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Rigidity aspects of the glass transition
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Abstract

By using a model for an associative fluid, we perform Monte-Carlo simulations to observe that at the glass tran-

sition, there is also an underlying rigidity transition. This last transition occurs very close to the value predicted by a

mean-field theory and serves as an starting point to determine the effects of rigidity in the glass transition temperature.

� 2003 Published by Elsevier B.V.
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1. Introduction

Crystallization is not the only possible outcome

of supercooling a liquid. If the speed of cooling is

fast enough, a disordered solid is formed at a

certain temperature. This process is known as the

glass transition (GT), and still poses many chal-
lenging problems in solid state physics [1] since the

time-dependent nature of the GT [2] means that

the GT is not a true phase transition [3]. The

chemical composition is fundamental to determine

the minimum speed of cooling and the temperature

where it occurs (called Tg). This GT temperature

can be raised or lowered by adding impurities [4],

and the fragility of the glass can be changed from
strong to fragile [5]. In 1979, Phillips proposed a
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relationship between the rigidity of the glassy

network and the ability to form a glass [6], ob-

tained from the speed of cooling, that was further

refined by relating the elastic properties with ri-

gidity [7]. By considering the covalent bonding as a

mechanical constraint, the ease of glass formation

is then related with the proportion of available
degrees of freedom and the number of constraints.

When the glass has an average atom coordination

(hri) below 2.4 in three dimensions (3D), there are

zero frequency vibrational modes called floppy [7].

This theory has been successful in explaining

general qualitative features of GT, and many ex-

periments confirmed the validity of the theory [4],

but not so much effort has been done to test the
theory in a quantitative way and more impor-

tantly; only very recently have the effects on the

thermodynamics been considered [8]. In this work,

we explore the relationship between the GT ther-

modynamics and the rigidity theory by performing

Monte-Carlo simulations (MC) for a simple model

fluid.
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Fig. 1. Dependence of the volume as a function of the average

coordination number for models with maximum coordination 3

(cpx3) for the indicated MC steps. Inset: V versus T � for dif-

ferent cooling rates.
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2. Model and simulations

We use the Cummings–Stell model of a two

component system [9,10] (A and B) of associating

disks in 2D, where the number density of each

component is the same, i.e. qA ¼ qB ¼ 0:5q. The
particles interact via a potential permitting core

interpenetration of A and B disks, so the bond
length L is less than the core diameter r (here we

take r ¼ 1). The interactions are given as follows:

UijðRÞ ¼ Uhd
ij ðRÞ þ ð1� dijÞUasðRÞ;

Uhd
AAðRÞ ¼ Uhd

BBðRÞ ¼
1 R < 1;

0 R > 1;

�

Uhd
ABðRÞ ¼ Uhd

BAðRÞ ¼
1 R < L� 0:5w;
D L� 0:5w < R < 1;

0 R > 1;

8<
:

UasðRÞ ¼
0 R < L� 0:5w;

�eas � D L� 0:5w < R < Lþ 0:5w;

0 R > Lþ 0:5w;

8><
>:

where i and j stand for the species of the particles

(A and B), R is the separation between centers, L is
the bonding distance, and w is the width of the

attractive intracore square well. The model allows

the formation of dimer species, chains, and vul-

canization with fixed maximum coordination

number, by tuning L with values close to the di-

ameter of the particles. To fix a maximum coor-

dination number (rmax), we take D ! 1. Then we

applied a Metropolis MC in the isobaric–isother-
mal ensemble (NPT), but allowing a quite long

thermal equilibrium keeping the volume fixed

(NVT ensemble) between successive changes of

volume in the NPT procedure. The MC step of the

NPT cycle was used as a time parameter [11].

Starting from a fluid, the temperature was slowed

down every certain MC steps of the NPT loop for

fixed NVT steps, and we obtained the volume (V )
as a function of the scaled temperature,

(T � ¼ kT=eas) for the potential condition that al-

lows rmax ¼ 3 (cpx3). The results show a charac-

teristic GT (see inset in Fig. 1). We confirmed this

GT by looking at the jump in the specific heat, the
radial distribution function and a direct inspection

of the structures. In Fig. 1 we present the results

from these simulations, but instead of plotting V
as a function of T �, we show V versus the average

coordination number, defined as, hri ¼
P

r rxr,
where xr is the fraction of particles that are bonded

with coordination r. The volume follows an
isocoordination rule (see Fig. 1), in the sense that

is a universal function of hri for different cooling

rates. Fig. 1 shows a clear transition in the slope

that occurs at the critical value hri ¼ 2:01, ob-

tained by fitting two straight lines. This point also

corresponds to the GT observed in the volume and

specific heat. The value 2.01 suggests a connection

with rigidity, since within this theory, the ability
for making a glass is optimized when the number

of freedom degrees, in this case 2N , where N is the

number of particles, is equal to the number of

mechanical constraints (Nc) that are given by the

bond length and angles between bonds. These two

numbers allow one to calculate the fraction of

floppy modes (f ) in a mean-field approximation,

known as the Maxwell counting that goes as fol-
lows: each of the r bonds in a site of coordination r
is shared by two sites, there are r=2 constraints. If



Fig. 2. The inverse of the numerical density as a function of the

chemical potential for the hard-disk system with and without of

stress as indicated. The inset shows an schematic representation

of the contact region.
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the angles are also rigid, in 2D there are ðr � 1Þ
constraints, that gives

f ¼ 2N � Nc

2N
¼ 1� 1

2

hri
2

 
þ
X
r

ðr � 1Þxr

!
;

where the last term corresponds to the angular

constraints. A rigidity transition (RT) occurs when

f ¼ 0. In 2D, this gives hri ¼ 2:0 if angular con-
straints are considered, and hri ¼ 4:0 if the angular
restoring forces are not strong. Although the value

hri is very close to the one obtained from our MC

simulations, care must be taken because in the

Cummings–Stell model, the rigidity transition is

complicated due to the fact that the angular con-

straints are only produced by geometrical hin-

drance. In the case of rmax ¼ 3, this means that
only sites with coordination 2 and 3 have a con-

tribution to angular constraints. To obtain the

fraction of floppy modes in our MC simulation, we

used the mean-field approximation given by f . The
contributions xr were found directly from the

concentrations of sites with coordination 2 and 3

given by the MC simulations. The obtained value

for f ¼ 0 is hri ¼ 1:99, in close agreement with the
GT. In order to check the validity of this result, we

performed calculations in a system that allows

rmax ¼ 4 and similar results were found. If the al-

lowed rmax is higher, rigidity can arise even if the

particles are not bonded, due to jamming. For

example, when D ! 1 and UasðrÞ ! 0, we get a

one component hard-disk system (HDS). Here

there is no rigidity due to association, and a glass
transition is difficult to observe because the system

crystallize. However, rigidity comes from the

contact between dynamical jammed disks. To

clarify this point, we made calculations in a MC

grand-canonical ensemble. The problem is how to

define a contact in a MC. However, seven disks in

an heptagon are not able to jam a central disk, and

this defines a circular contact region around a disk
delimited by an hexagon (with radius R ¼ r) and
an heptagon (R ¼ r=2p sinð2p=14Þ). Using this

idea, we found that the fluid–solid phase transition

occurs at hri ¼ 4, which is the same value pre-

dicted at the RT. By imposing the condition of not

allowing more than six particles in the contact

region, we produced a glass transition (Fig. 2).
3. Conclusions

We have observed, from our MC simulations

on an associative fluid, that rigidity plays an im-
portant role in the GT and also for the freezing in

a HDS. Also, the present calculations suggest that

the structural relaxation time increases at the RT,

due to particle jamming, controlling from the

molecular point of view Tg. Nevertheless, in a

particular material, the value of hri at the RT de-

pend on the chemical structure, since the con-

straints can be broken according to the energy
involved in a particular kind of bond.
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