea is to connect
entropy of the liquid phase, with the range of possible dis
dered structures, since rigidity percolation operates more
fectively in the liquid state of the chalcogenide systems.10 As
we will also see, this idea also allows an explanation of
change in fragility of the glass—which in some sense giv
an idea of the ‘‘difficulty degree’’ for making the glass—an
the functional form of the excess expansion coefficient.

We start by making the observation that belowTg , the
specific heat of the glass must be 3Nk'6 ~cal/mol K!, inde-
pendent of̂ r &, if the constraints do not affect the total num
ber of degrees of freedom for harmonic vibrations. Th
comes from the equipartition of energy, since the kinetic a
vibration energy contributes each withNkT/2, as in the
Dulong-Petit law. The experimental data by Senapati a
Varshneya10 show thatCp is nearly 6 cal/~mol K! for all ^r &
in the glassy state. Thus, in this case the floppy modes do
affect the internal energy. The observance of the Dulo
Petit law for the glass also means that the problem can
R9205 ©2000 The American Physical Society
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treated as classical, and that floppy modes do not hav
perfect zero frequency, because in such a case, from sta
cal mechanics, we can expect a reduction of the inte
energy proportional to the number of constraints.

In the liquid melt, there is more room for the system
explore the energy landscape. This fact suggests that flo
modes can be more important since they produce region
less rigidity, and thus these regions are more suitable to
duce a richer landscape. The idea is to relate floppy mo
with the presence of local regions with less stress in
system, i.e., we relate low-frequency vibrational modes w
disorder, since configurational modes have been show
explain the additional specific heat of the melt,16 and these
configurational modes are identified with the degree
stress. Observe that in principle, floppy modes are eigen
tors of the dynamical matrix with zero frequency in the gla
but in the supercooled and normal liquid phase, this matri
not well defined, except if we consider that the eigenmo
can be identified withinstantaneous normal modes.16 How-
ever, rigidity is a static concept, involving virtual displac
ments, so while it is useful to use a dynamical matrix fo
given potential, any set of pair potentials would give t
same results for geometric aspects of rigidity,17 which are the
ones that concern us in the present work.

In order to test these ideas, we start by evaluating
internal energy of the liquid melt as a sum of various term

U5Ukin1Uharm1Uanharm1U f lo , ~1!

whereUkin is the contribution from the kinetic energy of th
atoms, Uharm comes from the harmonic vibrations, an
Uanharm is the contribution from anharmonic terms of th
interatomic potential. Finally,U f lo is the contribution that
we will assume depends on the number of floppy modes.
fact that we separate anharmonic and floppy modes dese
some words. As was said previously, the shape of the
potential does not affect the existence of floppy modes
only changes the small finite frequency of these modes
fact, these modes we expect to be more related with term
the potential that produce stress, as for example what h
pens in the modified soft model, where a linear term is ad
in order to account for stress.16 As we will see, anharmonic
terms are related to melting, while we suppose that flop
modes are related to configurational modes and relaxatio
strain.

Now we can use the equipartition theorem which giv
the contribution of the kinetic energy,Ukin53NkT/2. For
the harmonic contribution, we must remember that liqu
cannot withstand shear stress, and thus they cannot su
transverse modes of vibration, therefore, they have onlN
vibrational modes, corresponding to longitudinal phono
The contribution from this term isUharm5NkT/2. The third
and fourth term are responsible for nucleation and crysta
zation. However, when we are at the rigidity threshold (^r &
52.4), we expect the last term to vanish since there are
floppy modes available. In such a case,Uanharm can be cal-
culated using an argument put forward by Phillips.13 He sup-
posed that this term must be roughly equal to the first n
the glass transition, i.e.,Uanharm'3NkT/2, since the first
term corresponds to the activation energy barrier for lo
melting and the anharmonic term is the thermal driving fo
of unrelaxed configurational energy.13
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Finally, we will assume thatU f lop is a function of the
number of floppy modes. We suppose that each mode ac
an effective extra degree of freedom for relaxation in t
region wherê r &,2.4. According to the equipartition theo
rem, each mode contributes withkT/2 to U. Thus,U f lop is
proportional tof 3NkT. This idea is consistent with the wor
of Duxbury et al., who showed that the number of flopp
modes behaves as a free energy for both connectivity
rigidity percolation.18 In fact, a specific heat can be define
using the second derivative of the free energy.18 By adding
these contributions, we find the specific heat to be,

Cp~melt!5
7Nk

2
13NkS 22

5^r &
6 D , ~2!

from where the jump in the specific heat between the gl
and the melt (DCp) is given by

DCp5Cp~melt!23NkT5NkS 132
5^r &

2 D . ~3!

In Fig. 1 we plot Eq.~3!, andDCp from the experimental
data of AsxGeySe12x2y and GexSe12x; taken from the work
of Tatsumisagoet al.4 ~squares!, Feng et al.11 ~circles!,
Chang and Bestul19 ~diamond! and Moynihan et al.20

AsxGeySe12x2y and GexSe12x systems are used becau
they are a benchmark test for the constraint theory; es
cially the first system since a given average coordinat
number can be reached with many different compounds.
this reason, in the AsxGeySe12x2y system, each set of dat
corresponds to several chemical compositions which give
same^r &. From the figure, we observe that although Eq.~3!
does not have free parameters, it gives a good fit of
experimental data. One special exception is the bin
As2Se3 ~shown as a star!, which is atypical in the sense tha
it does not follow the isocoordination rule in its propertie
Probably, this is related to its ‘‘raft’’like structures of tw

FIG. 1. DCp as a function of̂ r &. The line corresponds to Eq
~3!. Experimental data from Ref. 4 are shown with squares. The
corresponds to As2Se3. A best fit line is shown with a dashed line
The circles correspond to the data of GexSe12x from the work of
Fenget al.11 The dotted line corresponds to the best fit of their da
Other symbols correspond to the data of Chang and Bestul19 ~dia-
mond! and Moynihanet al.20 ~star!.
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dimensional aspect.4 If we exclude this point, then a linea
regression of the experimental data from the work of T
sumisagoet al. gives a slope of25.07 cal/~mol K!, with a
correlation of 0.993, which is very similar to the value o
24.96 cal/~mol K! predicted by the floppy mode approac
This best fit is shown as a dashed line in Fig. 1. The d
from the work of Fenget al., give a slope for the best fit o
24.76, with a correlation of 0.985~shown as a dotted line!.
For the overconstrained region (^r &.2.4), there is a work by
Phillips which gives the form of the internal energy,13 but we
can observe that in this regimenDCp is also linear with a
slope of 4 cal/~mol K! and correlation 0.991.

The magnitude of the jump inCp at the glass transition is
also related with the fragility of the glass. Strong glass for
ing liquids are resistant to changes in the medium ra
order1 because the amount of configurational entropy in
liquid is relatively small. Fragile glass forming liquids have
high entropy. The relation of this configurational entro
(Sc) with DCp comes from the expression,21

Sc5E
Tk

T

DCpd~ ln T!, ~4!

whereTk is the Kauzmann liquid-crystal isoentropy tempe
ture. In the present approach, from Eq.~3! it is clear thatSc
has a linear dependence on^r &, i.e., fragility is related with
the number of floppy modes. A key quantity that allows
classify the fragility of the glass is the behavior of the v
cosity. Fragile glasses forming liquids follow the Volge
Fulcher law,1

h5h0 exp„DT0 /~T2T0!…, ~5!

where D and T0 are constants. Strong glasses follow
Arrhenius law. However, both behaviors are to be expec
from the Adam-Gibbs equation,22

h5h0 exp~C/TSc! ~6!

since if DCp is small, from Eq.~4!, Sc is almostT indepen-
dent and Eq.~6! follows an Arrhenius form. The Vogel
Fulcher law is recovered from Eq.~6! whenDCp is bigger,

FIG. 2. D as a function of̂ r &. The squares are from Ref. 4. Th
circles are the values obtained from Eq.~8!, and the line is a visua
guide.
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with a functional form of the typeB/T,23 whereB is a con-
stant that must be adjusted in order to account for the t
value ofDCp :

B5DCp

TKTm

Tm2TK
5NkS 132

5^r &
2 D TKTm

Tm2TK
~7!

andTm is the temperature whereCp begins to descend. Us
ing this expression and Eq.~6!, the constantD of the Volger-
Fulcher law is given by

D5C
Tm2TK

NkTKTm S 132
5^r &

2 D , ~8!

which is a measure of the strength of the liquid. Higher v
ues ofD correspond to strong glasses. The relation defin
by Eq. ~8! betweenD and^r & can be tested with the exper
mental data, if the constantC is fixed from one of the ex-
perimental points. For pure Se, the experimental data4 shows
that D510, TK5240 K andTm'1.05Tg5320 K, to give
C538400 cal/mol. Using this constant and the values ofTK
andTm from the experiment,10,4 from Eq. ~8! we obtain the
points that are shown with circles in Fig. 2. The experimen
data of Tatsumisagoet al.4 are shown with squares in Fig. 2
As it can be seen, there is a good correspondence betw
the prediction of Eq.~8! and the experimental data.

Another quantity of interest is the excess expansion co
ficient (Da). The present approach allows to obtain its fun
tional form, although we cannot obtain the values of t
constants. According to the free volume theory, we exp
that Da/DCp'const, thusDa is of the form:

Da'C12C2^r &, ~9!

whereC1 andC2 are two constants. This can be corroborat
in Fig. 3, where we show a plot of the experimental data
Da in the AsxGeySe12x2y system4 and the corresponding

FIG. 3. Da as a function of̂ r &. The line corresponds to the be
fit.
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linear regression, which has the following form: 105Da/K
519.0525.83̂ r &, with a correlation coefficient of 0.936.

We have used the number of floppy modes as a free
ergy in order to obtain the jump in the specific heat. T
approach reproduces the experimental slope ofDCp versus
^r &, without any free parameter. Using this result, t
st

nd
n-
s

changes in fragility and expansion coefficients as a funct
of the average coordination number are obtained.
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