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Abstract. A statistical model in which the stochastic matrix method is applied is used to find
the fraction of boron atoms belonging to boroxol rings in a boron oxide(B2O3) glass. The
method also enables one to evaluate the characteristic energies related to the formation of a
single B–O–B unit in an oxygen bridge or in a boroxol ring. The qualitative behaviour of the
heat capacityCp(T ) during the glass transition is reproduced, with the inflexion point at the
temperature given by the experiment. The model also gives a reasonable qualitative prediction
for a characteristic exponent ruling the growth of microclusters, which may in turn be related
to the specific volume.

1. Introduction

The structure of glasses, and of amorphous solids in general, can be viewed as the absence
of long-range order. However, as discussed by Galeener [1], one usually finds local order
dictated by the chemical bond, and also some kind of intermediate-range order, in the form
of rings or other small regular clusters. In the case of vitreous B2O3 we know that the
chemical order is very strong; there are only O–B–O bonds with no experimental evidence
of wrong bonds. The continuous random network of the glass could be formed by situating
every boron atom at the centre of a triangle of oxygen atoms, with the oxygen atoms acting
as bridges between pairs of boron atoms.

There are various kinds of experiment that seem to suggest the existence of intermediate-
range order in B2O3 in the form of boroxol rings. These are six-membered planar and regular
rings, B3–O3, in which there should be a substantial reduction of the oxygen-bridge angle,
since the average O–B–O angle in the network is 130◦. The abundance of boroxol rings
in the network should be substantial to explain the experiments, yet it has been difficult to
settle this matter, due to the fact that recent molecular dynamics calculations have found it
difficult to produce boroxol rings, and the claim has been made that they are not needed
to explain most of the experimental data [2, 3]. One should mention that there is not yet
a model of a structure containing many boroxol rings able to predict the density of the
material.

Among the most conspicuous features attributed to boroxol rings are the extremely sharp
peaks found in vibrational spectroscopic studies, such as ones based on infrared and Raman
scattering [4, 5]. There is no convincing explanation for these sharp peaks if one denies the
existence of intermediate-range order. There exist various kinds of theoretical calculation,
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ranging from effective-medium models [6] to more detailed ones [8], which are able to
explain all of the experimental features only if one assumes large quantities of boroxol
rings in the disordered network. A more definite argument in favour of the existence of
boroxol rings comes from recent neutron scattering experiments [7], which can be explained
coherently only if∼80% of the boron atoms belong to rings.

Evidently, the formation of rings should be a consequence of the way in which the
solid is grown, since they are not present in any of the crystalline forms of B2O3, and
some kinetic models are needed to explain their formation. Molecular dynamics is unlikely
to give definite answers, since the main reason for the formation of rings should be a
peculiar three-body force that allows modification of the bridge angle. On the other hand,
a fundamental idea advanced by Galeener is that a six-membered ring should be planar and
somehow trapped in an ‘energetic bottle-neck’, in such a way that it could be stable under
small thermal fluctuations. This allows one to think that the bonding energy of a normal
oxygen bridge should be somewhat smaller than the bonding energy of the same entity
in a boroxol ring. As a corollary, one may believe that the final proportion of atoms in
boroxol rings is mainly governed by the conditions of the growing process. More generally,
one finds that near the glass transition, either the density or the viscosity changes abruptly,
but they are not discontinuous, suggesting that at any stage of solidification one should
find clusters of bonded atoms whose average size increases continuously as the temperature
approaches the glass transition temperature from above. These clusters do not need to be
in equilibrium, since local variations of the size of the clusters are likely to be large.

In a series of earlier papers [9–14] we introduced a model of agglomeration to study the
growth and structure of solids, which succeeds in making useful predictions for covalent
network glasses. The model was based on the computation of probabilities of creation
of large clusters of atoms by consecutive one-by-one agglomeration of stable elementary
entities, forming firstdoublets, then triplets, and so forth, i.e. clusters composed of two,
three, and more such entities.

At each step of the agglomeration process, consisting in adding one more entity, one
calculates the probability factors, including the statistical weight (multiplicity) of the step,
and the Boltzmann factor, which takes into account the corresponding energy barrier.

In this paper we shall use the same ideas to build up a model of growth which is simpler
and more powerful that the previous one, to investigate the process of growth and the origin
of boroxol rings in vitreous B2O3.

Instead of tracing along all possible pathways that lead to the creation of a given
type of cluster, starting from the formation of doublets, and then computing their
probability distribution, here we propose to follow a totally probabilistic description of
the agglomeration process. From the beginning, we consider anensembleof all of the
clusters of various sizes, and look at the probability distribution of different types ofsite
at their rims. Then we evaluate the probabilities of transformations of these sites due to
the gradual agglomeration of new singlets, and establish the recurrent linear transformations
ruling this process. The eigenvectors of these transformations corresponding to the unit
eigenvalue give the asymptotic statistics of local configurations in the network.

With this probability distribution we can evaluate several physically pertinent quantities,
such as the internal energy stored in the bonds, and the characteristic exponent ruling the
growth of the number of free valencies at the rim of an average cluster, which seems to
give rise to a dominant contribution to the observed exponential behaviour of the viscosity
during the glass transition.
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2. The stochastic matrix description of the growth process

Here we propose to investigate the thermodynamic properties of vitreous B2O3 using the
stochastic matrix method, introduced recently by one of the authors (Kerner [15]). This
method is more general than the previous one, using non-linear differential systems and
their singular solutions, and it is based on the assumption that the dominant phenomenon
during the glass transition is a rapid agglomeration of small clusters into bigger ones, leading
to the formation of a global random network.

During the growth through agglomeration, many complicated and competing processes
take place, but, gradually, bigger clusters and parts of the network appear everywhere.
Whatever their shape, one thing seems to be obvious: at each particular stage of their
evolution, they can be divided in two parts: therim (or theborder), composed of all of the
entities that offer a potential possibility for a new entity to stick and agglomerate, and the
bulk (or the interior)—that is, all of the units that have formed all their bonds already, as
shown in figure 1 below.

The elementary entities composing the rim are found in a finite (usually quite small)
number of geometrical situations (more or less entangled within the bulk, and offering one,
two or more possibilities for another entity to stick to). We shall call themsites, and we
shall assume that the probability of a simultaneous agglomeration of two or more atoms at
a single site is negligible.

Figure 1. A cluster composed of two types of atom. The bulk is identified as the shaded part.

While the temperature slowly decreases, the average size of the clusters grows, due to
the progressive agglomeration of new atoms that stick to the rim. After a characteristic
time τ (which, of course, depends on the physical conditions imposed on the sample and
on its composition), a new layer of atoms is created, thus transforming the probabilities of
observing various sites on the rim.

The process of growth at the rim can be described by a matrix acting on a vector. In
order to do this, the sites at the rim of a cluster are denoted by appropriate symbols and
represented as a vector whose components are the probabilities of finding a given site at the
rim of a cluster of a certain size. The matrix transforms this vector into a new one, because
the rim is changed after adding one atom to the cluster. The transformation of the rim
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depends on the site on which the new atom sticks. Now, each sticking process has a certain
probability of occurring; thus, the matrix elements contain the probabilities of transforming
each kind of site into others.

The probability factors should include two contributions:

(1) the statistical weight for each process—that is, the number of ways leading to the
same final result; and

(2) the Boltzmann factor taking into account the energy barrier to forming a certain kind
of bond.

For B2O3, the most elementary building block is a triangle, B(O1/2)3 (there is clear
experimental evidence for this fact [13]). In what follows, we shall refer to it as a ‘singlet’.

Two singlets can be connected only as a chain, called a ‘doublet’, since other ways of
connecting two units would produce a twofold ring (a dimer), which would be energetically
costly and is not seen in experiments [16]. Otherwise, it would produce in x-ray or neutron
diffraction patterns a sharp and characteristic peak, corresponding to the B–B bond length
[17]. Let us say that the energy cost of forming this chain isE1. After a doublet is produced,
two situations can occur if a new singlet is added: the newly arriving singlet can form a
longer chain (a ‘triplet’) or it can close a ring, with a different energetic cost (E2). The
agglomeration process occurs at a given temperatureT , at which the individual bonds reach
equilibrium. Therefore, we shall use the notation

e−ε = e−E1/kT

and

e−η = e−E2/kT .

A short inspection of the possible configurations at the rim of the clusters resulting
from agglomeration of the boron–oxygen singlets shows that whenever a new singlet is
coming close to the rim, it can attach itself to one of the sites presenting free valence
ions; it may encounter one of thesix situations shown in figure 1. We shall denote these
configurations byx, y, z, t , u, andw, with x meaning an isolated singlet at the rim with
only one free valence ion available,y corresponding to a singlet at the rim with two free
valence ions available,z denoting two singlets in a chain, with four valence ions, and finally
t corresponding to three singlets in a chain.

In principle we could have also considered longer chains of singlets, but this would
lead to the multiplication of sites and transitions. It can be argued that the probability of
creation of longer chains in covalent glasses is negligible, because if the contrary was the
case, it would lead to local ‘voids’ which, in turn, would create density fluctuations which
are not observed in real glasses.

The terminationsu each correspond to a free bond of a boron atom trapped in a ring,
while aw-termination corresponds to two valence ions of two different boron atoms trapped
in the same ring.

Let us assume that, at a given temperature, the hot liquid can be regarded as a mixture
of clusters of various sizes, and that the chemical interactions are largely between single
units and bigger clusters, because of the low mobility of the latter.

During a slow cooling process, a new boron–oxygen unit comes close to one of these
clusters and attaches itself to the free valence ions at the rim of the cluster, in one of thesix
ways mentioned before. We shall evaluate the evolution of the probabilitiesx, y, z, t, u, and
w as functions of the cluster size (also interpreted as the number of elementary agglomeration
steps leading to its creation).
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Figure 2. A typical cluster in B2O3 with six types of site on the rim.

Figure 3. Two examples of site-transforming transitions via the addition of one single atom to
the rim.

It should be stressed that this one-to-one agglomeration of elementary steps might not
occur in reality, and it is only useful as a mental representation. Most probably, such
singlets are rare in the liquid melt close to the glass transition temperatureTg. However,
the attribution of transition probabilities for each elementary step can be given a meaning
in the following way.

At any moment, the melt contains billions of various clusters composed ofNk atoms,
whose ‘centre of gravity’ evolves towards higher values of〈N〉 as the temperature decreases.
Consider one of these clusters, labelledC(1)Nk , belonging to the family formed by all clusters

with Nk atoms. Once the choice of this particular clusterC
(1)
Nk

has been made, consider,

among all of the clusters withNk + 1 atoms, only those which have the clusterC(1)Nk as
a sub-cluster. Depending on the particular choice (i.e. the shape and the number of free
valence ions at the rim ofC(1)Nk ), we shall have a whole spectrum of such clusters, denoted
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by Cα(N+1)k
, with α = 1, 2, . . . , L. Each of them could be produced from the clusterC

(1)
Nk

by addition of just one singlet to one particular site on the rim, although, in reality, many
different creation pathways, mostly via agglomeration of clusters of lesser dimensions, could
effectively occur.

However, if one considers the relative abundance of all possible types of cluster with
N + 1 boron atoms that could have evolved from the clusterC

(1)
Nk

, one should get the
same probability distribution as is the result of attributing appropriate Boltzmann factors
corresponding to the characteristic energies needed to create either a single O–B–O bridge,
or a boroxol ring, and containing also the statistical factors depending on the multiplicity
of a given agglomeration step.

With this in mind, it is easy to find the contributions to the probability factors of
all possible transitions. The result is given below in the form of a table in which all
transformations of sites via one elementary agglomeration step are displayed. The way to
count the multiplicities of each transition becomes clear when one looks at the examples
shown in figure 3.

Here we took into account the purely statistical factors according to the number of free
bonds and the multiplicity available for each transition, which can be quite easily found
from purely geometrical considerations, and the Boltzmann factors taking into account the
corresponding energy barriers, defined above, as follows: e−E1/kT for a simple bond, e−E2/kT

for a ring creation. The ‘table’ is as follows.

x ⇒ y: P(x, y) ∼ 3e−ε

y ⇒ z: P(y, z) ∼ 6e−ε

z⇒


y: P(z, y) ∼ 2× 3e−ε

or t : P(z, t) ∼ 6e−ε

or w: P(z,w) ∼ 12e−η

t ⇒


y + z: P1(t, y) andP(t, z) ∼ 3e−ε

or x + y: P1(t, x) andP2(t, y) ∼ 3e−ε

or y + u: P3(t, y) andP(t, u) ∼ 6e−η

or x + w: P2(t, x) andP(t, w) ∼ 12e−η

u⇒ y: P(u, y) ∼ 3e−ε

w⇒ y + u: P(w, y) andP(w, u) ∼ 6e−ε .

The factorsP(x, x), P(x, y), . . . that define the statistical weights of the transitions
resulting in the correspondingtransformations of sitescan be displayed as a 6× 6 matrix:

0 0 0 P(t, x) 0 0
P(x, y) 0 P(z, y) P (t, y) P (u, y) P (w, y)

0 P(y, z) 0 P(t, z) 0 0
0 0 P(z, t) 0 0 0
0 0 0 P(t, u) 0 P(w, u)

0 0 P(z,w) P (t, w) 0 0

 .

Note that the zeros correspond to the absence of many transitions, e.g.x ⇒ x, and
y ⇒ x. In this matrix each of the entries symbolizes the sum of all partial probabilities
whenever there is more than one pathway leading to the given configuration, e.g.P(t, x) =
P1(t, x)+ P2(t, x).
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Inserting all of the contributions, the explicit form of the matrix is
0 0 0 3e−ε + 12e−η 0 0

3e−ε 0 6e−ε 9e−ε + 6e−η 3e−ε 6e−ε

0 6e−ε 0 3e−ε 0 0
0 0 6e−ε 0 0 0
0 0 0 6e−η 0 6e−ε

0 0 12e−η 12e−η 0 0

 . (1)

Let us recall that the above matrix is supposed to act on a column vector representing
the probabilitiespx, py, pz, pt , pu, andpw satisfying the normalization conditionpx+py+
pz + pt + pu + pw = 1; and that we want to obtain a new distribution of probabilities
satisfying the same normalization condition. In order to ensure this, the sum of the entries
in each column of the above matrix must be equal to one, also. This is why one must divide
each element of a column by the sum of all of the elements of that column.

After normalization, we get the following stochastic matrix that transforms the
probabilities of finding one configuration at the rim of a cluster,(px, py, pz, pt , pu, pw) into
a new set of probabilities(p′x, p′y, p′z, p′t , p

′
u, p

′
w) after the characteristic timeτ during

which an entire new layer of atoms has been grown, withone new atom at each available
site:

M =



0 0 0
1+ 4ξ

5+ 12ξ
0 0

1 0 1
2+ 2ξ

3+ 2ξ
5+ 12ξ

1
1
2

0 1 0
1

5+ 12ξ
0 0

0 0
1

2+ 2ξ
0 0 0

0 0 0
2ξ

5+ 12ξ
0

1
2

0 0
2ξ

2+ 2ξ
4ξ

5+ 12ξ
0 0



whereξ = eε−η.

3. Mathematical analysis of the agglomeration process

Using the above matrix, the growth of clusters is modelled by the successive application of
the matrix to an arbitrary initial vectorv0. Thus, the evolution of the probabilities at the
rim after j steps is given by

vj = Mjv0. (2)

The final configuration depends only on the eigenvectors of the stochastic matrix. In order
to show this, we decompose the vectorv0 as

v0 = c1e1+ c2e2+ c3e3+ c4e4+ c5e5+ c6e6 (3)

whereei is the eigenvector ofM corresponding to the eigenvalueλi , andci is the projection
of v0 ontoei . By inserting (3) into (2) we get

vj = c1λ
j

1e1+ c2λ
j

2e2+ c3λ
j

3e3+ c4λ
j

4e4+ c5λ
j

5e5+ c6λ
j

6e6. (4)

It is easy to prove that a matrix with all of its columns normalized to one has at least one
eigenvalue equal to one, while the others can be real, complex or imaginary depending on
the values of the parameters involved. The complex eigenvalues indicate the presence of
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an oscillatory regimeof growth, usually damped by the norm of the eigenvalue, which is
always less than 1. The imaginary part can be interpreted as a circular frequency measured in
radians per unit time (i.e. the number of layers), or the real time divided by the characteristic
time τ . Due to exponential damping, only eigenvectors with norm one remain after many
applications of the stochastic matrix. If we suppose thatM has only one eigenvalue 1
(corresponding toλ1 = 1), then, in the limit of largej , vj converges to

vj = e1 = u, the eigenvector withλ1 = 1.

sincec1 = 1 due to probability conservation. Observe that this result is independent of the
initial conditions, as expected.

As a matter of fact, among the eigenvectors of a stochastic matrix, only those belonging
to the eigenvalue 1 have a trace equal to 1, whereas all other eigenvectors have null trace.
This is because, by construction, a stochastic matrix preserves the trace of a vector:

Tr(Mv) =
n∑
k=1

(Mv)k =
N∑
k=1

( n∑
i=1

Mk
i v

i

)
=

n∑
i=1

vi = Tr(v)

because
∑n

k=1M
k
i = 1 for any value ofi by definition of the stochastic matrix.

Therefore, for an eigenvectoreα corresponding to the eigenvalueλα 6= 1, we have

Tr(Meα) = Tr(λαeα) = Tr(eα) = 0 if λα 6= 0.

For the same reason, in the situation in which there is only one eigenvector with
eigenvalue 1, its trace must be equal to one if we remain in the domain of probabilistic
distributions: if we denote this vector byu, with Mu = u, and if

v = c1u+
∑
α

cαeα

with Tr(v) = 1, then obviously, because all of the vectorseα are traceless,

Tr(v) = 1= Tr

(
c1u+

n∑
k=1

cαvα

)
= c1 Tr(u) = c1

so one must havec1 = 1 independently of the initial conditions. This is why the limit after
many consecutive actions of the matrixM on any initial vectorv is always the same.

As a consequence, the evolution of the rim attains a stable statistical regime after
successive steps of growth; this regime is governed solely by the statistics represented by
the eigenvector with eigenvalue one. The eigenvector corresponding to the eigenvalue 1
determines the distribution(px, py, pz, pt , pu, pw)∞ to which the average statistic tends
asymptotically. This is also the statistics of the bulk if the clusters are really large. For
clusters of intermediate size, one should instead average over the sum of many layers. (Here
too, like in differential geometry, the surface is in some sense thedifferentialof the volume,
and the circumference is a differential of an area.)

The stochastic matrix model can in principle describe also the growth of ordered
structures. In a general case, this may occur when the stochastic matrix characterizing
the agglomeration process has a particular set of complex eigenvalues. It may happen
(if the number of sites is large enough) that among the eigenvalues there is one pair (or
more) of complex conjugate eigenvalues with absolute value 1, which can be denoted
by eiω and e−iω. Then, in a real basis, one will observe asymptotic rotation around the
unit eigenvector, without damping: when all other components are squeezed because the
corresponding eigenvalues have a negative real part, the action of the matrixM becomes as
follows:

Mv = M(u+ c1e1+ c2e2) = u+ c1 cosωe1+ c2 sinωe2.
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The circular frequencyω, like all of the other eigenvalues, is a function of the
temperature and the characteristic energiesE1 and E2. In more complicated models it
may also depend on the concentration of various modifiers, and other parameters. Ifω is an
arbitrary real number incommensurate withπ , the consecutive positions of vectors obtained
from the initial one afterk steps,M(k)v0, will densely cover a circle around the axis given
by the unit vectoru. This behaviour can be called ‘chaotic’. But it may happen (for a
precise choice of values of the essential parameters, and in particular for a precise value of
the temperatureT ) thatω is equal to 2π/n, with an integer (and not too large) value ofn.
Then one will observe a periodic repetition of the same sequence of several configurations,
characteristic for a crystalline state.

4. The characteristic energy and statistics of boroxol rings

In our statistical model for the B2O3 glass, the only free parameter isξ , or the excess free
energy when closing a ring(E1− E2) = kT ln (ξ) = F .

In order to fix this parameter, we shall study the behaviour of the internal energyU , and
the specific heat,cp, near the glass transition temperature. We shall take this temperature
from experiment.

The internal energy of the glass is obtained by observing that, in the rim, the average
potential energy involved in the growing process is simply the probability of forming a new
bond on a certain kind of site multiplied by the energetic cost of this. Each time a boroxol
ring is created, there is an energy cost given byE2, while adding a bond to create a chain
costs an energyE1. There is also a contribution from the kinetic energy, which contributes
3kT /2. Thus, if we neglect other contributions like rotational or vibrational modes, the
energetic cost of the agglomeration at thej th rim (UR(j)) is

UR(j) = 3kT

2
+ E2P

j

B(T )+ E1(1− P jB(T ))

whereP jB(T ) is the probability of forming a ring when passing from thej th layer to the
(j + 1)th one, and is simply given by counting the proportion of rings that were formed
between the stepj and the stepj + 1. This information is encoded in the matrix as the
probability of the processeszj → wj+1 and tj → uj+1, wj+1, so

P
j

B(T ) = pzj (M63)+ ptj (M54+M64).

Now, the internal energy is an extensive parameter, and the total energy afterN steps of
growth is the sum of the energy in each layer of growth:

U(T ) = 3NkT

2
+ E1N + (E2− E1)

N∑
j=1

P
j

B(T ). (5)

The specific heat is obtained by taking the derivative ofU with respect to the temperature:

cp(T ) = 3Nk

2
+ (E2− E1)

N∑
j=1

dP jB(T )

dT
(6)

and if we calculatecp(T ) for a large number of steps of growth, thenPB(T ) can be replaced
by its limit value in the stationary regime:

cp(T ) = 3Nk

2
+ (E2− E1)N

dP∞B (T )
dT

. (7)
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In glasses, it is generally observed that there is an inflexion point and a precipitous decrease
in the heat capacity [18] at the glass transition temperature (Tg). Then, we will demand that
∂2cp(T )/∂T

2 must be zero atTg:

∂2

∂2T

[
cp(T )

]
T=Tg = 0

and by using (7) we get

d3

d3T

[
P∞B (T )

]
T=Tg = 0. (8)

The latter condition fixes the parameterξ at Tg, and this quantity is well known from
various experiments to vary fromTg = 470 K to 530 K [19]. ForTg = 470 K, we have
found that condition (8) is satisfied for two values; one of these is

E1− E2 = 0.214 eV= 4.927 kcal mol−1.

and the other one is

E1− E2 = 0.068 eV= 1.566 kcal mol−1.

However, only one of these values corresponds to the real glass. When using the second
value to draw the specific heat versus temperature curve, the first inflexion point that appears
as one raises the temperature from zero occurs at a temperature much lower thanTg = 470 K.
Only the first energy difference leads to the correct behaviour ofcp(T ). In figure 4 we show
the contribution tocp coming from the second term in (7) using an energy difference of
0.214 eV.

Figure 4. The specific heat as a function ofT .
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Another fit is possible whenTg = 530 K, which gives

E1− E2 = 0.242 eV= 5.572 kcal mol−1.

These values are very close to other estimates found in the literature. Walrafen and co-
workers [19] have found 5.0± 0.04 kcal mol−1, obtained from experimental data. Snyder
[20] estimated 6.0 kcal mol−1, on the basis ofab initio quantum mechanical calculations.

After the energy difference(E1 − E2) is fixed, we can calculate the fraction of boron
atoms in the glass that are contained in boroxol rings (FB = NB/NT ). At this point, we
must remember that, in principle, the evolution of the vectorvj only gives information on
the evolution of the probabilities on the rim, while the fractionFB is a property of the bulk.

However, this bulk is formed by the addition of consecutive layers. Therefore, by
adding the number of atoms that are trapped into boroxol rings in each step of growth we
can findNB . Still, another problem remains to be solved. The creation of a ring needs
three steps of agglomeration. Then, to decide whether an atom is inside a boroxol ring, we
must consider more than one step of agglomeration.

This counting can be achieved in the following way. We can count the number of rings
that are closed in thej th step (au-site contributes one atom, and aw-site contributes two)
and consider that the sites that are contained in the chains of the typey andt can be trapped
into a boroxol ring of the next generation, which is given by the probability of the processes
zj → wj+1 andtj → uj+1, wj+1. Using these criteria, the number of atoms in boroxol rings
in the j th step is

N
j

B = ui + wj + 2zj (M63)+ 2ti(M54+M64).

To calculate the fraction of atoms inside boroxol rings (FB), we must divideNj

B by the
total number of atoms that are at the rim(NT ), which can be evaluated as the sum of the
probabilities of all kinds of site, weighted by the corresponding number of atoms with free
bonds. Thus we get

FB = uj + wj + 2zj (M63)+ 2tj (M54+M64)

xj + yj + 2zj + 3tj + uj + 2wj
. (9)

In figure 5 we show the evolution ofFB as a function of the number of elementary steps
of growth, with the energy difference fixed atE1 − E2 = 0.214 eV for two different
(arbitrarily chosen) initial conditions. Note that, as predicted, some damped oscillations are
clearly visible at the initial stages, but they rapidly disappear after the system reaches the
stationary regime, a few steps later.

This is important because it tells us that the final structure of the glass is determined
just by few local configurations of a very small size. This explains the lack of long-range
correlations in a glass, and also justifies the notion of medium-range order introduced by
Galeener [1].

Notice also that the oscillations present a period of roughly three steps. This is due to
the fact that for completing one boroxol ring, at least three steps of growth are necessary.
Then, if the initial configuration is only a cluster withx- andy-terminations, the rings appear
after three steps. But after completing most of the rings, the number of chains that can give
new rings is reduced, so the formation of rings is inhibited again for three generations, and
so on.

The stationary value is near 80% of boron atoms trapped in boroxol rings. This number
can be obtained more exactly if we use the eigenvectore1 = u, which is the only one that
remains at the end.

After many steps of agglomeration, the value ofFB is given by the asymptotic expression

FB = F∞B (10)
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Figure 5. Two examples of the evolution ofNk
B for two different sets of initial conditions.

whereF∞B is obtained by substituting the components of the eigenvector with eigenvalue
one into (9). In this model, the eigenvector is

e1 = 1

84ξ2+ 107ξ + 25


1+ 4ξ

24ξ2+ 34ξ + 9
24ξ2+ 34ξ + 10

12ξ + 5
3ξ(4ξ + 3)
2ξ(12ξ + 7)

 .

Inserting the valuesE1 − E2 = 0.21 eV andTg = 470 K into the last expression and
substituting in (10) we get thatF = 81.3%. This result is in very good agreement with
other theoretical and experimental results like the 83% proposed by Jellisonet al [21], 80%
proposed by Hannonet al [22] and 84% proposed by Micoulautet al [13].

In the case of B2O3, we can observe this phenomenon in an approximate way if we
exclude the formation of boroxol rings. This is equivalent to a reduction of the dimension
of probabilistic vectors and the stochastic matrix, leaving only the variablespy, pz, andpt ,
because without any rings the site ‘x’ will never appear. With this assumption the stochastic
matrix becomes 0 1

2
3
4

1 0 1
4

0 1
2 0


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and has one eigenvalue 1 and two complex conjugate eigenvalues:

λ1,2 = −1

2
± i

2
√

2
.

This does not lead to periodicity, because the angle is incommensurate withπ and the
damping factor is quite important. But we observe a periodic behaviour in the simplified
case with the variablept suppressed, too. Then the matrix reduces to(

0 1
1 0

)
which corresponds to the periodic exchange of all the sitesy transforming into sitesz, and
vice versa. Similar oscillating behaviour may be expected in the case in which two or
more eigenvectors of eigenvalue 1 are present, and the repeated action of the corresponding
stochastic matrix amounts to the consecutive oscillations of the probability vector between
these two (or more) eigenvectors.

In any case, in order to describe a genuine crystallization process, one must go much
further, introducing more types of site, which would eventually contain elementary cells
that can generate a crystalline state via translation symmetry.

5. The characteristic exponentσ and the glass transition

The two- or three-dimensional character of the growth enables us to address more pertinent
questions to which this model can give, at least, qualitative answers. For example, it is
interesting to follow the time development of the average density of free bonds on the
surface of growing clusters. In our model only the adjunction of boron atoms in chains
leads toonenew bond in the rim, whereas when a boron atom closes a ring, the number of
free bonds is reduced by one.

If at a given momenttj , the number of free bonds on the surface layer of a cluster was
Nf (tj ), on the next layer produced after the characteristic time interval1t , the number of
free bondsNf (tj+1) = Nf (tj +1t) is computed as follows:

Nf (tj+1) = Nf (tj +1t) = Nf (tj )+Nf (tj )(1− P (1)B (T ))−Nf (tj )P (j)B (T ) (11)

because each time one of the sitesx, y, z or t is produced by adjunction of a new singlet
B(O1/2)3, the number of free (dangling) bonds increases by one. The overall probability
for one of these transformations to occur at the rims of huge clusters is proportional to
1− P∞B (T ), and the total number of newly created dangling bonds at the rim is therefore
Nf (t)[1− P∞B (T )].

Similarly, each time a boroxol ring is closed on the rim, the number of free bonds
decreasesby 1, which is taken into account by the term−Nf (t)P∞B (T ).

Developing the differenceNf (t + 1t) − Nf (t) in a Taylor series, one can write, up
to first order in1t , and definingσ as the characteristic exponent of the growth (since the
number of dangling bonds grows with the timet like tσ ):

σ = d lnNf (t)

dt
1t = d lnNf

ds
= 1− 2P∞B (T ) (12)

where we have introduced the dimensionless derivative d/ds = 1t d/dt (with respect
to the dimensionless parameters, i.e. the ‘number of steps’ of agglomeration, each step
representing a new layer added to an average cluster).

The characteristic exponentσ defined above is positive when the number of free bonds
is increasing, and negative otherwise. If the growth is supposed to follow a steady rate (on
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average, one new layer after time1t), then in two dimensions the circumference should
grow proportionally tot , while in three dimensions the surface grows roughly ast2, the
characteristic exponents being 1 and 2, respectively. This is why we define thefractal
dimensionof the network asdF = σ + 1.

It is obvious that in three dimensionsdF should be close to 2, because in the case
where it becomes too low (i.e. whenσ → 0) the density of dangling bonds on the surface
of clusters in the process of forming will rapidly decrease, so only thin filaments will
remain, thus creating voids in the structure which are not observed in real glasses whose
homogeneity attains the molecular level.

If dF becomes higher than 2, then the density of free bonds on the surface of growing
clusters will grow too rapidly, until they become so entangled that further growth becomes
impossible, or new bigger rings must be created, which also should not happen in good
glass formers.

For the B2O3 glass, just before one reachesTg, the characteristic exponent has the
constant value 0.43, which corresponds to the fractal dimension 1.43. We also note that the
expression for the characteristic exponent is similar to the contribution of the energy stored
in the B–O–B-bridges and boroxol rings to the internal energy of the glass; it only differs
by a constant factor. Let us evaluate first the particular contribution to the internal energy,
UB(T ), coming from the bond creation processes as a function ofσ . According to (5) and
(12), the energy stored inN bonds during the agglomeration process is given by

UB(T ) = E1− E2

2
Nσ + E1+ E2

2
N. (13)

By taking the derivative of equation (13) with respect to temperature, one gets an expression
for the specific heat as a function ofσ :

cp = 3

2
Nk + E1− E2

2
N

dσ

dT
. (14)

Thus, the curve describing the behaviour of dNf /dt is the primitive function ofcp, as
is shown in figure 6 below.

From the last equation, it is clear that the derivative of the exponent with respect to
the temperature has an inflexion point atTg, and it also must display a rapid increase for
T > Tg. The fractal dimension follows exactly the same behaviour, since the derivatives of
σ anddf with respect to the temperature are equal. Thus, according to equation (14), the
jump of the heat capacity atTg when the temperature is decreasing yields a rapid decrease
of the fractal dimension of the lattice. Furthermore, the shape of the curve ofUB(T ) is
similar to the one observed for the specific volume [18]V ∗/N = 1/ρ, since in it there is
an abrupt change of the derivative atTg.

The behaviour of the average number of free valencies at the rim of the clusters is crucial
for a better understanding of the behaviour of the viscosity during the glass transition, which
is well described by an Arrhenius law for B2O3 [23]. In fact, this average number is crucial
for the mechanical interaction between the clusters, which determines the shear viscosity.

In a first approximation, we can consider that the main contribution to this quantity is
the average force with which a cluster belonging to an infinitesimally thin layer of the melt
acts on another cluster belonging to a thin layer next to it. This force is proportional to the
sum of elementary forces created between the free bonds at the rims of both clusters, which
should be proportional to thesquareof the average number of free bonds at the rim of an
average cluster:η ∼ N2.

The Arrhenius behaviour of the shear viscosity (and also of the bulk viscosity, which
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Figure 6. The curve for dNf /dt as a function ofT .

in covalent glasses is of the same order of magnitude) reads

η(T ) = η0eA/kT (15)

whereA is often called theapparent activation energyneeded to break the covalent bonds
in order to make the thermally activated atomic diffusion possible. In the group of strong
covalent glasses (following Angell’s definition [23]) to which B2O3 glass belongs (together
with SiO2 and GeO2 glasses and most of the covalently bonded glass systems), the Arrhenius
law for the viscosity is quite well satisfied, i.e. in the vicinity of the glass transition
temperatureTg the logarithm of the viscosity (measured in poise) is a linear function of
Tg/T , with the coefficient close to 20:

log(η) ' log(η0)+ 20(Tg/T )

with log(η0) of the order of 1013, which means that when the temperatureT decreases from
2Tg to Tg, the viscosity increases by the factor of 1010. Also the activation energyA can
be evaluated as being roughly equal toA ' 20kTg.

This suggests what the explicit dependence ofN on the temperatureT looks like, when
one takes into account large timescales, neglected in the first approximation that we have
used previously.

6. Conclusions

We have shown how with a few simple assumptions one can reproduce the most striking
features of the glass transition process for the particular example of B2O3 glass. We have
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obtained the energy of creation of a boroxol ring and the fraction of boron atoms trapped in
boroxol rings. The numerical values are comparable with those obtained from experiments
and various other models.

We have also deduced the characteristic behaviour of the internal energy and the specific
heat. This and other thermodynamical quantities can be written in terms of the so-called
characteristic exponent of growth (σ ), which is related to the density of free bonds on the
growing surface. In some sense,σ can be considered as an order parameter for the glass
transition.

An important point to be stressed is that the method shows how very short correlations
can lead to intermediate short-range order. This gives validity to calculations done with
few atoms [13], although it opposes the concept of a phase-space landscape in which the
glass is trapped in a metastable state.

Most of the ideas and methods presented in this article can be applied to other non-
crystalline materials such as covalent network glasses (GexSe1−x , As2Se3, etc), and also
to other forms of condensed matter—for example, nanotubules, microclusters—and other
types of material which will be given attention in forthcoming papers.
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