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Frustration effects on the electronic density of states of a random binary alloy
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We examine the tight-binding density of states of a random binary alloy in a square lattice. In the split-band
limit, which is similar to the model used for studing the quantum percolation problem, numerical calculations
show that there is a pseudogap at the center of the lower subband, near and beyond the geometrical percolation
threshold. This behavior is studied in two ways, by analyzing the first spectral moments of the lower subband,
and by taking advantage of the bipartite nature of the lattice to renormalize half of the sites. This shows that the
pseudogap in the split band limit appears because of frustration effects in the renormalized lattice.
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I. INTRODUCTION

It is well known that when a metallic system is perturb
by adding impurities, its simple electronic band is modifie
Tails of localized states appear at the edges of the band
there are two mobility edges that separate extended and
calized states. If disorder is strong enough, there is an An
son transition when the two mobility edges merge.1 These
ideas can be studied with great precision in a random bin
alloy using computer simulations in large two- and thre
dimensional lattices, where disorder is generally introdu
within a nearest-neighbor tight-binding scheme. For
ample, Kirkpatrick and Eggarter~KE!2 investigated numeri-
cally a random binary alloy of 1500 sites and found that
the split band limit, many degenerate localized states ap
exactly at the center of the lower subband, and a pseudo
starts building up around these localized states. The num
of these states at the center and depth of the pseudoga
creases as the concentration of atoms with larger site en
increases. Furthermore, this pseudogap appears befor
concentration of forbidden sites~with infinite site energies!
percolate through the system. While numerical work by K
has been very useful to show failure of the coherent poten
approximation~CPA! in the split band limit,3 not much the-
oretical work has been done to explain their interest
results.

Recently, this problem has been given renewed inter
since it shares many features with the quantum percola
problem in the split-band limit. In this work we will focu
our attention on the pseudogap that appears in the densi
states, which certainly has a direct impact on the optical
other physical properties of the alloy and will not address
fascinating problem of metallic conductivity. The study
the bands in the random binary alloy may be relevant to
quantum percolation problem, since in the split-band lim
geometrical percolation has an impact not only on the b
structure but also on the different degrees of localization
electronic states. It is worthwhile mentioning that there
mains a controversy obviously in literature about the spec
structure and the localization properties in the quantum p
colation problem. In Refs. 4–6 the transfer matrix formalis
was used, and the results seem to agree with the sca
approach7 in the sense that all states are localized in tw
0163-1829/2002/65~13!/134203~8!/$20.00 65 1342
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dimensional systems even above the percolation thresh
However, Meiret al.8 found a localization transition for fi-
nite concentration near the percolation threshold. Later
was argued that the results of Meiret al. were inexact9 and
that there is no transition in the type of localization.

The spectrum of the vertex problem in a quasiperio
Penrose lattice also shares many features with the ran
binary alloy.10–12In fact, in the Penrose lattice there are co
fined states13,14 that appear precisely at the center of t
band, separated from the rest of the states by a gap.13,15 The
existence of gaps in quasiperiodic lattices is important, si
it has been suggested that a pseudogap caused by a H
Rothery mechanism leads to the stabilization
quasicrystals,16,17 as it does for binary alloys.18

In this paper, we concentrate on a disordered tw
dimensional square lattice and show that the existence
pseudogap at the center of the spectrum in the random bi
alloy can be addressed by studying the frustration of
wave function in a renormalized sublattice, which is obtain
from the bipartite property of the lattice. A lattice is biparti
if it can be subdivided into two alternating sublattices, saya
andb, and an electron can only hop from ana site onto ab
site or back. The Hamiltonian can then be renormalized
such a way that the center of the spectrum is mapped in
band edge.15 The common features between the Penrose
ing and the binary alloy are due to the bipartite characte
the lattices. To analyze the opening of a pseudogap, we
by calculating the first spectral moments of the spectru
using the Cyrot-Lackmann theorem,19 which relates the loca
density of states~LDOS! to the topology of the local atomic
environment.

The structure of this paper is as follows. In Sec. II t
model is described and some numerical results in large
tices are shown. Then, the first spectral moments of the
nary alloy are evaluated, using the Cyrot-Lackmann theor
The tendency for a pseudogap to form is obtained by ex
ining the normalized fourth moment. In Sec. III, we sho
that the bipartite character allows a renormalization of
Hamiltonian, which leads to the appearance of frustration
the center of the lower subband. Finally, in Sec. IV we co
clude with some discussion about the relevant features of
model.
©2002 The American Physical Society03-1
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II. PROPERTIES OF THE MODEL

Consider an alloyAxB12x , in which the two types of
atomsA andB are distributed randomly on a square lattic
with concentrationsx and 12x, respectively. Within the
single-band tight-binding approximation, the Hamiltoni
with diagonal disorder can be written as

H5( u i &e i^ i u1(
^ i , j &

u i &V^ j u, ~1!

where u i & is the orbital at sitei, V is a constant hopping
integral between nearest-neighbor sites, and the diagona
ements aree i50(d) on A(B) sites.

When d@ZV, where Z54 is the coordination number
the spectrum of Eq.~1! splits into two subbands, one cen
tered atE50 and the other atE5d. This is the so-called
split-band limit. The states in the subband around zero
ergy, which we call theA subband, are strongly confined o
A atoms. Furthermore, in the limitd→` it has been shown2

that theB atoms can be formally removed from the proble
and that theA subband can be studied by using a Ham
tonian restricted toA sites only

HAA5 (
i , j PA

u i &V^ j u. ~2!

This Hamiltonian describes an electron that can hop fr
one site to its neighbors only if both atoms are of typeA.
Thus, the problem for theA subband is similar to a square
lattice percolation problem, becauseB atoms act as perfec
barriers in the limit of infinite self-energy. However, th
problem differs from the geometrical percolation, since
quantum wave function could lose its coherency, even
yond the percolation threshold~which is xc

(s)50.59 for the
site problem andxc

(b)50.50 for the bond problem in the
square lattice!. This lack of coherency is partly due to th
frustration of the wave function, as discussed in the n
section.

We have verified the results given by KE for larger la
tices. Figure 1~a! shows theA subband forx50.65, obtained
from an average of 10 randomly chosen configurations o
3969-site square lattice with periodic boundary conditio
and V51. Three main features are visible in the DOS:~1!
The spectrum is practically symmetric aroundE50, since
d51000 V,~2! there is a pseudogap around the center of
spectrum, and~3! there are many degenerate states at
center. These latter states are strictly confined, even if t
can exist in nonisolated clusters.2 It is worth mentioning that
configurations with true gaps and nongaps are always st
tically present. Therefore, in a strict sense only a pseudo
should be observed, due to statistical fluctuations. T
pseudogap deepens as one approaches the percolation
as shown clearly in Fig. 1~b! for x50.60.

The tendency for a pseudogap to open and the symm
aroundE50 can be obtained from an analysis of the spec
moments. We start by defining the LDOS at sitei asr i(E),
then thenth moment is20,21
13420
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~E2Hii !
nr i~E!dE5^ i u~H2Hii !

nu i &. ~3!

The last equality is known as the Cyrot-Lackma
theorem,19 from which one can obtain thenth moment by
counting all possible closed paths withn steps, starting at site
i. In the split-band limit we can consider the Hamiltonian~2!,
and sitei should be occupied by anA atom.

The momentm i
(0) is always unity, because of the norma

ization condition of the basis (^ i u i &51). The first moment
m i

(1) is the center of gravity of the LDOS, which isE50 in
this case (Hii 50). The next momentm i

(2) is a measure of the
‘‘moment of inertia’’ of the LDOS with respect to the cente
of gravity. The third momentm i

(3) measures the skewnes

FIG. 1. Average density of states in theA sub-band calculated
for ten lattices with 3969 sites.V51, and ~a! x50.65, ~b! x
50.60.
3-2
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FRUSTRATION EFFECTS ON THE ELECTRONIC . . . PHYSICAL REVIEW B 65 134203
about the center of gravity. The fourth moment measures
tendency for apseudogapto form at the middle of the spec
trum. A useful criterion to discern this tendency is the dime
sionless parametersi , defined as,20

si5
m i

(4)m i
(2)2~m i

(2)!32~m i
(3)!2

~m i
(2)!3

. ~4!

If s>1 the LDOS is unimodal, while fors,1 it is bimo-
dal, which corresponds to two separated peaks in
LDOS.20 For example, the LDOS of a square lattice is u
modal with a van Hove singularity atE50 ands51.25. A
honeycomb lattice has a vanishing LDOS atE50, and s
50.67.

In Appendix A, the first four moments of the random b
nary alloy are calculated in an analytical way, by consider
the statistical distribution of paths. In Fig. 2, the full lin
shows the averaged̂s& over all sites as a function ofx,
obtained from Eq.~A13!. Notice that^s&,1 for x,0.55.
This number is very close to the geometrical site percola
threshold.

Here, it is important to notice that the confined states
E50 always give a contribution to the unimodal appeara
of the LDOS. In order to examine the behavior of band sta
more exactly, we should exclude thed states at the center. I
the fraction of states atE50 is f 0(x), the band states follow
a renormalized LDOS@r i* (E)#, related to the complete
LDOS by r i* (E)5l(x)r i(E), wherel(x)5@12 f 0(x)#21,
due to the normalization condition.

The moments ofr i* (E) should be scaled in the same fas
ion, that is,m i*

(n)5l(x)m i
(n) . The corresponding paramete

s* of r i* (E) is given by

s* 5
s11

l~x!
215s@12 f 0~x!#1 f 0~x!. ~5!

FIG. 2. Parameter̂s& as a function of the concentration ofA
atoms. The full line corresponds to Eq.~A13!, the critical concen-
tration is at x50.55. The dashed line is the calculation witho
considering thed states atE50. Observe that in this case the crit
cal concentration is higher (x50.64).
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The quantityf 0(x) is a function of the concentration, and ca
be taken from KE, who used a local counting in finite clu
ters, excluding the contribution due to isolatedA atoms (Z
50). In Fig. 2 we show the scaled version^s* & as a dashed
line. The critical concentration is nowx50.64, which is well
beyond the site percolation threshold (xc

(s)50.59). This fact
is consistent with the computational results of KE and
where a deep pseudogap in the center of the subband ap
even for concentrations higher thanxc

(s) . We point out that
s51 does not necessarily coincide with the exact percola
limit, since it is only a measure of the mean value ofr(E2)
in comparison with its average half width. In the next se
tion, the pseudogap will be analyzed using frustration ar
ments in a renormalized Hamiltonian.

III. THE SQUARED HAMILTONIAN

A. Definition

The introduction ofB atoms produces a tendency for th
spectrum to become bimodal. In order to study this, it
convenient to focus on the renormalized HamiltonianHAA ,
which takes advantage of the bipartite nature of theA lattice
once theB atoms are removed. The bipartite character of
A lattice means that it can be separated in two interpene
ing sublatticesa andb. It is useful to define two orthogona
operators that project each state into one of the sublattic

Pa5(
i Pa

u i &^ i u, ~6!

Pb5 (
j Pb

u j &^ j u.

Therefore, any eigenvectoruf& of HAA can be written in
terms of these projectors:

HAA~Pa1Pb!uf&5E~Pa1Pb!uf&. ~7!

SinceHAA produces a hopping in the wave-function b
tween thea andb sublattices, it is clear that

HAAPauf&5EPbuf&, ~8!

HAAPbuf&5EPauf&. ~9!

From these equations, one can see that the spectrum is
metric aroundE50, since if (Pa1Pb)uf& is an eigenvector
with eigenvalueE, (Pa2Pb)uf& is also an eigenvector with
eigenvalue2E.

We can decouple the sublattices by further applyingHAA
to Eqs.~8! and ~9!:

HAA@HAA~Pi uf&!] 5HAA
2 ~Pi uf&)5E2~Pi uf&), ~10!

where i 5a, b. Thus, the projection of an eigenvector
each sublattice is a solution of the squared Hamiltonian. O
serve that the eigenvalues ofHAA

2 are positive definite, and
their eigenstates are, at least, doubly degenerate. This s
trum can be regarded as the folding of the original spectr
of HAA aroundE50, in such a way that the two band edg
3-3
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of HAA , are mapped into the highest eigenvalue ofHAA
2 ,

while the states at the center of the original band are now
the minimum eigenvalue of the squared Hamiltonian (E2).

Whenx,xc
(s) all A clusters are finite. Therefore, confin

ment effects are expected, in particular, the band width
HAA

2 is reduced. This helps to explain the appearance o
gap at the center of theA subband ofHAA whenx,xc

(s) , but
it does not predict a pseudogap whenx.xc

(s) .

B. Properties of theH AA
2 spectrum and band edges

The important property of the renormalized Hamiltoni
HAA

2 is that the states nearE50 have an antibonding natur
~the phase between neighbors isp). SinceHAA

2 contains odd
rings, we expect that frustration of the wave function c
prevent the spectrum from reaching its minimum eigenva
in a continuous form.15 Furthermore, since there is a cost
energy due to frustration, wave functions tend to avoid
gions of higher frustration, and the states begin to localize
regions of lower frustration.15 The amount of frustration can
be estimated from the numerical results and using statis
One can show that this frustration augments with disord
To see this, it is convenient to separate the contribution
each eigenenergy into three parts, one due to the self-en
and the other two given by the bonds with positive~bonding!
and negative~antibonding! contribution to the energy. This
separation goes as follows. First we write the equation
motion for HAA

2

~E22ZiV
2!ci~E!5(

j Þ i
~HAA

2 ! i j cj~E!, ~11!

whereci(E) is the amplitude of the wave function at sitei
for an eigenenergyE. After summing over all sitesi and
using the normalization condition of the wave function, E
~11! becomes

E25(
i

ZiV
2uci~E!u21(

j Þ i
~HAA

2 ! i j cj~E!ci* ~E! ~12!

[C1~E2!2C2~E2!1C3~E2!, ~13!

where C1(E2)5( iZiV
2uci(E)u2 is the contribution of the

self-energies, which depends on the local coordination of
sites. C2(E2)5u( i , j8 (HAA

2 ) i j cj (E)ci* (E)u, where the prime
means that one considers only those bonds whose pro
cj (E)ci* (E) is negative. This is an antibonding contributio
Finally, C3(E2) is similar toC2(E2), except that the summa
tion is over bonds with positivecj (E)ci* (E). This equation
is valid for all E. At the upper band edgeC2(E2) is zero
because in a perfect bonding state all the site amplitu
have the same sign. The stateE250 corresponds to a con
figuration where the sign of the wave amplitude alterna
between nearest neighbors, and the bond contribu
@C3(E2)2C2(E2)# is equal to the self-energy.C3(E2) is a
measure of the contribution of bonds that are frustrat
while C3(E2)2C2(E2) gives the amount of frustration com
pared with the antibonding term.
13420
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These three contributions for the same lattices as in F
1~a! are shown in Fig. 3. Notice thatC1(E2) ~crosses! and
C3(E2) ~circles! decrease towardsE50. The contribution
C2(E2) ~triangles! increases from zero at the band edge, t
maximum value nearE50, except in some energies whe
C2(E2) is zero. A detailed analysis reveals that each of th
is a degenerate state, producing high peaks in the D
These states correspond to isolate clusters and produce
peaks in the DOS@Fig. 1~b!#. For example, the state atE
51 corresponds to a doublet ofA sites, surrounded byB
atoms.

C. Effects of frustration in the lower band edge

To estimate the effects of frustration on the energy sp
trum as a function of the concentration of impurities, w
need to determineC3(E2)2C2(E2). This can be done, if
first we find bounds forC1(E2). Writing Zi as an average
^Z& plus a fluctuation partdZi , in the expression for
C1(E2), one obtains

C1~E2!5^Z&V21V2(
i 51

N

dZi uci~E!u2. ~14!

The amplitudeci
2(E) can be written as an average plus

fluctuation^c2(E)&1dci
2(E) and Eq.~14! becomes

C1~E2!5^Z&V21V2(
i

dZidci
2~E!, ~15!

where we have used the fact that the sum over all sites of
coordination fluctuations is zero. The last term in Eq.~15! is
not zero and corresponds to a correlation between ampli
and coordination fluctuations. We can estimate the co
sponding contribution by observing that it is bounded in
statistical sense. It attains a maximum value when in all si
the sign of the amplitude fluctuation is the same as the fl

FIG. 3. Contributions toE2 of C2(E2) ~circles!, C3(E2) ~tri-
angles!, andC1(E2) ~crosses!. These data were obtained from th
calculation shown in Fig. 1~a!.
3-4
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FRUSTRATION EFFECTS ON THE ELECTRONIC . . . PHYSICAL REVIEW B 65 134203
tuations of the coordination. In a similar way, a minimum
obtained when the fluctuations have opposite signs,

2(
i 51

N

udZi uudci
2~E!u<(

i 51

N

dZidci
2~E!<(

i 51

N

udZi uudci
2~E!u.

~16!

The size of the fluctuations in the coordination number
estimated by using the standard deviation of the distribu
function of the coordination@P(Z)#, which is a binomial
distribution ~see Appendix A!,

(
i 51

N

udZi uudci
2~E!u'A4x~12x!(

i 51

N

udci
2~E!u<A4x~12x!.

~17!

Finally, we get the statistical bounds forC1(E2)

V2@4x2A4x~12x!#<C1~E2!<V2@4x1A4x~12x!#.
~18!

This equation can be compared against the results show
Fig. 3, for x50.65. Equation~18! gives the maximum value
of C1(E2) as 3.56, in close agreement with 3.58 observed
the upper band edge of Fig. 3. The calculated lower boun
1.61, in close agreement with the numerical calculations.
tice that these bounds are not strict, due to their statist
nature.

Now, a lower bound forC3(E2)2C2(E2) can be obtained
from the conditionE2>0. Using this condition, Eqs.~13!
and ~18! we obtain

C3~E2!2C2~E2!>2V2@4x1A4x~12x!#. ~19!

From this last result, one can see that the frustration
creases with the concentration of impurities. If there is
correlation between fluctuations on amplitude and coord
tion, the lower bound is24x, but if we allow correlation, a
lower energy can be reached by reducing the frustration

We can also obtain a bound forC3(E2) alone. The key
idea is to write a new equation, which separatesC3(E2) from
C2(E2). This equation is obtained by observing that in t
bonding limit (E1

2 ), all the bonds are frustrated. From th
expected value of the energy calculated for a bonding st
we obtain

E1
2 5C1~E1

2 !1C3~E1
2 !. ~20!

C3(E1
2 ) can be related withC3(0) andC2(0), since if we

neglect amplitude variations, the main difference betwe
the bonding and antibonding limit is the sign of the amp
tude of the wave function between neighbors. In other wo
the total number of bonds must remain constant, and if
change the sign of the contribution from bonds with an
tibonding nature in the lowest eigenvalue, we obtain a ma
mum value for the energy. Amplitude variations can on
reduce the frustration, which leads to the inequality

C3~E1
2 !>C2~0!1C3~0!. ~21!

In the perfect square lattice,C3(E1
2 )5C2(0)1C3(0),

since each site inH2 is connected with eight sites: four firs
13420
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neighbors by bonds with hooping integrals 2V2 and four
second neighbors with hoopingsV2. Thus, whenE50,
C2(0)58V2, and C3(0)54V2 since the sign of the wave
function alternates between nearest neighbors. In the bo
ing limit, all the amplitudes have the same sign, a
C3(E1

2 )512V2. Using Eq. ~12! and C1(E2)54, one can
verify that these values produce the right band edges~0 and
16!. As x goes to zero, the difference betweenC3(E1

2 ) and
C2(0)1C3(0) grows.

Eliminating C2(0), using Eq.~13!, and the condition that
E2>0, we obtain

C3~0!<
E1

2 2C1~E1
2 !2C1~0!

2
5

E1
2

2
24x. ~22!

E1
2 is the band width inHAA

2 , and can be calculated usin
the method of fluctuations, as shown in Appendix B. T
statistical bound for the frustration is

C3~0!<6x212x@A3x~12x!21#. ~23!

D. Estimation of the pseudogap as a function
of the concentration of impurities

In the last subsection, we obtained a statistical bound
the frustrationC3(0) at the minimum eigenvalueE50, at-
tained when the correlations in the fluctuations play an
portant role. To determine the energy where the pseudo
begins (D), we need the to determine the frustrationC3(D2)
when these correlations are not allowed in the fluctuati
nearE50. This could be calculated using a variational pr
cedure similar to the one made for the Penrose tiling.15 How-
ever, due to the statistical nature of this system, suc
calculation is extremely difficult. An easier approac
takes advantage of the following observation.C3(E2) is two
times the number of frustrated bonds~since each bond is
shared by two sites!, and the number of frustrated bonds
proportional to the number of triangles that appear inHAA

2 .
This number is the third moment ofHAA

2 (mH
AA
2

3
) and is pro-

portional to the number of paths with three hops that s
and end at the same site. Then, we have for the value
C3(E2) nearE50,

C3~E2!5KmH
AA
2

(3)
5KmHAA

(6) , ~24!

whereK is a constant (3 in the perfect square lattice!, which
depends on the concentrationx. But from Sec. II the states a
E50 produce a weight atE50 that affects the moments
that can be avoided by defining a renormalized set of m
mentsm* (n). In a similar way, we can obtain a renormalize
value ofC3(E2), which does not give weight to the states
E50, and can be associated with the value of the frustra
without the fluctuations at a higher energyD. Therefore,

C3~D2!5KmH*
(6)5

1

12 f 0~x!
C3~0!'@11 f 0~x!#C3~0!.

~25!

In Eq. ~12! we can substitute this result,
3-5



le
re
e
.

T
d
e
o
ti
dt
at

t
O
u
av

lo
m

um
he
th
a

ice
on

an
In
are
ber

rus-
OS

he
the

ul
gh

o.

nd

into
us,
ng

ents

ssi-
of

rdi-

r-
of
a

ch
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D25C1~D2!2C2~D2!1C3~D2! ~26!

>C1~0!2C2~0!1C3~D2!

' f 0~x!C3~0!, ~27!

where it was used the facts thatC2(0)>C2(D2) and
C1(D2)'C1(0). Finally, using Eq.~23! we obtain

D>Af 0~x!$6x212x@A3x~12x!21#%. ~28!

In Fig. 4, we show a plot of this equation, givingD50.3 for
x50.65. This formula is only valid forx.xc , since for
lower x, the quantum confinement plays an important ro
and localization does not reduce the energy, because the
a competition between frustration and quantum confinem
effects, which in fact turns the pseudogap into a real gap

An interesting feature that appears in Eq.~28!, is the re-
lationship between the pseudogap and the degeneracy.
relation was conjectured long ago,13 when it was suggeste
that the central gap in the Penrose lattice was a consequ
of the collapse of states into the central peak. However, b
effects are due to the frustration of states, because frustra
produces degeneracy due to a narrowing of the band wi
In this case, the degeneracy is observed in the statesE
50. The approach developed here can be extended to
cubic random binary alloy, where a pseudogap of the D
and confined states were found at the middle of the spectr
Another interesting example of a lattice showing this beh
ior is the Penrose tiling.15

IV. CONCLUSIONS

We calculated the first moments of a random binary al
in a square lattice by using the Cyrot-Lackmann theore
The results show that there is a transition of the spectr
from unimodal to bimodal behavior, as a function of t
concentration of impurities. This transition occurs near
geometrical percolation threshold. These ideas are m

FIG. 4. Bond of the pseudogapD in units of V as a function of
x, obtained from Eq.~28!.
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clear by using the bipartite symmetry of the square latt
once the impurity atoms are removed. This lets us focus
only one sublattice, that defines a ‘‘squared’’ Hamiltoni
that contains odd member rings in the disordered alloy.
this picture, the states near the center of the spectrum
mapped to the lower band edge, and require a large num
of nodes, as a sort of antiferromagnetic order, and thus f
tration effects are responsible for the depletion of the LD
near the minimum eigenvalue ofH2. With these techniques
we were able to estimate not only the band width of t
disordered system but also the size of the pseudogap in
center of the spectrum.
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APPENDIX A:
THE FIRST MOMENTS OF A RANDOM BINARY ALLOY

For calculating all the required moments in the split-ba
limit, we need to count all the possible paths that visitA sites
that start and return to the same site. One must take
account all possible local configurations of disorder. Th
Eq. ~3! must be considered in a statistical way, by includi
the probability of a path connectingA sites withn hops. We
can define the configurational averaged spectral mom
^m i

(n)& as

^m i
(n)&5 (

j 1 , . . . ,j n21PA
P~ i , j 1 , . . . ,j n21!

3Hi j 1
H j 1 j 2

•••H j n21i . ~A1!

where P( i , j 1 , j 2 , . . . ,j n21) is the probability of a given
path.

All the odd moments are zero because there is no po
bility of returning to the starting point with an odd number
steps in the square lattice. If theB sites are forbidden, the
clusters ofA sites retain this property, while ifd is finite, the
odd moments are not zero, and then the subbandA is no
longer symmetric aroundE50.

The second moment is always equal to the local coo
nation onA sites:

m i
(2)5ZiV. ~A2!

There are only five different local configurations, with coo
dination 0, 1, 2, 3, and 4, respectively. The probability
each coordinationP(Z) around a given site is given by
binomial distribution

P~Z!5CZ
4xZ~12x!42Z, ~A3!

whereCZ
4 are the combinations of four inZ. This factor takes

care of the different geometrical possibilities in which ea
3-6
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configuration can occur. The second moment of the D
corresponds to the sum of the LDOS at all sites. This s
over sites can be written as

^m2&5~1/N!(
i 51

N

m i
25V(

Z50

4

CZ
4xZ~12x!42ZZ54V x.

~A4!

This number gives an estimation of the band width (W),
which for the present case isW52m258V x.

The fourth moment calculation requires counting ma
different configurations and paths. It is convenient to class
the paths as three kinds, as shown in Fig. 5. It is also c
venient to calculate paths by grouping the possible clus
according to the coordination of the central site (Z), which is
assumed to be of typeA.

The number of paths of the kind shown in Fig. 5~a! is

^Na~Z!&5Na~Z!5Z2 ~A5!

because the condition of revisiting the central site fixes
second and fourth segments of the path. Observe that
quantity does not depend onx, since we are fixing the con
figuration of the cluster up to first neighbors, and seco
neighbors are irrelevant for these paths.

The number of paths as in Fig. 5~b! is

Nb~Z!5Z(
j

~Zj21!, ~A6!

since one needs the participation of a second neighborj to
determine if the path is possible or not. Therefore, one ha
average over all configurations of a given local coordinat
we obtain

^Nb~Z!&5ZK (
j

~Zj21!L ~A7!

5Z(
l 50

3

Cl
3xl~12x!32 l l 53xZ. ~A8!

FIG. 5. The three different kinds of paths that contribute to
fourth moment. The central thick circle represents the starting
The hops are indicated by arrows.~a! The starting site is revisited
once.~b! One of the neighbors of the starting site is revisited on
~c! None of the sites are revisited, resulting in a single loop. T
presence ofB atoms reduce the number of loops available.
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Finally, paths involving four different sites are thos
shown in Fig.5~c!. In principle ^Nc(Z)& should be propor-
tional to x2. However, close examination of this situatio
reveals that only one site closes the loop in all cases.
each coordination number, the average number of path
given by

^Nc~1!&50, ~A9!

^Nc~2!&52
2

3
x, ~A10!

^Nc~3!&52(
l 50

2

Cl
2xl~12x!22 l l 54x,

^Nc~4!&52(
l 50

4

Cl
4xl~12x!42 l l 58x,

where there are two senses of circulation for each loop.
tice that forZ52, a loop is not possible if the two neighbo
are in opposite sites.

Therefore, the fourth moment for a site of coordinationZ
is

mZ
45V2@Z213xZ1^Nc~Z!&#. ~A11!

The corresponding parametersZ can be calculated using
these results,

s153x, s25
11

6
x, s35

13

9
x, s45

5

4
x. ~A12!

Higher coordination has always a lower value of the p
rametersZ . Using the distribution function for each coord
nation, we can calculate an average^s& defined as

^s&5 (
Z50

4

P~Z!sZ . ~A13!

APPENDIX B:
ESTIMATION OF THE UPPER BAND EDGE „E¿

2
…

The bonding limit of the energy spectrum corresponds
a maximum value ofE1

2 , attained whenC3(E2)2C2(E2)
andC1(E2) are maxima. From Eq.~18!, the maximum value
of C1(E2) is 4x1A4x(12x). The maximum value of
C3(E2)2C2(E2) is obtained from observing that if all th
amplitudes have the same sign,

(
i , j

~HAA
2 ! i j ci* ~E!cj~E!<^~HAA

2 ! i j &1F, ~B1!

whereF are the fluctuations in the distribution of the squar
Hamiltonian.

It is easy to see that^(HAA
2 ) i j & in HAA

2 is exactly the num-
ber ofNb(Z) paths that are considered in Appendix A, whe
their number is calculated for a given coordination numb
Using Eq.~A7! and averaging overZ one obtains

e
e.

.
e

3-7
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^~HAA
2 ! i j &5V2^^Nb~Z!&&53xV2(

Z50

Z54

P~Z!Z512x2V2.

~B2!

The size of the fluctuations is evaluated by an average of
fluctuations in the distribution ofNb(Z) for each coordina-
tion number

F'A3x~12x!V2(
Z50

Z54

P~Z!Z54xV2A3x~12x!.

~B3!

The band edge ofHAA
2 is given by the sum of contribution

~B2! and ~B3!
-

-

a

13420
e

E1
2 56V2$12x214x@11A3x~12x!#1A4x~12x!%.

~B4!

This method gives a much better estimation for the up
band edge, which is usually approximated20 by ^Z&V . The
square root ofE1

2 gives an estimation of the band edges
HAA . For example, ifx50.65 this formula givesE153.3.
This approximation can be compared with Fig. 1, where
band edge is near 3.4. The usual estimation 4x52.6 is not as
good as Eq.~B4!. Equation~B4! gives a better estimation
because it includes information aboutHAA

2 and the size of the
fluctuations, which is related with the size of the exponen
Lifshitz tails that appear in the band edges.
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