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Abstract

The effects of anharmonic interactions on the localization of phonons in quasiperiodic systems are studied by

looking at the transmittance, Lyapunov exponent, participation ratio and energy-level-spacing distribution, within the

rotating-wave approximation and first-order perturbation theory. For Fibonacci chains, a power-law distribution is

found in the small-spacing region, since the eigenstates are critical. Even within first perturbation stages, anharmonic

contributions do clearly manifest, weakening the level clustering behavior, contrary to the periodic case where the

distribution is insensitive to weak anharmonic interactions. These results suggest a structural instability of the self-

similar vibrational spectrum in quasiperiodic systems.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, it is known that the eigenvalue

spectrum produced by a quasiperiodic potential is

singular continuous, neither absolutely continuous

nor pure points. The associated eigenfunctions are

critical, i.e., exhibiting intermediate localization

nature between extended and exponentially local-

ized behavior in real space [1]. However, until now
this theoretically predicted critical behavior, such
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as multi-fractal band structures and exotic trans-
port properties [2], has not been observed in real

quasicrystals [3]. This discrepancy could be caused

by the instability of the spectrum due to the

presence of phasons [4], electronic correlation, and

non-linear interatomic interactions. Spectral sta-

tistics has proved to be an alternative way for the

study of transport properties, since there is a close

relationship between the eigenfunction localiza-
tion nature of a system and its eigenvalue statistics

[5], e.g., for a disordered metal, the level-spac-

ing (s) follows a Wigner distribution PWðsÞ ¼
ðp=2Þs expð�ps2=4Þ, while for a disordered insula-

tor it follows a Poisson�s law PPðsÞ ¼ expð�sÞ. The
essential difference between these two distributions
ed.
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arises from their small s behavior. Recently, a new
kind of level statistics has been found in one-

dimensional quasiperiodic systems. The level spac-

ing distribution shows a power law behavior,

revealing a level clustering mechanism [6]. The

effects of anharmonic interactions have been ana-

lyzed by means of an equivalent circuit and the

results show a softening of the eigenmodes [7]. In

this paper, we further explore the role of anharmo-
nic interactions on the phonon spectrum in quasi-

periodic systems by looking at the transmittance,

Lyapunov exponent, participation ratio, and spec-

tral statistics.
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Fig. 1. (a) Transmittance (T ), (b) inverse of the Lyapunov ex-

ponent (c�1
F ), and (c) participation ratio (PR) versus frequency

(x) for a harmonic MFC of 2584 atoms. Figure (a0), (b0), and

(c0) shows the corresponding results obtained for the same

MFC with anharmonic interactions (g ¼ 0:5).
2. The model

Let us consider a mixing Fibonacci chain

(MFC), in which two kinds of atoms, A and B, are
arranged following the Fibonacci sequence, i.e., if

one defines the first generation F1 ¼ A and the

second one F2 ¼ BA, the subsequent generations

are given by Fn ¼ Fn�1 � Fn�2. For instance,

F5 ¼ BAABABAA. In a MFC, the spring strength

between atoms depends on their nature, giving two
different force constants bAA and bAB ¼ bBA. Thus,

the phonon dynamics of a MFC, including a

quartic anharmonic term in the phonon Hamilto-

nian, can be described by

mj
d2uj
dt2

¼ bjðujþ1 � ujÞ � bj�1ðuj � uj�1Þ

þ gðujþ1 � ujÞ3 � gðuj � uj�1Þ3;
where mj can either be mA or mB. As we seek sta-

tionary solutions of the type uj ¼ Aj cosðxtÞ, the
well-known rotating-wave approximation [8] is

used,

cos3 ðxtÞ ¼ 3

4
cosðxtÞ þ 1

4
cosð3xtÞ � 3

4
cosðxtÞ:

Thus, the equations of motion become

x2Aj ¼ �
bj

mj
ðAjþ1 � AjÞ þ

bj�1

mj
ðAj � Aj�1Þ �

3g
4mj

�ðAjþ1 � AjÞ3 þ
3g
4mj

ðAj � Aj�1Þ3:

The anharmonic phonon frequencies can be de-

termined by using a first-order perturbation the-
ory, i.e., En � Eð0Þ
n þ Eð1Þ

n , where En ¼ x2ðnÞ, Eð0Þ
n

is the nth harmonic eigenvalue and Eð1Þ
n ¼

hwð0Þ
n j H ð1ÞðnÞ j wð0Þ

n i, being wð0Þ
n the harmonic ei-

genfunction corresponding to Eð0Þ
n and H ð1ÞðnÞ is a

symmetrically tridiagonal matrix, whose elements

are

H ð1Þ
j;jþ1ðnÞ ¼ � 3g

4mj
½Ajþ1ðnÞ � AjðnÞ�2;

H ð1Þ
j;j ðnÞ ¼ �H ð1Þ

j;j�1ðnÞ � H ð1Þ
j;jþ1ðnÞ:

Once the phonon eigenvalue spectrum (x2ðnÞ) is

found, its level spacing statistics is obtained

through an unfolding process [5].
3. Results

The numerical calculations were carried out by

using the transfer matrix technique [9] for a MFC

of generation 17 containing N ¼ 2584 atoms, with

mA ¼ 1, mB ¼ 1597=987, bAA ¼ 0:5 and bAB ¼
bBA ¼ 1, connected to two semi-infinite leads with
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Fig. 2. Level-spacing distribution (P ðsÞ) with unfolding for (a)

the same MFC as in Fig. 1 and (b) a periodic chain, both

containing 2584 atoms. The open circles correspond to g ¼ 0

and open squares to g ¼ 0:5.
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m ¼ b ¼ 1, beginning amplitudes C0 ¼ 1 and

C1 ¼ eika, where x2 ¼ 2½1� cosðkaÞ�. In Fig. 1(a)–

(c) we show respectively the transmittance (T ),
Lyapunov exponent (cF ) and participation ratio

(PR), as were defined in Ref. [9], in comparison

with Figs. 1(a0), (b0), and (c0) for g ¼ 0:5, where
x2

0 ¼ b=m and cP is the Lyapunov exponent of a
periodic chain. Additionally, we have calculated

the level spacing distribution (P ðsÞ) with unfolding

for the same MFC as in Fig. 1 without leads,

shown in Fig. 2(a), in comparison with the peri-

odic case (Fig. 2(b)).
4. Discussion

From Fig. 1, we notice that there is a trans-

parent state at x2 ¼ 2x2
0 for the harmonic case

[10], whose transmittance is decreased when the

anharmonic interaction is introduced. Further-
more, the results show a general localization ten-
dency of the states, although few of them become

more delocalized. On the other hand, the level

spacing analysis (Fig. 2) shows a Wigner-type

distribution for the periodic case and its half-width

becomes the standard Wigner�s one if a small

quantity of random disorder is introduced. For the

quasiperiodic case, we observe a peak in the small

level-spacing region, following a power law, which
reveals a clustering nature for the quasiperiodic

harmonic systems. However, this behavior is re-

duced toward a Poisson-like distribution by the

inclusion of anharmonic interactions, contrary to

what happens in periodic systems, where the dis-

tribution is insensitive to anharmonic interactions.
5. Conclusions

We have studied the effects of anharmonic in-

teractions on the localization in quasiperiodic
systems, within the rotating-wave approximation

and a first-order perturbation theory. The results

show a decreasing tendency of level clustering due

to the anharmonicity, i.e., a deviation from the

inverse power-law statistics, which is consistent

with the results of the transmittance, Lyapunov

exponent, and participation ratio analysis. Also,

the results reveal that singular continuous spectra
are more sensitive to anharmonic interactions than

the continuous spectra of crystalline solids.
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