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Frustration effects on the electronic density of states of a random binary alloy
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We examine the tight-binding density of states of a random binary alloy in a square lattice. In the split-band
limit, which is similar to the model used for studing the quantum percolation problem, numerical calculations
show that there is a pseudogap at the center of the lower subband, near and beyond the geometrical percolation
threshold. This behavior is studied in two ways, by analyzing the first spectral moments of the lower subband,
and by taking advantage of the bipartite nature of the lattice to renormalize half of the sites. This shows that the
pseudogap in the split band limit appears because of frustration effects in the renormalized lattice.
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[. INTRODUCTION dimensional systems even above the percolation threshold.
However, Meiret al® found a localization transition for fi-

It is well known that when a metallic system is perturbednite concentration near the percolation threshold. Later, it
by adding impurities, its simple electronic band is modified.was argued that the results of Meit al. were inexact and
Tails of localized states appear at the edges of the band ardat there is no transition in the type of localization.
there are two mobility edges that separate extended and lo- The spectrum of the vertex problem in a quasiperiodic
calized states. If disorder is strong enough, there is an AndePenrose lattice also shares many features with the random
son transition when the two mobility edges metgehese binary alloy!®~*2In fact, in the Penrose lattice there are con-
ideas can be studied with great precision in a random binarfined states''* that appear precisely at the center of the
alloy using computer simulations in large two- and three-hand, separated from the rest of the states by g% he
dimensional lattices, where disorder is generally introducegxistence of gaps in quasiperiodic lattices is important, since
within a nearest-neighbor tight-binding scheme. For ex+t has been suggested that a pseudogap caused by a Hume-
ample, Kirkpatrick and EggartdkE)® investigated numeri- Rothery mechanism leads to the stabilization of
cally a_random_ bi_nary alloy of 1500 sites qnd found that inquasicrystalé?*” as it does for binary alloy¥
the split band limit, many degenerate localized states appear In this paper, we concentrate on a disordered two-

exactly at the center of the lower subband, and a pseudogéb‘?mensional square lattice and show that the existence of a

starts building up around these localized states. The numb%rseudogap at the center of the spectrum in the random binary

of these states at the center and depth of the pseudogap InI_on can be addressed by studying the frustration of the

creases as the concentration of atoms with larger site ener o d ) o .
increases. Furthermore, this pseudogap appears before t ave function in a renormalized sublattice, which is obtained
' ' rom the bipartite property of the lattice. A lattice is bipartite

concentration of forbidden sitgsvith infinite site energigs - o ; i .
percolate through the system. While numerical work by klf it can be subdivided into two alternating sub]atnces, say,
has been very useful to show failure of the coherent potenti@nd/3, and an electron can only hop from arsite onto 83
approximation(CPA) in the split band limit not much the- ~ Site or back. The Hamiltonian can then be renormalized in
oretical work has been done to explain their interestingsuch a way that the center of the spectrum is mapped into a
results. band edgé® The common features between the Penrose til-
Recently, this problem has been given renewed interestng and the binary alloy are due to the bipartite character of
since it shares many features with the quantum percolatiothe lattices. To analyze the opening of a pseudogap, we start
problem in the split-band limit. In this work we will focus by calculating the first spectral moments of the spectrum,
our attention on the pseudogap that appears in the density asing the Cyrot-Lackmann theorefhwhich relates the local
states, which certainly has a direct impact on the optical andensity of statesL DOS) to the topology of the local atomic
other physical properties of the alloy and will not address theenvironment.
fascinating problem of metallic conductivity. The study of  The structure of this paper is as follows. In Sec. Il the
the bands in the random binary alloy may be relevant to thenodel is described and some numerical results in large lat-
qguantum percolation problem, since in the split-band limit,tices are shown. Then, the first spectral moments of the bi-
geometrical percolation has an impact not only on the bandary alloy are evaluated, using the Cyrot-Lackmann theorem.
structure but also on the different degrees of localization offhe tendency for a pseudogap to form is obtained by exam-
electronic states. It is worthwhile mentioning that there re-ining the normalized fourth moment. In Sec. Ill, we show
mains a controversy obviously in literature about the spectrathat the bipartite character allows a renormalization of the
structure and the localization properties in the quantum perHamiltonian, which leads to the appearance of frustration at
colation problem. In Refs. 4—6 the transfer matrix formalismthe center of the lower subband. Finally, in Sec. IV we con-
was used, and the results seem to agree with the scalingude with some discussion about the relevant features of this
approach in the sense that all states are localized in two-model.
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II. PROPERTIES OF THE MODEL (a)

Consider an alloyA,B;_,, in which the two types of 0.02
atomsA andB are distributed randomly on a square lattice,
with concentrationsx and 1—X, respectively. Within the
single-band tight-binding approximation, the Hamiltonian
with diagonal disorder can be written as

a)

H=Y |i>.si<i|+<i2j> INYS1E @

&o.01 | l
a

where|i) is the orbital at sitei, V is a constant hopping
integral between nearest-neighbor sites, and the diagonal e
ements ares;=0(5) on A(B) sites.
When 6>Z7ZV, whereZ=4 is the coordination number,
the spectrum of Eq(l) splits into two subbands, one cen-
tered atE=0 and the other aE= 4. This is the so-called 0.00
split-band limit. The states in the subband around zero en- — -4.0 -2.0
ergy, which we call théA subband, are strongly confined on
A atoms. Furthermore, in the lim#— o it has been shown
that theB atoms can be formally removed from the problem (b)
and that theA subband can be studied by using a Hamil-
tonian restricted td\ sites only 0.02 ' '

0.0
E/V|

b)
Haa= > [)V(]. 2

i,jeA

This Hamiltonian describes an electron that can hop from
one site to its neighbors only if both atoms are of tyhe »
Thus, the problem for thé subband is similar to a square- 80-01 r 1
lattice percolation problem, becauBeatoms act as perfect
barriers in the limit of infinite self-energy. However, this
problem differs from the geometrical percolation, since the
guantum wave function could lose its coherency, even be-
yond the percolation thresholavhich is x¥=0.59 for the
site problem andk(®=0.50 for the bond problem in the
square lattice This lack of coherency is partly due to the 0.00 . .
frustration of the wave function, as discussed in the next ~40 20 E%’fl 20 4.0
section.

We have verified the results given by KE for larger lat- FIG. 1. Average density of states in tiesub-band calculated
tices. Figure 1a) shows theA subband fox=0.65, obtained for ten lattices with 3969 sitesv=1, and (a) x=0.65, (b) x
from an average of 10 randomly chosen configurations of & 0.60.
3969-site square lattice with periodic boundary conditions
andV=1. Three main features are visible in the DQ%) o
The spectrum is practically symmetric arouie-=0, since ,U«i(n)EJ' (E=—Hi)"pi(E)dE=(i[(H=H)"i). (3
5=1000 V,(2) there is a pseudogap around the center of the o
spectrum, and3) there are many degenerate states at the o
center. These latter states are strictly confined, even if they€ 1ast equality is known as the Cyrot-Lackmann
can exist in nonisolated clustetét is worth mentioning that  theorem.? from which one can obtain theth moment by
configurations with true gaps and nongaps are always stati§ounting all possible closed paths wittsteps, starting at site
tically present. Therefore, in a strict sense only a pseudogalp IN the split-band limit we can consider the Hamiltonian
should be observed, due to statistical fluctuations. Thend sitéi should be occupied by ah atom.
pseudogap deepens as one approaches the percolation limit, The momentu(* is always unity, because of the normal-
as shown clearly in Fig. (b) for x=0.60. ization condition of the basis(i|i)=1). The first moment

The tendency for a pseudogap to open and the symmetwi(l) is the center of gravity of the LDOS, which =0 in
aroundE=0 can be obtained from an analysis of the spectrathis case (;; =0). The next momeryui(z) is a measure of the
moments. We start by defining the LDOS at sitasp;(E),  “moment of inertia” of the LDOS with respect to the center
then thenth moment i§®%! of gravity. The third momen® measures the skewness
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1.5 ' ' ' ' The quantityf 4(x) is a function of the concentration, and can
be taken from KE, who used a local counting in finite clus-
ters, excluding the contribution due to isolatacatoms ¢

= =0). In Fig. 2 we show the scaled versi¢st ) as a dashed
gt line. The critical concentration is now=0.64, which is well
e iy T T 7 beyond the site percolation thresholk{Y=0.59). This fact

/ is consistent with the computational results of KE and us,

; where a deep pseudogap in the center of the subband appears
- even for concentrations higher thaf . We point out that

05t s - s=1 does not necessarily coincide with the exact percolation

S limit, since it is only a measure of the mean valuep¢E?)

e in comparison with its average half width. In the next sec-

Vg tion, the pseudogap will be analyzed using frustration argu-

e ments in a renormalized Hamiltonian.

0.9%5 02 0.4 0.6 0.8 1.0

X Ill. THE SQUARED HAMILTONIAN

<S>
N

FIG. 2. Paramete(s) as a function of the concentration &f A. Definition

atoms. The full line corresponds to E@\13), the critical concen- . .
tration is atx=0.55. The dashed line is the calculation without The introduction ofB8 atoms produces a tendency for the

considering thes states aE=0. Observe that in this case the criti- spectru_m fo become bimodal. In or_der to StL_de this, it is
cal concentration is highexé 0.64). convenient to focus on the renormalized Hamiltonkg, ,
which takes advantage of the bipartite nature of AHattice
about the center of gravity. The fourth moment measures th@N¢€ theB atoms are removed. The bipartite character of the
tendency for gpseudogapio form at the middle of the spec- A lattice means that it can be separateq in two interpenetrat-
trum. A useful criterion to discern this tendency is the dimen-Nd Sublatticesx and 3. It is useful to define two orthogonal

sionless parametes , defined ag® operators that project each state into one of the sublattices,
(I il
w2 = ()= (uf)? Po=2 [iXil, (©)
Si= 213 . (4) iea
(i)
If =1 the LDOS is unimodal, while fos<1 it is bimo- F’fgﬁ ISIE

dal, which corresponds to two separated peaks in the

LDOS2° For example, the LDOS of a square lattice is uni- Therefore, any eigenvectde) of Ha can be written in

modal with a van Hove singularity &=0 ands=1.25. A  terms of these projectors:

honeycomb lattice has a vanishing LDOSEt0, ands

=0.67. Haa(PotPp)[#)=E(P,+Pp)| ). (7)
In Appendix A, the first four moments of the random bi-

nary alloy are calculated in an analytical way, by considering[

the statistical distribution of paths. In Fig. 2, the full line "W

shows the average¢s) over all sites as a function o,

SinceHa, produces a hopping in the wave-function be-
een thea and B sublattices, it is clear that

obtained from Eq.(A13). Notice that(s)<1 for x<0.55. HaaP ol 6)=EPg|$), (8)
This number is very close to the geometrical site percolation
threshold. y ? P HaaPsl ) =EP,|¢). 9

Here, it is important to notice that the confined states aFrom these equations, one can see that the spectrum is sym-
E=0 always give a contribution to the unimodal appearancenetric aroundE=0, since if (P, + P )| ¢) is an eigenvector
of the LDOS. In order to examine the behavior of band statesvith eigenvalueg, (P,—P)| ) is also an eigenvector with
more exactly, we should exclude tldestates at the center. If eigenvalue—E.
the fraction of states &=20 is fy(x), the band states follow We can decouple the sublattices by further apphlihg,
a renormalized LDOY p(E)], related to the complete to Egs.(8) and(9):
LDOS by p (E)=\(x)pi(E), where(x)=[1—fo(x)] ™",
due to the normalization condition. HaalHaa(Pil#)]=HZa(Pi|$))=E%(Pi|¢)), (10
The moments op{* (E) should be scaled in the same fash-\ nore i = o, g. Thus, the projection of an eigenvector in

i i (nN)— (n) i S . . .
ion, that is,u "™ =X(x) ;" . The corresponding parameter gach syblattice is a solution of the squared Hamiltonian. Ob-

s* of p(E) is given by serve that the eigenvalues Bf , are positive definite, and
1 their eigenstates are, at least, doubly degenerate. This spec-
S trum can be regarded as the folding of the original spectrum
* = —— = J—
5 T\X) 1=s[1=To(x)]* To(x). ® o Haa aroundE=0, in such a way that the two band edges
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of Haa, are mapped into the highest eigenvalueHf,, 9.0
while the states at the center of the original band are now at 8.0
the minimum eigenvalue of the squared Hamiltoni&?)( '

Whenx<x{® all A clusters are finite. Therefore, confine- 7.0
ment effects are expected, in particular, the band width of
HE\A is reduced. This helps to explain the appearance of a
gap at the center of th& subband oH 5, whenx<x{® , but ~5.0
it does not predict a pseudogap wherx(® .

6.0

=
S40¢

B. Properties of ther\A spectrum and band edges 308

The important property of the renormalized Hamiltonian 2.0
H3, is that the states ne&r=0 have an antibonding nature
(the phase between neighborsnis. SinceHiA contains odd .
rings, we expect that frustration of the wave function can 0.000 - a hads “35
prevent the spectrum from reaching its minimum eigenvalue ’ ) ) ) ) ) ’
in a continuous fornt®> Furthermore, since there is a cost in
energy due to frustration, wave functions tend to avoid re- FIG. 3. Contributions toE? of C,(E?) (circles, C5(E?) (tri-
gions of higher frustration, and the states begin to localize if"gle$, andC,(E?) (crossel These data were obtained from the
regions of lower frustratiod® The amount of frustration can c@lculation shown in Fig. &)
be estimated from the numerical results and using statistics.

One can show that this frustration augments with disorder. These three contributions for the same lattices as in Fig.
To see this, it is convenient to separate the contribution fok(@ are shown in Fig. 3. Notice that,(E?) (crossesand
each eigenenergy into three parts, one due to the self-enerdyz(E®) (circles decrease toward&=0. The contribution
and the other two given by the bonds with positibending ~ C2(E?) (triangles increases from zero at the band edge, to a
and negativgantibonding contribution to the energy. This maximum value neaE=0, except in some energies where
separation goes as follows. First we write the equation of2(E?) is zero. A detailed analysis reveals that each of them
motion for H , is a degenerate state, producing high peaks in the DOS.
These states correspond to isolate clusters and produce sharp
peaks in the DOSFig. 1(b)]. For example, the state &
(EZ—Zin)Ci(E)ZP&i (Ha)ii ¢ (E), (1) =1 corresponds to a doublet &f sites, surrounded b
atoms.

wherec;(E) is the amplitude of the wave function at site
for an eigenenergy. After summing over all sites and C. Effects of frustration in the lower band edge
using the normalization condition of the wave function, Eq.

(11) becomes To estimate the effects of frustration on the energy spec-

trum as a function of the concentration of impurities, we
need to determin€;(E2)— C,(E?). This can be done, if

E2= Z,V?c,(E)|2+ > (H20)ii¢(E)cr (E) (12) first we find bounds foiC,(E?). Writing Z; as an average

i j#i (Z) plus a fluctuation partsZ;, in the expression for
C,(E?), one obtains
=Cy(E?) —Cy(E*) +C4(E?), (13 "

where C,(E?)=3=,Z;V¥c;(E)|? is the contribution of the C1(E)=(Z)V?+V2Y, 8Zi|ci(E)|% (14)
self-energies, which depends on the local coordination of the =1
sites. C,(E?) =] ;(HAn)ii¢i(E)ci (E)|, where the prime _ ) _
means that one considers only those bonds whose product The amplitudeci’(E) can be written as an average plus a
¢;(E)c* (E) is negative. This is an antibonding contribution. fluctuation(c(E))+ &cf(E) and Eq.(14) becomes
Finally, C5(E?) is similar toC,(E?), except that the summa-
tion is over bonds with positive;(E)c;* (E). This equation
is valid for all E. At the upper band edg€,(E?) is zero
because in a perfect bonding state all the site amplitudes
have the same sign. The std&é=0 corresponds to a con- where we have used the fact that the sum over all sites of the
figuration where the sign of the wave amplitude alternategoordination fluctuations is zero. The last term in Ekf) is
between nearest neighbors, and the bond contributionot zero and corresponds to a correlation between amplitude
[C3(E?) —C,(E?)] is equal to the self-energf;(E?) isa and coordination fluctuations. We can estimate the corre-
measure of the contribution of bonds that are frustratedsponding contribution by observing that it is bounded in an
while C3(E?) — C,(E?) gives the amount of frustration com- statistical sense. It attains a maximum value when in all sites,
pared with the antibonding term. the sign of the amplitude fluctuation is the same as the fluc-

C1(E®)=(Z)V2+V2Y, 6Z;6cX(E), (15)
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tuations of the coordination. In a similar way, a minimum is neighbors by bonds with hooping integral&2 and four

obtained when the fluctuations have opposite signs, second neighbors with hoopingg?. Thus, whenE=0,

N N N C,(0)=8V?, and C4(0)=4V?2 since the sign of the wave

function alternates between nearest neighbors. In the bond-
2 2 2

—21 |5Zi||5Ci(E)|$§l 5Zi5Ci(E)$241 |6Zi]| 5¢7(E)|. ing limit, all the amplitudes have the same sign, and
(16)  Cs(E3)=12v2 Using Eq.(12) and C;(E?)=4, one can

The size of the fluctuations in the coordination number iSverlfy that these values produce the right band edgesnd

H 2
estimated by using the standard deviation of the distributiorzl:@('op)‘ixcg(ooe)séfojfsro’ the difference betwe@g(E.) and
2 3 .

function of the coordinatiorj P(Z)], which is a binomial s =St . .
distribution (see Appendix A 2Ellmlnatlng C;(O), using Eq.(13), and the condition that
E“=0, we obtain

N N
> 16Z,|| 5C2(E) |~ VAx(1—x) >, |5c3(E)|< yaAx(1—x). EZ—Cy(E3)-Cy(0) EZ
i=1 i=1 C;(0)= = — —4x. (22
2 2
17
Finally, we get the statistical bounds f6x,(E?) E2 is the band width irH3 ,, and can be calculated using

the method of fluctuations, as shown in Appendix B. The
VZ[4x— V4x(1-x)]<Cy(E*) <V 4x+ \/4X(1—X)](- ) statistical bound for the frustration is
18

This equation can be compared against the results shown in C3(0)=6x"+2x[ V3x(1—x)—1]. (23
Fig. 3, forx=0.65. Equatior(18) gives the maximum value

of C,(E?) as 3.56, in close agreement with 3.58 observed in D. Estimation of the pseudogap as a function

the upper band edge of Fig. 3. The calculated lower bound is of the concentration of impurities

1.61, in close agreement with the numerical calculations. No- In the last subsection, we obtained a statistical bound for

':::u';Zat these bounds are not strict, due to their staUsUc%e frustrationC5(0) at the minimum eigenvalug=0, at-
’ . tained when the correlations in the fluctuations play an im-
Now, a Iowe_r_bour;d fOC3(EZ)_C_2(E2) can be obtained portant role. To determine the energy where th(f pgeudogap
from the conqunE =0. Using this condition, Eqs(13) begins (), we need the to determine the frustratiog(A2)
and(18) we obtain when these correlations are not allowed in the fluctuations
2y _ 2y— _\/2 el — v\ nearE=0. This could be calculated using a variational pro-
Ca(B%) = Co(BH ==V dx+ vax(1=x)]. (19 cedure similar to the one made for the Penrose titgow-
From this last result, one can see that the frustration inever, due to the statistical nature of this system, such a
creases with the concentration of impurities. If there is nocalculation is extremely difficult. An easier approach
correlation between fluctuations on amplitude and coordinatakes advantage of the following observatiGa(E?) is two
tion, the lower bound is-4x, but if we allow correlation, a times the number of frustrated bondsince each bond is
lower energy can be reached by reducing the frustration. shared by two sitg¢sand the number of frustrated bonds is
We can also obtain a bound f@@;(E?) alone. The key proportional to the number of triangles that appeakf,
idea is to write a new equation, which separadgéE?®) from  This number is the third moment of2 , (Mi.z ) and is pro-

CZ(E.)' T.h'$ quatlon 's obtained by observing that in theportional to the number of paths with three hops that start
bonding limit (E%), all the bonds are frustrated. From the and end at the same site. Then. we have for the value of
expected value of the energy calculated for a bonding stat% (E2) nearE=0 ’ ’

3 — VY,

we obtain
2 2 2 Ca(E)=Ku') =Ku® (24)
EZ =C1(E%)+Cs(E2). (20 3 Frga T HHan?

C3(E%) can be related witlC5(0) andC,(0), since if we  whereK is a constant (3 in the perfect square laftjsghich
neglect amplitude variations, the main difference betweemjepends on the concentratinnBut from Sec. Il the states at
the bonding and antibonding limit is the sign of the ampli-E=0 produce a weight aE=0 that affects the moments,
tude of the wave function between neighbors. In other wordsthat can be avoided by defining a renormalized set of mo-
the total number of bonds must remain constant, and if wenentsu* (™. In a similar way, we can obtain a renormalized
change the sign of the contribution from bonds with an anvalue ofC5(E?), which does not give weight to the states at
tibonding nature in the lowest eigenvalue, we obtain a maxiE=0, and can be associated with the value of the frustration

mum value for the energy. Amplitude variations can onlywithout the fluctuations at a higher energy Therefore,
reduce the frustration, which leads to the inequality

1
C4(E2)=C,(0)+ C4(0). (21) Cs(A2)=KMt.‘6)=mcs(0)~[l+fo(x)]03(0)-
(29

In the perfect square Iatticei:g(Ei)=C2(0)+C3(O),
since each site il? is connected with eight sites: four first In Eq. (12) we can substitute this result,
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040 . . . clear by using the bipartite symmetry of the square lattice
once the impurity atoms are removed. This lets us focus on
only one sublattice, that defines a “squared” Hamiltonian
that contains odd member rings in the disordered alloy. In
this picture, the states near the center of the spectrum are
mapped to the lower band edge, and require a large number
of nodes, as a sort of antiferromagnetic order, and thus frus-
tration effects are responsible for the depletion of the LDOS
near the minimum eigenvalue &f>. With these techniques
we were able to estimate not only the band width of the
disordered system but also the size of the pseudogap in the
0.10 - _ center of the spectrum.

030 | N
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i , , , APPENDIX A:
A“=C1(A%)—C,(A%)+C3(A%) (26) THE FIRST MOMENTS OF A RANDOM BINARY ALLOY
=C4(0)—C,(0)+C4(A?) ~ For calculating all the required moments in the spl_it-band
limit, we need to count all the possible paths that \Asglites
~fo(x)C3(0), (27)  that start and return to the same site. One must take into

account all possible local configurations of disorder. Thus,
Eqg. (3) must be considered in a statistical way, by including
the probability of a path connecting sites withn hops. We

can define the configurational averaged spectral moments

A= \/fo(x){6x2+ 2x[V3x(1—x)—1]}. (28 (u™y as

In Fig. 4, we show a plot of this equation, givirdg=0.3 for

x=0.65. This formula is iny valid forx>xcl, since for <Mi(n)>: E P(i,j1,

lower x, the quantum confinement plays an important role, j '

and localization does not reduce the energy, because there is

a competition between frustration and quantum confinement

effects, which in fact turns the pseudogap into a real gap. L . _ . _
An interesting feature that appears in Eg9), is the re- Whereé P(i,j1,j2, ... ,jn-1) is the probability of a given

lationship between the pseudogap and the degeneracy. THRath. ) .

relation was conjectured long aé%when it was suggested _.AII the odd_ moments are zero _because there is no possi-

that the central gap in the Penrose lattice was a consequenBity Of returing to the starting point with an odd number of

of the collapse of states into the central peak. However, botRt€PS in the square lattice. If ti sites are forbidden, the

effects are due to the frustration of states, because frustratidiiusters ofA sites retain this property, while # is finite, the

produces degeneracy due to a narrowing of the band widtfpdd moments are not zero, and then the subbans no

In this case, the degeneracy is observed in the stat& at '0Nger symmetric aroun&=0. _

—0. The approach developed here can be extended to the "€ seécond moment is always equal to the local coordi-

cubic random binary alloy, where a pseudogap of the DOSIation OnA sites:

and confined states were found at the middle of the spectrum. @)

Another interesting example of a lattice showing this behav- m=ZV. (A2)

ior is the Penrose tiling®

where it was used the facts tha,(0)=C,(A%) and
C1(A?)~C4(0). Finally, using Eq.(23) we obtain

. :jn—l)

1r---dn-1€

xH;

ijq

H.

i, H (A1)

jn—li ’

There are only five different local configurations, with coor-

dination 0, 1, 2, 3, and 4, respectively. The probability of

each coordinatiorP(Z) around a given site is given by a
We calculated the first moments of a random binary alloybinomial distribution

in a square lattice by using the Cyrot-Lackmann theorem.

The results show that there is a transition of the spectrum, P(Z)=C5x*(1—x)*"%, (A3)

from unimodal to bimodal behavior, as a function of the

concentration of impurities. This transition occurs near thewhereC$ are the combinations of four i. This factor takes

geometrical percolation threshold. These ideas are madeare of the different geometrical possibilities in which each

IV. CONCLUSIONS
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Finally, paths involving four different sites are those
shown in Fig.%c). In principle (N.(Z)) should be propor-
tional to x2. However, close examination of this situation
reveals that only one site closes the loop in all cases. For
each coordination number, the average number of paths is

a) given by

(N¢(1))=0, (A9)

(NJ2)) =25 (A10)

2

© (Ne(3))=22, Cix'(1-x)?""1=4x,
FIG. 5. The three different kinds of paths that contribute to the 1=0
fourth moment. The central thick circle represents the starting site.
The hops are indicated by arrow®) The starting site is revisited

once.(b) One of the neighbors of the starting site is revisited once.
(c) None of the sites are revisited, resulting in a single loop. The
presence oB atoms reduce the number of loops available. where there are two senses of circulation for each loop. No-

i . tice that forZ=2, a loop is not possible if the two neighbors
configuration can occur. The second moment of the DOS ¢ in opposite sites.

corresponds to the sum of the LDOS at all sites. This sSum" Tharefore, the fourth moment for a site of coordination
over sites can be written as is

4
<Nc(4)>=2|2O CiX'(1-x)4""1=8x,

N 4
<M2>:(1/N)Zl MIZZVZZO CéXZ(l_X)4—ZZ:4V X. ,ule=V2[Zz+ 3XZ+<NC(Z)>] (All)

(A4) The corresponding parametsy can be calculated using

. . L . these results,
This number gives an estimation of the band widil)(

which for the present case W=2u?=8V x. 11 13

The fourth moment calculation requires counting many S;=3X, S2=5 X S3=g
different configurations and paths. It is convenient to classify
the paths as three kinds, as shown in Fig. 5. It is also con-
venient to calculate paths by grouping the possible cluster
according to the coordination of the central sif§ (which is
assumed to be of typa.

5
X, S4:ZX' (A12)

Higher coordination has always a lower value of the pa-
F‘ametersz. Using the distribution function for each coordi-
nation, we can calculate an avera@ defined as

The number of paths of the kind shown in Figapis 4
(Na(2))=Nqy(2)=2" (A5) (5= 2, P2z, (AL3)

because the condition of revisiting the central site fixes the
second and fourth segments of the path. Observe that this APPENDIX B:
quantity does not depend o since we are fixing the con- ESTIMATION OF THE UPPER BAND EDGE (E3)
figuration of the cluster up to first neighbors, and second L
neighbors are irrelevant for these paths. The_ bonding limit 01‘2the energy spectrum 2corresp0|2’1ds to

The number of paths as in Fig(t is a maximum value oE? , attained wherC3(E?) — C,(E?)

andC,(E?) are maxima. From Eq18), the maximum value
_ of C,(E?) is 4x+4x(1—x). The maximum value of
Nb(Z)—Z; (Zi=1), (AB) C5(E?) —C,(E?) is obtained from observing that if all the

. . ) amplitudes have the same sign,
since one needs the participation of a second neightor

determine if the path is possible or not. Therefore, one has to

average over all configurations of a given local coordination > (HAWic (E)ci(E)<((Han)ij)+F, (BY)
we obtain h
whereF are the fluctuations in the distribution of the squared
<Nb(z)>=z<z (zj_1)> (A7) Hamiltonian.
J It is easy to see thg(H3,);;) in H44 is exactly the num-
3 ber of N,(Z) paths that are considered in Appendix A, where
=73 c3(1-x)3""1=3xZ A8 their number is calculated for a given coordination number.
z‘o X (L) X (A8) Using Eq.(A7) and averaging oveZ one obtains
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Z=4 2 2 2
E2 = + V{122 +4x[ 1+ 3x(1—x) ]+ V4x(1—x)}.
((HRWi) = VA(N5(2))) =3xV2 2, P(2)Z=12¢V* ’ (B4)
(B2)
The size of the fluctuations is evaluated by an average of thga

fluctuations in the distribution oNy(Z) for each coordina-
tion number

This method gives a much better estimation for the upper
nd edge, which is usually approximatetly (Z)V . The
square root oE? gives an estimation of the band edges in
Haa. For example, ifx=0.65 this formula give€, =3.3.

Z=4 This approximation can be compared with Fig. 1, where the
F~\3x(1-X)V2D, P(Z)Z=4xV23x(1—X). band edge is near 3.4. The usual estimatigr2.6 is not as

2=0 good as Eq(B4). Equation(B4) gives a better estimation

(B3 because it includes information abdtif , and the size of the

The band edge dfiZ, is given by the sum of contributions fluctuations, which is related with the size of the exponential

(B2) and(B3) Lifshitz tails that appear in the band edges.

IN.F. Mott and E.A. Davis, Electronic Processes in Non- Condensed Matteredited by J.L. Mora Lopez (Plenum Press,
crystalline Materials(Oxford University Press, Oxford, 19Y.9 New York, 1998, p. 283.

23, Kirkpatrick and T.P Eggarter, Phys. Rev6B3598(1972. 12G.G Naumis, J. Phys.: Condens. Matldr 7143(1999.

$Ziman, Models of Disorder{Cambridge University Press, Cam- 13\ Kohmoto and B. Sutherland, Phys. Rev. L&, 2740(1986.
bridge, 1979. 14M. Arai, T. Tokihiro, T. Fujiwara, and M. Kohmoto, Phys. Rev. B

4C.M Soukoulis, E.N Economou, and G.S Grest, Phys. Re36B 38, 1621(1989.
8649(1987). 15G.G Naumis, R.A Barrio, and Ch. Wang, Phys. Rev5® 9834

5R. Berkovits and Y. Avishai, Phys. ReB , R16 125(1996. (1994

°C.M Soukoulis, Q. Li, and G.S Grest, Phys. Rev4B, 7724 16g j poon, Adv. Physl, 303 (1992,

7E(?\199A?). o bW And b.C Licciaredell 4TV R 17E. Belin, Z. Dankhazi, A. Sadoc, J.M Dubois, and J.M. Cal-
) rahams, PW Anderson, D.C Licciaredello, and TV Ra- (000 "E 1 oohve | ot 677 (1994,

s makrishnan, Phys. Rev. Le#t2, 673 (1979. 18C. Kittel, Introduction to Solid-state Physicgth. ed.(J Wiley,
Y. Meir, A. Aharony, and B. Harris, Europhys. Lett0, 275
(1989 New York, 1996, p. 614.
y 19k, Cyrot-Lackmann, J. Phys. Chem. Sol2 1235(1968.

°C.M Soukoulis G.S Grest, Phys. Rev.48, 4685(1991. 20 | _ ‘ IEC
19G.G. Naumis, R.A. Barrio, and Chumin Wang, Rroceedings of A.P. Sutton,Electronic Structure of Material§Clarendon Press,
Oxford, 1993, p. 66.

the 5th International Conference on Quasicrystaidited by Ch. g ] ) ) ]
Janot and R. MosselWorld Scientific, Singapore, 1995p. M. Cohen, inTopological Disorder in Condensed Mattexdited
514. by F. Yonezawa and T. Ninomiya, Vol. 46 of Springer Series in

1R A. Barrio, G.G. Naumis, and Ch. Wang, @urrent Problems in Solid State ScienceSpringer, New York, 1983 p. 122.

134203-8



