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Abstract

Using the generalized dual method, close analytical expressions for the coordinates of the quasiperiodic lattice are given. This allows to
define the lattice as an average plus a fluctuation part. The average is a superposition of crystalline lattices, and the dynamical structure
factor or the diffraction pattern of the quasiperiodic structure can be expressed in terms of the average plus the fluctuation part. The
average lattice dominates the response for long-wave modes of a probe particle or field, which is relevant in some recent application of
quasiperiodic structures. The method can be extended for quasiperiodic grids, and is a very efficient algorithm to perform calculations in
quasicrystals. Finally, the present approach can be used to define a Brillouin zone without ambiguities in the reciprocal space.
 2002 Elsevier Science B.V. All rights reserved.
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Although quasicrystals are materials with a new kind of equal to twice the lattice parameter), consequently the
order, intermediate between periodic and disordered, many main effect can be studied under a long-wave approxi-
of their physical properties are not intermediate. In some mation. The importance of the diffraction pattern has been
cases, they behave as periodic systems, and in others as recognized even before the discovery of quasicrystals, and
amorphous ones [1]. However, it is now clear that the De Bruijn developed the so-called multigrid method to
electronic stabilization via the Hume–Rothery mechanism generate Penrose pattern vertex coordinates that further
is fundamental in understanding the physics behind developments allowed to find the diffraction pattern of
quasicrystals [2]. Within this mechanism, electrons are quasiperiodic lattices [1]. The multigrid method was later
diffracted because the Fermi surface touches the Brillouin generalized to arbitrary quasilattices and was called
zone boundary—usually called Jones zone in a quasicrystalgeneralized dual method(GDM) [6,7]. Although the ideas
or disordered material—and a deep pseudo-gap is open at behind the computation of the lattice and its diffraction
the Fermi energy [1]. In quasilattices, the problem arises pattern were presented in many works [8,9], the determi-
when we try to define the first Brillouin zone, since nation of the points to be projected and their diffraction
formally the basis of the reciprocal space can only be pattern are generally achieved numerically, since analytical
established up to a scale factor [3]. Thus, this zone is expressions were not available [10]. The problem resides
defined in an empirical way by considering the most in the determination of the points that are inside the band,
intense peaks in the diffraction pattern. Moreover, the and in the determination of the Fourier transform of these
importance of the Fourier space of quasilattices has been called ‘acceptance domain’ (the projection of the strip onto
recently stirred after the advent of experiments on photonic the perpendicular space), which is a polytope in a space of
band gaps in quasiperiodic arrangements of dielectric more than three dimensions. As it will be shown, the
cylinders or holes drilled in a dielectric plate [4,5]. It is method developed here allows us to unambiguously define
interesting to stress that in band gap experiments the first a basis for the reciprocal space of the quasilattice, and is
band gap appears when the wave-vector reaches the highly simplified under a long-wave approximation (which
boundary of the first Brillouin zone (i.e. the wavelength is in our case requires wavelengths larger than the lattice

parameter). It is also very useful for determining the
response of a quasicrystal in an inelastic scattering experi-*Corresponding author. Fax:152-5-616-1535.
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average lattice is a generalization of the observation made arrive at the following analytical expression for one of the
for the one-dimensional Fibonacci chain, where the posi- vertices of a rhombohedra (wheres, j and k take values
tions can be written as an average lattice plus a fluctuation from 1 toN),
part [11], and in fact for 1D, Wolny independently de- ]] ] ] ] ] ]t 5 O n e 1 n e 1 n e 1 O ( d ?e  11)es s j j k k sjk l lS Dveloped the concept of an average unit cell of a n ,n ,n l±s±j±ks j k
quasiperiodic sequence, plus a fluctuation given in a

The other seven vertices are,probabilistic sense [12].
] ] ] ] ] ] ]In the GDM, a quasiperiodic structure is obtained by the ] ] ] ] ] ] ] ] ] ]t 1e ,t 1e ,t 1e ,t 1e 1e ,t 1e 1e ,t 1e 1e ,t 1e 1s j k s j s k j k s]following steps [6,7]: construct a star ofN basis vectorsei ] ]e 1ej kwhich contains the rotational symmetry of the lattice to be

constructed, build a set of parallel planes perpendicular to Using these expressions, we can define an average lattice
each of the star vectors, to obtain a grid. These planessince the integer part satisfy the identityx 5  x 1 x ,h j
satisfy: where x is the fractional part of the numberx. Theh j
] ] advantage of this approach is that the fractional part isr ?e 5 n 1ai i i
] ] bounded and periodic with period one. As a result, we canr ?e 5 n 1aj j j

define the quasilattice as the sum of an average lattice,] ]r ?e 5 n 1ak k k ]] ] ] ]ktl5 n a 1 n a 1 n a 1Rs sjk j jks k ksj]wherei, j andk are three different vectors,r is a vector in
]3D, n , n andn are three arbitrary integers and thea ’s are where R is a vector that shifts the lattice, and the basisi j k

real phases. The grid divides the space in open regionsvectorsa are defined as,
limited by planes. Each point in these spaces are indexed

Vlsj] ] ]by a set of integers corresponding to its ordinal position in ]a 5e 1 O esjk s lVsjkl±s±j±kthe grid (given byn ) for each of theN directions definedi

by the star vectors. The regions generateN ordinal V] ljk] ] ]coordinates (k ,k , . . . ,k ). A point in the quasilattice (t) is ]a 5e 1 O e1 2 N jks j lVsjkl±s±j±kobtained by making a dual transformation that maps each
open region to a point in the quasiperiodic packing [6], Vslk] ] ]]a 5e 1 O eksj k lN Vsjkl±s±j±k] ]t 5O k ej j

j51 for each combination ofs, j and k. The corresponding
fluctuation part is,The problem of building the lattice is thus reduced to find

the allowed combinations of thek . To solve this problem, 1i ] ] ] ]]S Df 5 O 2 d e eh jwe look at each of the possible solutions of the set of sjk l l2l±s±j±k
equations of the planes. Each solution, is a point where

The importance of this development is seen when onethree planes intersect. Using the Kramer’s rule, these
calculates the response of the system to a probe particle orsolutions are of the form,

]field with wave-vector q and frequencyw, which is] ] ] ]d 5 (n 1a )u 1 (n 1a )u 1 (n 1a )usjk s s s j j j k k k contained in the dynamic structure factor, defined as [13],

] ] ]where the vectorsu are defined as, 1 iq(r2r9) 2]
] ]]S(q,w)5 2 O e Im G (w )r,r9] ] ] ] N ] ]e 3e e 3e r,r9j k j k] ]]] ]]u 5 5] ] ]sjk 2e ? e 3e Vs ds j k sjk ] ]whereG (w ) is the Green’s function of the quasicrystalr,r9

] ] ]at sitesr,r9. By decomposingr as an average part, plus] ]andV is the volume of a rhombohedra with sidese , esjk s j fluctuations, the exponential that contains the bounded]and e . Around this intersection, there are eight regionsk ]fluctuations can be expanded in powers ofq,with ordinal coordinates that share the same ordinal
] ] 2]positions with respect to the other grids different froms, j 1 sq ? (f 2f 9)d] ]] ]S D] ]]]]S(q,w)5 2 O 11 iq(f 2f 9)2 1 ? ? ?andk. These ordinal positions are given by the integer part N 2] ]r,r9(denoted by x ) of the intersection point and the star

] ]]iq(ktl2kt9l) 2vector, ] ]3 e Im G (w )r,r9
] ]k 5  d ?e  11l sjk l The dominant response comes from the term of order zero,

in which the average lattice gives the main contribution.V V Vlsj ljk slk ]] ] ]5  (n 1a ) 1 (n 1a ) 1 (n 1a )  1 1 Observe that the Green’s function is still a function ofr,s s j j k kV V Vsjk sjk sjk however, the small fluctuations are only shifts of the
By using this result for making the dual transformation, we atom’s equilibrium positions and for low frequencies, we
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expect to have a small impact in the dynamics of the quasiperiodic grids that are used by the GDM, where the
system, which is governed by the Hamiltonian. As an Fourier transform is not known.
example, the above statements indicate that the dispersion
relation and the sound velocity for acoustic modes depends
mainly on the average lattice parameters, defined by theA cknowledgements
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