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Abstract

We show that an electronic tight-binding Hamiltonian, defined in a quasiperiodic chain with an on-site potential given by a Fibonacci
sequence, can be obtained using a superposition of Harper potentials. Since the spectrum of the Harper equation as a function of the
magnetic flux is a fractal set, known as the Hofstadter butterfly, we follow the transformation of the butterfly to a new one that contains
the Fibonacci potential and related approximants. As a result, the equation in reciprocal space for the Fibonacci case has the form of a
chain with long range interaction between Fourier components. Then, the structure of the resulting spectrum is analyzed by calculating
the components in reciprocal space of the related potentials. As an application, the correlator of each potential and some localization

properties are obtained.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Although the discovery of quasicrystals [1], which are
alloys with an structure neither periodic, nor disordered,
launched an extensive investigation on quasiperiodic
Hamiltonians, in fact the study of such Hamiltonians goes
back to the old Frenkel-Kontorova model [2] and to the
pioneer research made in the 70s [3,4]. Here the word
quasiperiodic means that in the system there are incom-
mensurate periods; and as a result, the dimension of the
Fourier space is always bigger than the dimensionality of
the system. One of the most famous quasiperiodic
Hamiltonians was obtained by Harper in connection with
a problem proposed by Peierls [3]. The idea was to find the
spectrum and the wave-functions of an electron in a square
lattice with a perpendicular magnetic field. Two periods are
involved in the problem, the electron motion in the lattice
and the cyclotron frequency [3]. The spectrum as a function
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of the ratio between these two periods turned out to be a
complex set known as the Hofstadter butterfly [3]. Since
then, the Harper model has been very useful to investigate
the transition from localized to extended eigenstates, as the
spectrum passes from pure point to continuous [3-3].
Between both limits, there is a new type of spectrum which
is known as singular continuous [4]. The corresponding
eigenstates are called critical and display self-similar
properties. For certain parameters of the Harper equation,
the distribution of level spacings follows an inverse power
law [6], which is a new type of spectral statistics [6],
explained as a level clustering tendency [7]. Also, it has
been possible to find analytical expressions for the wave-
functions using quantum groups [8]. More recently, the
quantum phase diagrams [9] and the electronic correlation
effects have been analyzed [10].

Another quasiperiodic system that has been extensively
studied is the Fibonacci chain (FC). This chain is the
simplest model of a quasicrystal [11]. The importance of
the FC arises because the nature of the physical properties
of quasicrystals is still not well understood [12-14]. Even in
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the theoretical side there is a lack of understanding in how
electrons propagate in two and three dimensions [15],
although the situation is more clear in one dimension. As
is well known, a periodic potential satisfies the Bloch’s
theorem, which tells that the eigenstates of the Schrodinger
equation are plane waves of delocalized nature, and the
energy spectrum is continuous [16]. For disordered systems,
like in the one dimensional (1D) Anderson model, all the
states are localized corresponding to isolated eigenvalues
[17], although long-range correlations can produce extended
states due to resonance effects, as in the random dimer model
[18]. In more dimensions, there is a mobility edge which
separates extended from localized states [17]. For most of the
quasiperiodic systems in 1D, the spectrum is neither
continuous nor singular, instead a new type of spectrum,
called singular continuous is obtained [19]. This spectral type
is similar to a Cantor set, and presents a multifractal nature.
The corresponding eigenfunctions are called critical, and also
show self-similarity and multifractality. In two and three
dimensions, the nature of the spectrum is not known,
although there seems to be a kind of mobility edge [20,21].
However, even in 1D, where large amount of work has been
done, there are many unsolved questions, like the nature of
conductivity [22] or diffusivity [5], the spectral statistics and
the shape of many of the eigenfunctions [23,24]. Even in the
FC, there are no analytical expression for the wave-
functions, except for few energies [11].

The Harper and Fibonacci potentials share many
characteristics; for example, both can present a multifractal
spectrum with self-similar wave-functions, although the
Harper equation can also present pure point and contin-
uous spectrum. An interesting question is why Fibonacci
does not show pure point or continuous spectrum. An
understanding of these questions will serve to give a better
picture of the electronic properties of quasiperiodic
systems. For example, it can suggest a way to construct
analytical solutions for the FC in terms of those solutions
from Harper.

In this article, we show that in fact, the Fibonacci
potential can be approximated as a superposition of
Harper potentials. Then, we can follow the evolution of
the Hofstadter butterfly to the equivalent in the Fibonacci
case. This allows to explore the equations in reciprocal
space of the FC. The layout of this work is the following, in
Section 2 we show how to obtain the Fibonacci potential in
terms of Harper. Section 3 is devoted to a discussion of the
corresponding spectra using the properties in reciprocal
space, while Section 4 is devoted to study the localization in
terms of the correlators of the potential. Finally, in Section
5 the conclusions are given.

2. The Fibonacci and Harper models

As a general model we will use a tight-binding
Hamiltonian of the type,

(E - V(n))lpn = tﬂ‘//n-&-l + lﬂ—“ﬁn—l’ (1)

where ,, is the wave-function at site n, ¢, is the resonance
integral between sites n and n+ 1. For the present
purposes, t, is set to 1 for all sites. V'(n) is the atomic on-
site potential and E are the allowed energies. The

generalized Harper equation is obtained when
V(n) = Vu(n), with Vy(n) defined as [3],
Vu(n) = 2) cosng'n + v), ()

where A>0 is the strength of the potential, ¢ is a
parameter that contains the ratio between the electron
cyclotron frequency and the elementary quantum flux, and
v is a phase shift. For a rational ¢, Eq. (1) can be solved by
Bloch’s theorem, although its value is very limited since the
coefficients in Fourier space of the solution form a dense
set [3]. For ¢’ irrational, the spectrum depends on the value
of 1. For A<1, the spectrum is continuous with extended
wave-functions, when 4> 1 the spectrum is made from pure
points and localized solutions. At 1 =1 the spectrum is
singular continuous with self-similar wave-functions.

The other potential that we will consider here, is the
simplest model of a quasicrystal, called the diagonal model,
obtained when V(n) has two possible values, that we
denote by V4 and Vg, following the Fibonacci sequence
(FS). The FS is build as follows: consider two letters, 4 and
B, and the substitution rules, 4 — B, and B — AB. If one
defines the first generation sequence as % = A and the
second one as %, = B, the subsequent chains are generated
using the two previous rules, for instance, %3 = AB.
Starting with an A4, we construct the following sequences,
A, B, AB, BAB, ABBAB, BABABBAB, and so on. Each
generation obtained by iteration of the rules is labeled with
an index /. The number of letters in each generation / is
given by the Fibonacci numbers F(/) of generation /, which
satisfy: F(I) = F(I — 1)+ F(I — 2) with the initial condi-
tions: F(0)=1,F(1) = 1. There are other choices for
building a model quasicrystal, since for example, one can
set V(n) as a constant and use the FS to define a sequence
in the transfer integrals #,. Such problem is known as the
off-diagonal model. The mixed model is obtained when
the FS is used both in V(n) and ¢,. A vast literature is
available for such potentials [15], but since the results are
very similar for all of these models, in the present article we
will only consider the diagonal one, although the techni-
ques presented here are also useful tools for analyzing
other cases.

Our first task in order to compare the FC and the Harper
potential, is to find an analytical expression for the
Fibonacci potential. This can be done in the following
way. By using the cut and projection method, it is very easy
to prove that the position y, of the n-esim atom in a chain
determined by a FS is given by [25],

Vo= |nd|.

where the function x| denotes the greatest integer lower
than x, ¢ is a parameter which turns out to be the tangent
of the angle between the real space subspace and a higher
dimensional periodic lattice [25]. To obtain the Fibonacci
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case, ¢ must be equal to the inverse of the golden mean
1 =(/5—-1)/2. For other values of ¢, one gets
structures that have different kinds of quasiperiodicity, or
rational approximants of quasiperiodic chains, since the
main effect of ¢ is to change the sequence of the binary
potential, i.e., the sequence and statistics of letters 4 and B.

For example, if ¢ =1, the resulting sequence is
AAAAAAA. .., for ¢ = %, we have ABABABABA ... and
for ¢ =3, ABAABAABA ... . As a matter of fact, the

parameter ¢ is very important to understand crystal—
quasicrystal transitions [26,27], since ¢ is the inclination of
the subspace in the cut and projection method. It provides
a symmetry order parameter for the Landau free energy
and thus contains information about the thermodynamics
[26]. A relevant case is obtained when ¢ = F()/F(l + 1),
which are the rational approximants of the golden mean.

The next step for building the potential consists in the
observation that the separation between atoms in the chain
is y,41 — y,. It is easy to show that the separation takes
only two values, /4 and /. Thus, we can make a potential
with the sequence of spacings to get,

Vin)=Vp+ Vall(n+ D] — [ng)). (€)

Using the identity x = |x] + {x}, where {x} is the decimal
part of x, we obtain that V' (n) can be written as,

V(n) = (V) +3V({ng} — {(n+ 1)e}), “4)
where (V) = V¢ + V(1 — ¢) is an average potential that
shifts the zero of the energies, and 3V is the strength of the
quasiperiodicity, measured by the difference between site-
energies 0V, defined as 8V = V4 — V. In what follows,
without any loss of generality, we set V4 and Vg in such a
way that (V) = 0. A note of caution: is clear that our
method gives the potential for all values of ¢, and not only
for the FS. To avoid confusions, here we will call “square
wave potential” to all of the potentials generated from
Eq. (4), since if the integer variable n is replaced by a
continuous one, say X, the resulting V(x) is just a square
wave as shown in Fig. 1. The potential stays at —3V ¢ for
an interval of length 1 — ¢, and then it jumps to 3V (1 — ¢)
for a length ¢. The Fibonacci potential is just a particular
case for ¢p =17\
The decimal part function {x} has period 1, and can be
developed as a Fourier series,
{x¢} = T lil sin(2m¢sx)
2 n&ys '

It follows that,

V)=V +28V > V(s) cos(msp(2n + 1)), (5)
s=1
where I7(S) is the s harmonic of the Fourier series, I7(S) =
sin(ns¢)/ms. The first terms of this series are shown in
Fig. 1, and in fact, we are approximating a square wave by
a sum of cosines. In Fig. 1 we can see the slow convergence
of the series due to the 1/s factor of each harmonic. This
potential can be further reduced if a proper phase y is used

0.5

0.25

0.0

-0.25

-0.5

Fig. 1. The Fibonacci potential can be obtained by evaluating a square
wave of period 7 at integers values. The approximations with one, two and
three harmonics, obtained from Eq. (6), are shown in the figure. Notice the
asymmetry in the steps.

in Eq. (4), in such a way that the terms {x¢} are replaced by
{x¢ + x}. The phase y is only an horizontal translation of
the potential. For y = —¢/2, the Fibonacci potential is
simply written as,

V(n) =28V i V(s) cos(2msen). (6)
s=1

It is also worthwhile mentioning that for s = I¢~" (where [
is an integer), V(s) = 0. This condition can only be hold
when ¢ is a rational. When this is not the case, V'(s) = 0 for
integers s an / such that ¢ ~ /s, and thus //s is a rational
approximant of ¢. Such rationals are obtained from the
continuous fraction development of ¢. The corresponding
potentials are just rational crystalline approximants. For
the FS, s~ [t from where it follows that / and s are
successive Fibonacci numbers. The most important Fourier
components in Eq. (6) are those where s ~ (r + %)(]5_1 for an
arbitrary integer r. Using the decomposition in integer and
decimal parts, this happens whenever {(r + %)gb_l} is nearly
0 or 1. Comparing Eq. (2) with Egs. (5) and (6), we observe
that in fact, the Fibonacci potential can be approximated
as a superposition of Harper potentials if we set ¢’ = ¢, so
this situation can be thought as an applied effective
modulated magnetic field [28]. This leads to many
questions. The first is how the transition from Harper is
done. To answer this, we will cut the sum in Eq. (6) at a
finite number of harmonics, denoted by S, and the
resultant potential will be called S-harmonic potential. In
Fig. 2(a), we plot the energy spectrum of the Harper
equation for the case 4 = 1. This spectrum, as well as the
others discussed in this article, were obtained by using the
transfer matrix formalism [29]. Fig. 2(a) is the well known
Hofstadter butterfly [3]. Notice that here v = n¢, and thus
our figure does not match exactly the original butterfly,
since therein, a sweep for all values of v between 0 and 2%



1758 G.G. Naumis, F.J. Lopez-Rodriguez | Physica B 403 (2008) 1755-1762

10 {a 1tb - :
8 - 1 A

0.8 1’; 7
0.6 - 1 v U 1

@

< 1
04 - ] L Yl
0.2 1 T ::N-‘_ Vf' - AN E
0.0 - ] ]

1 1 1 n
101C = 1t d . .
084 - . ] | R
0.4 : at &, R
024 ~ a0 ] ‘ IR
0.0 e ] - ]
4 2 0 2 4 4 2 0 2 4
E E

Fig. 2. The energy spectrum as a function of the parameter ¢ for 8V = n/sin(nt~"), corresponding to A = 1 in the pure Harper equation, using (a) one
harmonic (similar to the Hofstadter butterfly), (b) two harmonics, (c) three harmonics, and (d) the square wave potential, that contains the Fibonacci
potential for ¢ = t~!. Notice that in case (a), the Hofstadter butterfly is not exactly the usual one reported in the literature, since here we do not consider
all the possible values of the phase v. As a result, the spectrum is not symmetric around £ = 0, and some points are missing.

was made, and thus the spectrum has more points and is
symmetric around £ = 0. Our spectrum is not symmetric
around E = 0 since the phase v produce a shift of the
spectrum. We have verified that in our computer program,
we reproduce the original butterfly when such sweep is
made, and also that the symmetry around E =0 is
recovered when v = n/2. The reason of not considering
all possible values of v is that we want to compare with the
FC, which is defined only for a given phase. A sweep in v, is
equivalent to make a sweep in y in the S-harmonic case,
which produces new chains in the same isomorphism class.
If ¢ is taken as a parameter in Eq. (6), then the spectrum of
Fig. 2(a) is also the S-harmonic potential for S = 1. The
parameter used is 8V = n/sin(zt™") ~ 3.3706, chosen to
correspond to 4 = 1 in the Harper equation. In Figs. 2(b)
and (c) we show the effects of adding harmonics s = 2 and
3 in the development of the potential, and Fig. 2(d)
presents the result for the square wave potential. There is
an important change between the pure Harper case and the
second harmonic case. Mainly the left part of the
Hofstadter butterfly is washed out. Also, is clear that with
only three harmonics, the structure for ¢ = t~! is already
very similar to the pure Fibonacci case. This wash out due
to the second harmonic has its origins in the difference of
lengths in the steps of the square wave potential. For the
first harmonic, this change is not observed. By looking at
Fig. 1, one can see that with two harmonics there is an
asymmetry in the upper part of the series. This effect is
more notorious when 67 > 1, and can be translated in an
almost split band limit when 8} — oo, around self-
energies V4 and Vp. In fact, this is one of the main
differences between the Harper and Fibonacci potentials.

In Fig. 3, a similar set of figures presents what happens
when 8V = 1. This corresponds to 4 = sin(nt™") ~ 0.2967
in the pure Harper case, and thus the spectrum is
continuous. Figs. 3(b) and (c) are the cases with two and
three harmonics. Finally Fig. 3(d) shows the case of
Eq. (4), which is a beautiful fractal. Since it is known that
the FC presents a singular continuous spectrum [19], it is
open the question for which harmonic there is the
transition from one type of spectrum to the other.

In all of the previous cases, ¢ was studied between 0 and
1 since using the following identity,

cos(2nx) = cos(2n(|x] + {x})) = cos(2n{x}),

we have that cos(2n¢sn + k) = cos(2r{¢p}sn + k). Thus, the
problem has periodicity 1 in ¢. It only depends on ¢ only
through {¢}. For rational ¢ of the form P/Q, with P and Q
integers, this means P< Q.

3. Structure of the spectrum

In this section we will discuss the main features that
arises from the previous figures. The spectral properties of
the pure Hofstadter butterfly has been discussed by many
others using diverse techniques [3,4,30], but in order to
understand the transformation between butterflies, here we
will explain the main features using the structure in
reciprocal space of the potential. Let us first study the
tight-binding equation in the usual approach. We propose
that the wave-function can be written as [4],

00
lﬁn — eikn § dm eim(anm-&-v)’

m=—0o0
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Fig. 3. The energy spectrum as a function of the parameter ¢ for 37 = 1 using (a) one harmonic (corresponding to the Harper model at 2 = 0.2967), (b)
two harmonics, (c) three harmonics, and (d) square wave potential using Eq. (4).

where d,, is the m Fourier component of the wave-function.
If we introduce this solution into Eq. (1), when S
harmonics are present in the potential, the following set
of equations are obtained,

(E* = 28V™* cosQRuopm + k))d,y,
s
=dmy1 + Ay + Z v (S)(dm,s + dm+s)s (7)
s=2
where the parameters are defined as E* = 2E/(V(1)3V),
dV* =2/(V(1)dV), and,

S V() 1sin(usg)
Vo= Py s sin(ng)

The other parameter is kK =v for the pure Harper
equation, and k =v =n¢ for the general case. If only
the first harmonic s =1 is used, then Eq. (7) shows
that a Harper equation in the reciprocal space is
also a Harper equation with a renormalized set of
parameters [30]. In the case of Fibonacci, Eq. (7) proves
that the Schrédinger equation in reciprocal space has
a different form, since each site interacts with infinite
many others. The interaction between Fourier compo-
nents decreases as 1/s. It is a long range interaction
that can be thought as a modulating field. Observe
that in the transformation of the Hofstadter butterfly,
the limitation to S harmonics in the potential is equi-
valent in Fourier space to a cut-off at range S of the
interaction.

When ¢ is a rational number, say P/Q, the potential
with any number of harmonics has periodicity Q, as has
been discussed in the previous section. The corresponding

wave-functions are given by,

[Y
l//n — elkn Z dm elm(ZTm(P/QH—n(P/Q))’ (8)

m=0

where —n/Q<k<n/Q. The only difference between the
Harper and the Fibonacci case, is in the values of the O
coefficients d,,. Since the set d,, can be obtained in the
Harper case using quantum groups [8], the present work
suggests the possibility of finding an analytical solution for
the Fibonacci potential.

Also, we can show that an effective potential can be
written in the reciprocal space for periodic approximants of
the S-harmonic potential. According to Eq. (8), the
solution must have periodicity Q, with / an integer. Such
result can also be obtained from V(n) when ¢ is the
rational P/Q. In this case, the factor cos(2zws¢n) in Eq. (6)
is repeated for the harmonics s that has the form s+ /Q
where / is a positive integer. By grouping all the harmonics
module Q, the potential is written as,

Q ~

Vin) =T +28V > Vpo(s) cos <2ns£n>, )
s=1

where I7P/Q(s) is an effective potential,

5 @sin@sP/Q) (A (=D

Vp/o(s) = i ;H o) (10)

The equation in reciprocal space is then reduced as follows:

(E' =28V cos(2rndpm + k))d,,

o _
= Vo) dms + dinss). (11)
s=1
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which shows that for a periodic approximant, the range of
the interaction in reciprocal space is Q.

Concerning the spectrum, the band edges are obtained
from Eq. (7) when & = 0 and 7/ Q. Instead of following this
path, we will look at how the structure of the potential in
the lattice reciprocal space determines the spectrum for
0V < 1. A much more physical insight can be obtained in
this way. This approach is different from the one realized in
others works [4,30], since usually the potential is projected
in the base e”"®+") Here we will project into the
reciprocal “‘vectors” of the lattice (G). The main idea is
that for a 1D crystal, it is known that each reciprocal
“vector’” G with component of the potential (V' (G)), opens
a gap of size,

Ag = 2| V(G

at reciprocal vectors ¢ = G/2,G,3G/2,... It is possible to
follow the opening of the gaps by the effect of V(G). The
reciprocal components are

- 1 Nl .
V(G) = T > Ve,
n=0

where G can be chosen among the wave vectors ¢ = 2nt/N,
with t=0,...,N —1, in a lattice with N sites, were
periodic boundary conditions are used. The first Brioullin
zone is the interval —n<g<m, although to simplify the
algebra we take g between 0 and 2rn. Consider first the
Fourier components of the Harper potential (Vy(G)) for a
given parameter ¢,

_ _ N ei2ngn —i2n¢n )
Vu(G) = Vy(t) = Z( +76 )e_lzmn/N.
=0
(12)
If (¢ —t/N) is an integer, the problem is almost solved,
because V(f) = 10(¢p — t/N). This happens whenever ¢ =
P/Q and
r_m
0 N

so when N is chosen as a multiple of Q, as for example

=/[/Q with [ =0,1,2,..., then the harmonic m = P is the
only one that has a contribution. This solution is very
simple compared with other complex approaches, since
what most of the people do is fix N and then a sweep of the
¢ is made. In other words, the Hofstadter butterfly is built
for a fixed N. However, the present approach shows that if
we fix a rational ¢ and move N for each ¢ until N = /Q, the
potential is much more tractable. In the limit of big /,
N> Q so there are many vectors k that fulfill the condition
N = IQ; in other words, there is a continuum of ¢ such that
e 2" has a “possible periodicity” of the system.

The problems arise when ¢ is an irrational or N is not a
multiple Q, since the previous trick is not valid. Eventually,
the sum in Eq. (12) can be made when ¢ — ¢/N is not an

integer to give

- - A 1 — ei2n¢N 1 — e—i2n¢N
7a(6) = Pu0 = (1 L T /N)).
The corresponding norm is
22
1
I7uI” =55 (13)
where

A= (1—=cos2npN)*+ [cos 2n¢ — cos 2np(N — 1)
—2cos(2n¢gpt/N)[1 — cos 2n¢p/N][cos 2n¢
—cos 2np(N — 1)],

and

B =11 —cos(2n(¢p — t/N))][1 — cos 2n(¢p + t/N)].

Notice how Vy(7) > A8(¢ — t/N) as ¢ — t/N. The gaps
width depend upon these components, and the maximum
of Vu(G) occurs when G ~ +¢. Now let us propose the
solution,

b= 3 e
gq=—00
for Eq. (1). The resulting equation in reciprocal space is

(E =2 cos g)cg =Y _ Vu(G)eyg.
G

Since the main contribution to Vy(G) comes from
G ~ ¢, a mixing of wave vectors G~ ¢ and G~ —¢

occurs at ¢ ==£¢/2. Using perturbation theory,
this means that for A<1, the main gaps are open
around,

E ~ £ cos(2n(¢p/2)) = £/ cos(ng).

Fig. 4 compares this prediction with the Hofstadter
butterfly, showing an excellent agreement. Other band
gaps are obtained at ¢ = +r¢/2 with r € N. The general
pth-order perturbation term is of the form,

Ve=V(qo—q)V(g1 —q) - V(gy_1 — qn)-

where ¢, labels the vector 27t/ N. For small 4, gaps will be
open at

E =~ )" cos(ngr).

These cosine branches are also plotted in Fig. 4, compared
with the Hofstadter butterfly, showing that the basic
structure of the spectrum is determined by these branches.
When 1 is near 1, around each gap there are many wave
vectors that mix together, so the present approximation
breaks out. A detailed observation of the case of the
potential with harmonics, given by Eq. (6), shows that the
main effect is an asymmetry of the cosine branches. This is
very clear in Figs. 3(b) and (c¢). The same analysis
performed to the Harper equation is valid for these cases,
specially for low S. The equivalent rough approximation
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Fig. 4. General structure of all the obtained spectra. The Hofstadter
butterfly is compared with the cosine branches given by E = /4 cos(¢m) for
m=1,2 and 3 for 1 = 0.2967.

for the position of the band gaps is,
2. sin(mse)
E~+ <8V;T cos(mg).

What is behind the process of gap opening, is a self-similar
folding of the bands in the reciprocal space, as revealed by
following the sequence of approximants for ¢ in all the
obtained spectra. For ¢ = 0, the spectrum is continuous
and goes from —238V to 28V The next most simple
spectrum corresponds to ¢ = Wthh gives two bands. If
the lattice has period 2, then the first Brillouin zone of the
zero approximant (¢ = 0) is folded around half the original
Brioullin zone limit, k = 7/2. As usual, an energy gap of
size Ag ~ 2|V(G)| is open in the zone boundary due to a
mixing of waves with reciprocal vectors G/2 and —G/2. In
this case, G =mn/2 and V(G)=2A. For the Harper
equation we get,

Ag = 4.

In the Harper equation, there is a symmetry around £ = 0,
thus the bands limits are £ = £24. For the pure FC first
approximant (¢ = 2) V(G) produces a different gap, and
the central gap limits are

Ag = +5V.

This gap is clearly in the horizontal lines at ¢ = 2 in Fig.
3(d). The process of folding in reciprocal space can be
repeated in a similar way for other rationals like ¢ = 5 Zand
1. In this case, the periodicity is 3, and the folding around
the first Brioullin zone limit occurs at k& = 7/3. Three bands
are produced in this case, and the gaps are centered at
+/2 cos(n2/3) and +4 cos(n/3). The process is repeated for
other approximants.

4. Localization properties using correlators

As a simple example of the utility of having an expansion
for the FC, we will obtain the potential correlator. This can
serve to understand how the addition of harmonics leads to
different localization properties. For A = 1 the eigenstates
of the Harper equation are critical, i.e., the wave-functions
decay as a power law, while they are localized for A>1 and
extended for A< 1. This comes from Eq. (7). Therein, if the
square of the components is finite,

o0

> ldnl* <o,

m=—00

the corresponding wave-function is non-localized. In the
pure Harper equation, when A — oo, the solutions in real
space are localized wave-functions, since they correspond
to the dual of solutions with 4 — 0 in reciprocal space,
which are known to be extended. In the FC, for all values
of 8V the eigenstates are critical [29]. An interesting
question is how many harmonics are needed to produce the
transition from the extended states in the Harper equation
to the critical behavior observed in the FC. To measure
localization in one dimension, the Lyapunov exponent
(LE) is used (L~'). The LE is the inverse of the localization
length (L) for a localized state. Having the zero value of the
LE, one can have a power law dependence of the wave-
function. There are already many methods to treat the
spectrum and the eigenfunctions, but the simplest one uses
the pair correlation function of the potential [31]. This
method requires that the potential must be bounded for
any n, with V(n) < 1. Notice that the previous condition is
the most interesting limit for quasiperiodic potentials, since
for V(n)>1 one can use perturbation theory to obtain the
spectrum and eigenfunctions [32]. Also, to get analytical
expressions for the LE, the potential must be ergodic
[31,33], a condition that is satisfied by the potential (5),
since the obtained sequences of V4 and V'p are periodic or
quasiperiodic. A second condition is that the correlation
matrix of the potential (¢, = &k — k') must be semi-
positive defined [31], where the correlator &(k) of any
potential is defined as

(V()V(n+ k) = eiék), (VmV(n) = &.

For the Harper equation, &(k) = cos(2n¢k), and for a
Fibonacci-like potential, by using Eq. (6), the correlator
can be written as,

sin (nsq§)

(k) =48V Z cos(2mspk), (14)

which satisfies the conditions for a proper correlation in
order to get the analytical LE. For a 1D Hamiltonian, the
inverse localization length is given by [31],

e
L™ = 85in2(u)’ o) =1+ 2; E(k) cos(uk).
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Here, the function ¢(u) is given by the Fourier series with
the coefficients &(k). For the Harper equation, (k) =
cos(2npk), which gives (i) =0 and thus all states are
nonexponentially localized. For Fibonacci-like, (k) is
given by Eq. (14), which also gives ¢(u) =0 for all S.
Thus, since the LE are 0, all states are non-localized for any
number of harmonics. As a result, the states can have a
power law dependence of the wave-function or they can be
extended as in the Harper case. The question that remains
to be answered, is how the transition from extended to
critical states is achieved as the number of harmonics is
increased from Harper to Fibonacci. To solve this
question, an expression for the scaling exponents in terms
of the correlators is needed [34]. In a forthcoming article,
we will pursue such investigation.

5. Conclusions

In the present article, we have shown that the Fibonacci
potential can be approximated as a sum of Harper
potentials. As a consequence, one can follow the evolution
of the spectral types as a function of the number of har-
monics. In particular, a butterfly similar to the Hofstadter
case is found, which contains the Fibonacci potential. The
corresponding spectrum is a fractal object, and the Fourier
components of the potential provide a simple explanation
for the main features of the spectra. However, since the
spectrum of the Fibonacci chain is singular continuous
with power law localized states for any strength of the
potential (8V), and that the Harper potential has a
continuous (A< 1), singular continuous (4 = 1), and pure
point spectrum (4> 1), with non-localized, power law, and
localized states, respectively, this leads to many interesting
questions, as for example, at which harmonic the spectral
type is changed when the potential goes from Harper to
Fibonacci. This is equivalent to ask for which harmonic the
eigenfunctions of the Fibonacci case become critical.

It is worthwhile mentioning that ¢ controls the transi-
tion from periodic to quasiperiodic sequences, and thus,
the present approach also leads to the possibility of
studying the electronic properties as a function of such
parameter. Furthermore, it can be proved that the
parameter ¢ can also be related with a magnetic field, as
happens in the Harper potential. In that case, instead of
having a constant magnetic field in space, one has a space
modulated magnetic field [35]. In real systems, the changes
in ¢ are simple to study using many different devices, since
its effect is only a change in the sequence of the binary
potential. For example, one can use microwaves in a cavity,
a dielectric superlattice or a space modulated magnetic field
in a semiconductor.

Finally, the present approach also leads to the possibility
of building analytical solutions for a FC. We hope that

other researchers will try to answer some of the intriguing
questions posed by this paper.
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