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Abstract

The thermodynamic phenomenology of the glass transition in chalcogenide glasses is studied by using rigidity theory, which treats
covalent bonding as mechanical constraints. Since flexible systems have a certain number of nearly zero frequency modes (called floppy
modes), these modes provide channels in the energy landscape of the glass, and as a consequence, the entropy and fragility depend upon
the number of constraints, even for the supercooled melt. Using this approach, the variation of the glass transition temperature with the
chemical composition can be obtained from the number of floppy modes, since low frequencies enhance in a considerable way the aver-
age quadratic displacement of atomic vibrations. The result reproduces the observed experimental variation of the glass transition
temperature with chemical composition.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The relaxation properties during the formation of a
glass, and the nature of the process itself are important
problems in modern physics [1–3]. For example, there is
strong debate about the origin of the non-exponential
relaxation laws near glass transition [4]. To deal with these
problems, many different approaches have been devised
[3,5–7], but most of the available theories have difficulties
to explain even simple questions like how the glass transi-
tion temperature (Tg) depends on chemical composition,
and what is the relation with the behavior of the viscosity,
which is usually referred as fragility in the Angell classifica-
tion of glasses [8]. The bench-mark tools used to under-
stand such effects are chalcogenide glasses [9]. For these
covalent glasses, the ease of glass formation can be success-

fully explained by the rigidity theory (RT) of Phillips [10]
and Thorpe [11]. Therein, covalent bonding is considered
as mechanical constraints, and the ease of glass formation
is related with the ratio between available degrees of free-
dom and the number of constraints. If the number of con-
straints is lower than the degrees of freedom, there are zero
frequency vibrational modes called floppy [12]. When the
number of constraints is equal to the dimension of the con-
figurational space, a transition to a rigid lattice occurs
(called rigidity transition). Glasses with a certain chemical
composition are rigid and it is observed that they are easier
to form [10]. Many other features of the rigidity transition
have been experimentally observed [9,13]. Even for systems
like hard-disks [14] and colloids [15], rigidity plays an
important role. Although RT allows to understand many
features of the glass transition, its use in a quantitative
way has not been fully developed to provide a link with
the thermodynamics of the system [16,17]. The most dra-
matic piece of evidence of the relationship between rigidity
and thermodynamics was provided by the experimental
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discovery of the window of reversibility [9,18,19], which is a
self-organized phase with zero stress around the rigidity
threshold that presents a thermodynamically reversible
glass transition. Furthermore, this window seems to pres-
ent some universal features, since for example it has been
observed that protein folding is reversible because it occurs
at the rigidity transition [20]. An interesting question is:
why should a zero temperature vectorial percolation theory
like RT be important to the thermodynamics of a glass? In
previous works, we began by answering this question by
showing that RT is fundamental in order to understand
the energy landscape topology of a glass and others flexible
systems [16]. The landscape is a multidimensional surface
generated by the system potential energy as a function of
the molecular coordinates [3,21,22], and in an N body sys-
tem, is determined by the potential energy function, given
by V(r1, . . . ,rN) where ri comprise all configuration coordi-
nates. In this article we will take a further step by calculat-
ing the entropy associated with vibrational flexible modes
that are not at zero frequency and then we will work out
the relationship with the glass transition temperature.
The layout of this work is the following: section II contains
the development of the thermodynamics associated with
rigidity and the relationship with the energy landscape, in
section III we obtain the results of the theory, in section
IV a discussion of the results is made, and finally, section
V contains the conclusions.

2. Theory: rigidity and thermodynamics

The way that RT treats a glass or protein, is to consider
that each bond between any of the N atoms that form the
system can be viewed as an almost rigid mechanical con-
straint. This is very useful, specially for covalent bonds,
where a hierarchy in the strength of the interatomic forces
is present. If Nc is the number of constraints of a 3 dimen-
sional system, then a fraction (3N � Nc)/3N of the vari-
ables are cyclic, since the energy of the system does not
depend on such variables [12]. This ratio also corresponds
to the fraction of vibrational modes with zero frequency (f),
called floppy modes. For example, in any system the energy
does not depend on the center of mass coordinate, and as a
consequence, there is always at least three vibrational
modes with zero frequency.

Not all the constraints are independent, but the calcula-
tion of f involves only the independent ones [12]. Such
counting can be made in an exact manner by using the peb-
ble game algorithm [12], or with a mean-field approxima-
tion, known as the Maxwell counting. This counting goes
as follows: since each of the r bonds in a site of coordina-
tion r is shared by two sites, there are r/2 constraints due to
distance fixing between neighbors. If we assume that bond
bending costs energy, the angles are also constraints, and in
3D there are (2r � 3) constraints, to give,

f ¼ 3N � N c

3N
¼ 1�

X
r

½r=2þ ð2r � 3Þ�xr

3
¼ 2� 5

6
hri;

where the last term corresponds to the angular constraints,
xr is the fraction of particles with coordination r, and hri is
the average coordination number, defined as,

hri ¼
X

r

rxr: ð1Þ

A rigidity transition occurs when f = 0 and the system
passes from a floppy network to a rigid one. In 3D, the
mean field approach predicts the transition at the critical
value hrci = 2.4 if all angular constraints are included. To
understand the effects of floppy modes in the thermody-
namics of a solid, we consider the atomic vibrations in
the harmonic approximation. If normal modes coordinates
are used, the corresponding Hamiltonian is,

H ¼
X3N

j¼1

P 2
j

2m
þ
X3Nð1�f Þ

j¼1

1

2
mx2

j Q2
j ; ð2Þ

where Qj and Pj is the j-normal mode coordinate in phase
space, and xj is the corresponding eigenfrequency of each
mode. Notice that since floppy modes have zero frequency;
they do not contribute to the elastic energy. For high tem-
peratures, where classical statistical mechanics is valid, this
poses a problem, since according to the energy equiparti-
tion each degree of freedom contributes with kT/2 to the
internal energy. Since there are only 3N(1 � f) non-zero
frequency oscillators, the internal energy is just U =
3NkT/2 + 3N(1 � f)kT/2. From this last expression, the
corresponding specific heat (CV) is,

CV ¼ 3Nk � 3Nk
2

f ; ð3Þ

and thus CV is given by the Dulong–Petit law, minus a term
that depends on the number of floppy modes. An examina-
tion of the results from experimental data [9,23] shows CV

does not depend on f. Instead, glasses also follow the Du-
long–Petit law, and in real glasses floppy modes are shifted
by residual forces, like the Van der Waals interaction, as
confirmed by neutron scattering experiments, where it has
been shown that floppy modes in As–Ge–Se are blue-
shifted [13,24], forming a peak around the frequency
x0 � 5 meV. This blue-shift restores the Dulong–Petit
law, and the Hamiltonian can be written as,

H ¼
X3N

j¼1

P 2
j

2m
þ
X3Nð1�f Þ

j¼1

1

2
mx2

j Q2
j þ

1

2
mx2

0

X3Nf

j¼3Nð1�f Þþ1

Q2
j : ð4Þ

The thermodynamics of this Hamiltonian can be readily
obtained using statistical mechanics, however it is instruc-
tive to use the landscape paradigm to describe the qualita-
tive behavior of the system. From the functional form of
the Hamiltonian, is clear that the curvature of the potential
energy in the direction of the floppy variable is determined
by x2

0 and thus is not very pronounced along a floppy nor-
mal mode coordinate. This means that the system can
move along such directions without expending too much
kinetic energy, and thus floppy modes provide channels
or ‘mountain passes’ in the landscape. This fact can be
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explained in a simple fashion by using a system of two
masses and three springs between walls, as shown in
Fig. 1. If q1 and q2 are the displacements of particle 1
and 2, respectively, it is possible to write the Hamiltonian
in terms of the normal mode coordinates Q1 and Q2, as ex-
plained in Fig. 1. The corresponding normal modes fre-
quencies are,

x1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kA þ 2kB

m

r
; x2 ¼

ffiffiffiffiffi
kA

m

r
: ð5Þ

and the surface generated by the potential energy is a
paraboloid. When a hierarchy of forces is present, the ratio
between the spring constants can be very small. For exam-
ple, if kA� kB, as shown in Fig. 1(b), x2 is reduced as also
happens with the slope of the landscape along Q2. In the
limiting case kA! 0, the system has one floppy mode at
zero frequency, which corresponds to the center of mass
movement of a ‘diatomic molecule’.

According to the Bolztmann principle, the entropy is
given by S(E,V,N) = k lnX(E,V,N), where X(E,V,N) is the
number of states for a given E,V and N, and is propor-
tional to the allowed phase space volume visited by the sys-
tem [25]. Since floppy modes provide channels, they
increase the entropy. To show this in a quantitative way,
let us connect with the thermodynamical properties by
using the microcanonical ensamble, where the number of
accessible states (X(E,V,N)) is proportional to the area
defined by the surface of constant energy E = H(P1, . . . PN,
Q1, . . . ,QN),

XðE; V ;NÞ ¼ 1

h3N

Z
. . .

Z
E¼HðP 1;...;Q3N Þ

Y3N

j¼1

dP j

Y3N

k¼1

dQk: ð6Þ

In the case of Eq. (4), the constant energy surface is an
ellipsoid, elongated in the direction of the floppy coordi-
nates. By calculating the area associated with this ellipsoid
and using the Boltzmann principle we arrive to an expres-
sion for the entropy,

SðE; V ;NÞ ¼ k ln
4pE
hN

� �3Nð1�f Þ Y3Nð1�f Þ

j¼1

1

xj

� �" #

þ 3Nfk ln
4pE

Nhx0

� �
;

from where it follows the Dulong–Petit law since,

1

T
¼ oS

oE

� �
V ;N

¼ 3Nk
E

; ð7Þ

and the entropy in terms of the temperature,

SðT ; V ;NÞ ¼ k ln
12pkT

h

� �3Nð1�f Þ Y3Nð1�f Þ

j¼1

1

xj

� �" #

þ 3Nfk ln
12pkT
Nhx0

� �
:

The last term of the previous expression is the desired chan-
nel entropy contribution, and depends linearly on the num-
ber of floppy modes. This contribution is very important
due to the 1/x0 dependence that enhances the low fre-
quency modes contribution. An important remark is that
the channel term is absent at the rigidity threshold (f = 0).

There is a second source for entropy due to rigidity and
is related with the number of different energy minima. Usu-
ally, these minima are called inherent structures [22]. In the
present case, such structures are different configuration of
the lattice with the same hri, and thus with almost the same
elastic energy. This contribution is the one that has been
studied in the context of RT as a percolation problem
[26,27], where f as a function of hri turns out to be a perco-
lation free energy, with a divergent second derivative at the
rigidity threshold [26]. It is worthwhile mentioning that this
pure configurational part is unable to explain the window
of reversibility, since taken in the context of percolation,
around the rigidity transition there are many fluctuations,
as in a phase transition, and thus it is expected that the con-
figurational entropy will reflect this. Such important obser-
vation means that the entropy due to the channels in phase
space is very likely to be much bigger than the one corre-
sponding to percolation. A second argument that enhances
this point of view is the fact that glasses are strong at the
rigidity transition, because are easier to trap in a certain
minima.

3. Results

In the previous section, the entropy has been obtained
using an harmonic approximation, which is only valid
below the glass transition temperature. This raises two
important questions, the first is: do floppy modes influence
the glass transition temperature? and the second: are these
modes important to understand the properties of the liquid
melt? From an experimental point of view, the answer is
yes for both questions, but we would like to understand
from theoretical principles the role of floppy modes below
and above the glass transition.

Fig. 1. Sketch of the energy landscape for a system of two masses an three
springs, with strengths kA and kB. In (a) kA � kB, while in (b) a channel in
the direction of the arrow appears, since kA� kB and x2� x1. The
corresponding expressions for the potential energy are shown below the
landscape.
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A simple way to answer the first question is to use the
important observation that the Lindemann criteria
(1910) is valid for glasses [28,29]. This criteria (191 0),
was originally devised to understand crystal melting [30],
and establishes that melting occurs when the mean atomic
displacement

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu2ðT Þi

p
is around 10% of the atomic spac-

ing a. At Tg, the Lindemann criteria applied to glasses [28]
establishes that hu2(Tg)i � hu2(Tm)i � 0.01a2. But the value
of hu2(T)i can be calculated from the density of vibrational
states g(x). At high temperatures,

hu2ðT Þi ¼ kT
mN

Z 1

0

gðxÞ
x2

dx ð8Þ

where k is the Boltzmann constant, T the temperature, x
the frequency and m the average mass. From this formula,
is clear that low frequency modes are very important to
determine Tg and Tm, due to the enhancement produced
by the 1/x2 dependence inside the integral. We can model
the density of states by using a combination of an Einstein
like model that puts a spectral weight 3Nf to the floppy
mode peaks at frequency x0. The rest of the spectral weight
can be associated with a density gI (x), with weight
3N(1 � f),

qðxÞ ¼
3Nð1� f ÞgIðxÞ þ 3Nf dðx� x0Þ; if x 6 xD

0 if x > xD

�

where xD is a cut-off frequency. If this q(x) is used to feed
Eq. (8), then hu2(T)i depends linearly upon f,

hu2ðT Þi ¼ 3kT
m

1

x2

� �
R

þ f
1

x2
f

� 1

x2

� �
R

 !" #
; ð9Þ

where h 1
x2 iR is defined as the second inverse moment at the

rigidity transition,

1

x2

� �
R

�
Z 1

0

gIðxÞ
x2

dx: ð10Þ

Using this model and the Lindemann criteria, it is easy to
prove that Tg(f), which is the glass transition temperature
when a fraction of floppy modes is present, goes as
Tg(f) � Tg(f = 0)/(1 � af), where,

a � 1

x2
0

1
x2

� 	
R

� 1: ð11Þ

or using the Maxwell counting,

T gðhriÞ � T gðhri ¼ 2:4Þ 1� að2� 5

6
hriÞ

� �

: ð12Þ

This functional form for the decreasing of Tg with hri has
been observed experimentally [8,31], and is usually called
the empirically modified Gibbs–DiMarzio law. An alterna-
tive derivation of this law has also been obtained using an
stochastic method [32–35], where a is a constant that de-
pends upon the ratio of valences between the atomic spe-
cies. The advantage of the method presented here is that
one avoids the special assumptions that invoke the stochas-

tic method to obtain Tg. However, the relationship between
the a calculated in both ways deserves a more detailed
investigation.

4. Discussion

To compare the theory presented in this work with the
experimental results, here we will consider the values of
Tg obtained from calorimetry experiments [8,9] for the pro-
totype chalcogenide compound Se1�x�y(GeyAs1�y)x. Then
we will use Eq. (12) to predict Tg, but first an estimatation
for a from neutron scattering data or Lamb-Mössbauer
experiments is needed. Using the neutron scattering data
taken from reference [36], it is obtained that h 1

x2 iR ¼
0:01986 meV�2 � 5%, with a frequency xR � 7.0959 meV
which is equivalent to a temperature HR � 76 K. Since
xf = 5 meV ± 5%, a has the approximate value 1.014 ±
10%, and Tg(hri = 2.4) = 425 K ± 5%. Fig. 2 shows the
comparison between the experimental data (symbols) and
Eq. (12). The agreement is excellent for hri 6 2.4 When
hri > 2.4, the isocoordination rule is no longer valid, and
some other factors are needed to take into account the var-
iation of Tg. The errors in determining a arise from the
finite width of the floppy peak and the resolution of the
data.

It is worthwhile mentioning that in order to derive the
Gibbs–DiMarzio law, the mean field approach has only
been used in the last step of Eq. (12). However, this step
can be avoided if one is interested in non-mean field
effects like compounds that are in the reversibility win-
dow. To do so, one can get Tg(f) in terms of the density
of vibrational states for a given fraction of floppy modes.
In such case, the self-organization effects are encoded in
the spectral distribution of modes, and thus many interest-
ing effects in the glass transition temperature are expected
to be observed.

Fig. 2. Tg as a function of hri for the compound Se1�x�y(GeyAs1�y)x. The
symbols are taken from the experimental results given in references [8] and
[9]. The solid line corresponds to Eq. (12), with a = 1.014, and
Tg(hri = 2.4) = 425 K. The sizes of the symbols are proportional to the
experimental errors.
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The second question about the importance of floppy
modes for the melt can be understood in terms of the chan-
nels in phase space. In Fig. 3, we show how the curvature
of the potential energy around an inherent structure is
essential to determine the height of the energy barriers
between different minima in the landscape. For example,
when the system is flexible, around each minima the sur-
faces of equal energy are ellipsoids elongated around the
floppy coordinates, since x0 is small. But such elongation,
if we assume that the number of minima does not contrib-
ute is an important way, means that for a certain volume in
the landscape, the hills are not able to reach great heights,
due to the slow steep and consequently flatter landscape.
When floppy modes disappear, the curvature is bigger
and the steep is much higher, resulting in bigger energy bar-
riers between minima. Thus, is clear that a flexible system
should have different relaxation properties, even when
non-linear interactions become important. In fact, it is
expected that floppy systems should present a fragile
behavior because of this relatively flat landscape, as
observed in experiments [8,22]. This simple geometrical
reasoning is similar to assume that the hierarchy of forces,
covalent and Van der Waals bonding, is still present for the
supercooled liquid. To take into account these effects, one
needs to consider non-linear terms in the Hamiltonian [37].

5. Conclusions

In this article, we have studied the effects of flexibility in
the thermodynamics of a glass, by exploring the energy
landscape. We found two competing effects that contribute
to the entropy in the liquid melt; one contribution is given
by channels in the direction of nearly cyclic variables, and
the other is the existence of different energy basins. Then
we discussed how the glass transition temperature depends
on the flexibility due to the enhanced mean quadratic dis-
placement produced by the important weight of low fre-
quency modes. The present approach shows how rigidity
theory and the energy landscape formalism can provide

some clues about the fragility behavior of the supercooled
liquid The results of this article seem to confirm the Phil-
lip’s idea that glass forming tendency is enhanced at the
rigidity transition, since glasses are easier to trap in a cer-
tain minimum due to a lack of pathways in the energy land-
scape [38].
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