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Abstract. The density of states of a tight-binding Hamiltonian on a two-dimensional quasi-
periodic lattice (the Penrose tiling) is studied in terms of the first spectral moments. This approach
shows that there is a tendency for a depletion of the local density of states at certain sites of the
lattice, and a progressive localization of states at the centre of the spectrum. The effect of different
kinds of phason flips in the first moments is also studied.

1. Introduction

Since the discovery of quasicrystals in 1984 [1], it has been clear that they are a new type
of structure with a peculiar kind of order: despite lacking translational periodic order, the
positions of the atoms are precisely determined. In view of this new class of long-range order,
interesting physical properties of these materials were expected.

In the last few years, with the advent of high-quality quasicrystalline samples, there has
been found clear evidence that quasicrystals have singular electronic properties. They have
abnormally high electrical resistivity [2], and the conductivity is improved by the introduction
of impurities and structural defects and by increasing the temperature [3]. Also, the appearance
of a pseudo-gap at the Fermi level seems to be a universal feature of quasicrystals [4]. This
is a very important fact, because it leads to a Hume-Rothery mechanism for the structure
stabilization [5,6].

Some of these questions will be cleared up if we achieve a full understanding of QP Hamil-
tonians [7]. However, only for one-dimensional lattices are the nature of the spectrum and the
localization properties of the wave-function well understood. For these systems, the spectrum
is singular continuous [8, 9], and the eigenstates are critical; these are non-normalizable self-
similar wave-functions with a power-law decay of the amplitude [7, 10]. For two and three
dimensions, the nature of the spectrum is still an open question, although there have been a lot
of numerical calculations made with the aim of elucidating this question [11–13].

In two and three dimensions, studies of the electronic structure in QP lattices are usually
based on a tight-binding model. For such QP lattices, the Penrose tiling (PT) has been
the most popular system, since it is the lowest-dimensional model with topological quasi-
periodicity [7]. This QP topology of the PT makes it very different from one-dimensional
lattices, since it contains new mechanisms that do not appear in one-dimensional lattices, like
frustration of wave-functions in odd rings, which can affect their localization properties at
different energies [13].
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In the PT, two kinds of models can be defined: the vertex model, where the atomic
orbitals are placed on the vertices of the tiles that define the lattice, and the centre model,
where the orbitals are at the centres of the tiles. In both cases, an electron can only hop
between neighbouring orbitals. This leads to the following Hamiltonian:

H =
∑
i,j

|i〉〈j |. (1)

For these two models, the first numerical calculations for a tight-binding Hamiltonian showed
that three kinds of wave-functions coexist: extended, localized and critical [11]. It was further
shown numerically that the decay of the wave-functions follows a power law with a multi-
fractal structure [7, 12]. This decay is due to the competition between two mechanisms: on
one hand, Conway’s theorem tends to delocalize states since it causes resonances between
equivalent local configurations [7] (Conway’s theorem states that the distance between two
identical local configuration of radiusR in a PT is at most 4R). On the other hand, the dense
Bragg spots in the reciprocal space of a QC imply localization, since an unperturbed Bloch
function will be hybridized with a number of wave-functions with various momenta owing
to the potential scattering [7]. More recently, this scenario was confirmed at least for some
states by Repetowiczet al [14], who found exact critical states in the PT for certain energies
by following previous work of Sutherland [15]. However, it is also known that there are
strictly localized states, since they have amplitude in certain regions of the tiling, and zero
outside. These states are calledconfined[16]; they are infinitely degenerate and correspond
to particular values of the energy. These states occur as a consequence of the local topology
of the lattice [17], and are separated from the rest of the spectrum by an energy gap [13, 16].
Observe that one must be careful about the nature of these states, since due to their degeneracy,
any linear combination of them is also an eigenstate, and these linear combinations may be
extended, although they are called confined in the literature [16].

In the vertex problem, this gap and the confined states appear at the centre of the spectrum,
E = 0, which also serves as a symmetry axis for the electronic spectrum (this symmetry is
due to the bipartite property of the lattice, i.e., it can be subdivided into two alternating sub-
lattices, say A and B, and an electron can only hop from an A site onto a B site or back). An
interesting point about the whole structure of this spectrum is the fact that the states tend to be
more localized at the centre of the spectrum [12,13,18], in contrast to Anderson localization,
where the states are localized at the tails of the band edges. Furthermore, this localization
produces a strong multi-fractal behaviour on changing the energy from the band edges to the
band centre [12]. As was observed numerically [13], the tendency is for the states to localize in
a similar way to confined states, i.e., the sites with a high coordination number have a vanishing
LDOS as we approachE = 0 [13].

Another interesting question is the effect of disorder on the electronic properties of a
quasiperiodic lattice. In particular, quasicrystals present defects that are local rearrangments
of tilings. These defects are called phasons, since they are extra hydrodynamic modes which
appear as a consequence of a broken symmetry in the higher-dimensional space that is assoc-
iated with a quasicrystal. In one dimension, it was found that phasons can change in a
substantial way the spectrum of quasiperiodic systems, due to the self-similar structure of
the gaps [19, 20]. Furthermore, phasons can change the energy-level-spacing distribution
by diminishing the tendency of clustering observed in one-dimensional quasicrystals, since
localized states appear over all of the original self-similar spectral gaps [20]. For two-
dimensional tilings, a similar global change of the level statistics with phason disorder has
been reported [21]. However, there are new results which suggest that this was an artifact
of a hidden symmetry, because the appropriate level statistics for such two-dimensional
systems is universal, and corresponds to the Gaussian orthogonal ensemble of random-matrix
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theory [22, 23]. For the PT, a numerical study showed that phasons enhance localization at
some energies, and the conductance decreases, while they increase conductance at the original
energy gaps [24]. Schwabe, Kasner and Böttger considered the effect of each of the seven
possible phason flips in the PT [25]. They found a localized state in the defect region, and
a smoothing out of the DOS with very strong fluctuations of the conductance in most of the
energy regions, but the strength of this effect depends strongly on the type of flips [25]. As we
will show, these differences are due to the local topology of each kind of phason.

The aim of this article is to show that the depletion of the LDOS at the high-coordination
sites, and the tendency for the wave-function to avoid sites of high coordination numbers, can
be explained in terms of the local topology of the PT. To prove this point, in section 2 we
evaluate the first spectral moments of a PT using the Cyrot-Lackmann theorem [26], which
relates the LDOS to the topology of the local atomic environment. In section 3 we study the
effect of phason disorder on this tendency for depletion of the LDOS, and finally, in section 4
the conclusions are given.

2. Spectral moments of a Penrose tiling

In this section, we investigate the spectral moments of the vertex model in a PT, and the
information that they give about the spectrum. We start by defining the moment of ordern for
a tight-binding Hamiltonian [27]:

µ
(n)
i =

∫ ∞
−∞
(E −Hii)nρi(E) dE (2)

whereρi(E) is the local density of states at sitei. The momentµ(0)i is always one, owing to
the normalization condition of the basis (〈i|i〉 = 1). The first moment,µ(1)i , is the centre of
gravity of the LDOS, which in this case is the centre of the spectrum relative toHii . In the
vertex problem for the PT, all the self-energies are set to zero (Hii = 0), and thus the centre
of gravity of the spectrum isE = 0. The next moment,µ(2)i , is a measure of the ‘moment of
inertia’ of the LDOS with the centre of gravity. The third moment,µ

(3)
i , measures the skewness

about the centre of gravity. The fourth moment measures the tendency for depletion of the
LDOS at the middle of the spectrum [27]. A low value of the normalized fourth moment,
µ
(4)
i /(µ

(2)
i )

2, corresponds to two well separated peaks in the LDOS; this behaviour is called
bimodal, whereas a large value corresponds to a central peak or unimodal behaviour [27]. In
fact, a precise criterion can be given to discriminate between unimodal and bimodal forms of
the LDOS. This criterion is as follows. We first calculate the dimensionless parametersi ,

si = µ
(4)
i µ

(2)
i − (µ(2)i )3− (µ(3)i )2

(µ
(2)
i )

3
. (3)

If s > 1 we have unimodal behaviour, while fors < 1 we have bimodal behaviour [27]. This
parameters is the one that we are going to obtain for the PT, in order to discern the tendency for
a gap opening at the middle of the spectrum (for example, a square lattice, which is unimodal
with a Van Hove singularity atE = 0, givess = 1.25, while a honeycomb lattice, which has
a vanishing LDOS atE = 0, givess = 0.67).

In principle, one can express the LDOS using the moments of the spectrum. However,
in practice one needs to know all the moments up to infinity [28], since the corresponding
expression for obtaining the LDOS converges very slowly. Due to this, in this article we will
find the second and fourth moments because they are the ones that give most of the information
about the overall shape of the spectrum.
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A useful way to obtain the firsts moments needed in equation (3) is to use the Cyrot-
Lackmann theorem, which states that the moment of ordern is given by [26]

µ
(n)
i = 〈i|Hn|i〉. (4)

which is the sum of all possible paths of length-n hops, starting and ending at sitei.
The second moment is always equal to the local coordination at the site (Zi):

µ
(2)
i = Zi. (5)

In the PT,Zi can be 3, 4, 5, 6 and 7, depending on the type of vertex; these are labelled as
Q, D, K, S5, J, S, S6 and S3 [29], as shown in figure 1. These different types of vertices that
appear in the PT are also displayed in table 1 (denoted byγ ), with their respective coordination
numbers and frequencies (P(γ )) in the lattice. From this table, it is clear that the sites with
lower coordination Q and D have narrower LDOS than those with higher coordination, S3 and
S4, as was observed in numerical calculations [13]. Using the LDOS, we can also obtain the
complete density of states (DOS) since it corresponds to the sum of the LDOS at all sites.
Thus, the second moment of the DOS is the sum of all the second moments of the LDOS:

µ(2) =
∑
i

µ
(2)
i . (6)

For quasiperiodic lattices, the sum that appears above can be substituted for with a sum over
the different kind of sites, multiplied by the probability of occurrence of each kind of site,
which leads to

µ(2) =
∑
γ

P (γ )Zγ = 〈Z〉 (7)

where〈Z〉 is theaverage coordination numberof the lattice. In a PT,〈Z〉 is 4. This number is a
good estimate of the bandwidth, which is nearly 4.23 in the PT [16] (a much better estimate [13]
is the square root of〈Z2〉).

S

S
K

5

S
S4

J

D
Q

3

Figure 1. Different vertex configurations that appear in the PT, with their corresponding labels.

The third moment is given by the number of all closed paths of length-3 hops. However,
since the lattice is composed of rhombi, with interaction only along their edges, there are no
paths of this type. Thus,µ(3) is zero. This is always true for any odd moment, and as a result
the whole spectrum is symmetric aroundE = 0. Observe that this fact is related to the bipartite
nature of the lattice, since a lattice formed by rhombi is always bipartite.

To obtain the fourth moment, we observe that at a typical site of the PT, there are three
kinds of closed paths of fourth hops, as shown in figure 2.
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Table 1. Parameters.

Vertex (γ ) Zγ P (γ ) Neighbours (c) P(γ, c) NT SP (γ, c) µ
(4)
γ,c 〈Zγ,c〉 sγ,c 〈sγ 〉

Q 3 1/τ4a
S3, 2J 1/τ2 14 29 5.67 2.22
S4, 2J 1/τ3 13 28 5.33 2.11 2.20

D 3 1/τ2 S,S3, J 2/τ4 14 29 5.66 2.22 2.10
S, 2J 1/τ3 12 27 5.00 2.0
K,S4, J 2/τ5 12 27 5.00 2.0
K,S3, J 2/τ4 13 28 5.33 2.11

K 4 1/τ5 2D, 2J 1 12 36 4.00 1.25 1.25

S5 5 (3− τ)/5τ6 5J 1 20 55 5.00 1.20 1.20

J 5 1/τ3 2K, 2D,S3 1/τ3 16 51 4.20 1.04 0.95
Q,K, 2D,S4 2/τ4 14 49 3.80 0.52
2Q, 2D,S4 1/τ4 13 48 3.60 0.48
2Q, 2D,S5 5/τ3(1 + τ2) 12 47 3.40 0.44

S 5 (2 + τ)/5τ6 5D 1 10 45 3.00 0.80 0.80

S4 6 1/τ7 Q, 2D, 3J 1 18 66 4.00 0.83 0.83

S3 7 1/τ6 2Q, 4D, J 1 16 79 3.28 0.61 0.61

a τ is the golden section(1 +
√

5)/2.

a) b)

c)

Figure 2. The three different kinds of paths that contribute to the fourth moment: (a) revisiting
paths (RVP), (b) loop paths (LP) and (c) paths with three sites, non-revisiting with no loops (TSP).

In the first kind (figure 2(a)), the electron starts at the vertexγ , and hops to one of its
neighboursj , and again hops to the original vertex. Then it can hop again to a neighbouring
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site. We will call this type revisiting paths (RVP). The number of these paths is onlyZ2
γ ,

because the first and third jumps can be made inZγ ways, while the second and fourth are
determined by the condition of revisiting the original site.

The second kind of paths are those that follow the edges of the rhombi that have the vertex
γ as one corner (figure 2(b)). We call these paths loops (LP). The number of these paths is 2Zγ ,
because there areZγ rhombi that haveγ as a corner, and there are two senses of circulation in
each rhombus.

Finally, the third contribution comes from paths that visit once the second neighbours of
the original site but do not form a loop (figure 2(c)). We will refer to these paths as three-
site non-revisiting with no loops (TSP). The number of these paths (NTSP ) depends on the
distribution and coordination of the neighbours of the site. Observe that given a certain kind
of vertexγ , there are different configurations of neighbours, each of them with a different
frequency. If we call a given configuration of site neighboursc, the number of TS paths
(NTSP (γ, c)) is

NTSP (γ, c) =
Zγ∑
σ=1

(Zσ − 1) (8)

whereZσ is the coordination of each of theZγ neighbours. For example, a three-coordinated
Q site has two kinds of surrounding configurations. The first has two J sites and one S4,
which gives 13 TSP paths. The other has two J sites and one S3, to give 14 paths. The first
configuration occurs with a frequency(1/τ 3) = 0.23 around a Q site, while the other has a
frequency(1/τ 4) = 0.76.

The fourth moment in a site of typeγ , with a surrounding configuration of sitesc, is given
by the sum of the three kinds of paths (RVP, LP and TSP):

µ(4)γ,c = Z2
γ + 2Zγ +

Zγ∑
σ=1

(Zσ − 1). (9)

Finally, the parametersγ,c is obtained when equation (9) and equation (5) are substituted
into equation (3):

sγ,c = 1

Zγ

(
1 +

1

Zγ

Zγ∑
σ=1

Zσ

)
= 1

Zγ
+
〈Zγ,c〉
Zγ

(10)

where we have defined〈Zγ,c〉 as the average coordination number, for a given configuration
c, of the neighbours ofγ :

〈Zγ,c〉 = 1

Zγ

Zγ∑
σ=1

Zσ . (11)

Equation (11) shows thatsγ,c has two contributions: one is proportional to the inverse of
Zγ , and the other is the ratio between the average coordination number of the neighbours and
the coordination of the given site.

For comparison proposes, we can define an average parameter〈sγ 〉 for each kind of site,
by taking the average oversγ for all the possible neighbour configurations:

〈sγ 〉 =
∑
c

P (γ, c)sγ,c (12)

whereP(γ, c) is the probability of observing the configurationc of neighbours ofγ .
In table 1 we show, in the first three columns, the different kinds of vertices that appear in

the PT with their corresponding coordination and frequencies. The following columns contain
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the corresponding allowed configurations of neighbouring vertices for each kind of vertex,
and their frequencies. We also include the number of TSP (NTSP (γ, c)), the fourth moment
and the average coordination number for each configuration of neighbours. Finally, using
equation (10), the parametersγ,c can be calculated for each configuration, and the average〈s〉
is also shown.

From table 1, we observe that the LDOS is unimodal for sites of type Q,D,K and S5,
while for J,S,S4 and S3 sites it is bimodal. As is clearly seen, sites with higher coordination
numbers have a bimodal character, i.e., there is a tendency for a depletion of the LDOS at the
middle of the spectrum.

This fact can be explained if we observe that in equation (10), the condition for the
depletion of the LDOS (s < 1) can be recast as

Zγ > 〈Zγ,c〉 + 1. (13)

In a PT, the last condition holds for higher coordination numbers because these sites are always
surrounded by sites of lower coordination. For example, from table 1, we can see that a site S3

always has six vertices with coordination 3, and one vertex with coordination 6 as neighbours,
to give an average of 3.28. The reverse is true for lower-coordination sites, since they are
surrounded by sites with higher coordination numbers. Thus, sites of lower coordination
have a unimodal LDOS. This fact is a consequence of the local deviations of the statistics
of vertices, which has 4 as the average coordination number. Furthermore, if we make the
rough assumption that〈Zγ,c〉 is nearly equal to the average coordination number of the whole
lattice, 4, then from equation (13) we get thatZγ > 5, as is observed for the lattice. Sites with
coordination 5 are the exception. An S5 site is unimodal because it is surrounded only by sites
of coordination 5, and a J site with 2K, 2D and S3 as neighbours is also unimodal. Other sites
with coordination 5 are bimodal.

An interesting observation is that in the PT, all non-three-site vertices are connected in
lines (called strings) which divide the complete lattices into independent parts [16]. These
parts contain only three-edge vertices (notice that these strings can be closed lines, and thus
they are not the same regions that define the worms [30]). These strings are the same as those
that confine inside them all eigenstates atE = 0, where it is known that the amplitude of the
wave-function is always zero in the string (except at the S5 and J sites with 2K, 2D and S3 as
neighbours, which are the same exceptions as we found [31]). The present results suggest that
the wave-functions at the centre of the spectrum have a similar distribution of amplitudes to
those atE = 0, since the LDOS is given by

ρi(E) =
∑
α

δ(E − Eα)‖〈i|α〉‖2 (14)

whereEα is an eigenvalue, and thus we expect a reduction of the amplitude for sites where
ρi(E) is small. Notice that the other factorδ(E − Eα) is not responsible for the lowering of
the LDOS, since there are states close toE = 0, as is indicated by the fact that the LDOS is
high for lower-coordination sites. This analysis is consistent with the observed tendency for
a strong localization [12], and the reduction in the participation ratio of the wave-function for
high coordination numbers at the centre of the spectrum [13].

It is important to remark that confined states atE = 0 do not make any contribution to
the moments of the spectrum, since they are at the centre of gravity. However, they have
an indirect impact on the LDOS, since they can reduce the relative weight of the states with
E 6= 0. In the case of sites with coordination different from 3, there is no impact, since those
sites are forbidden for states withE = 0. The only allowed sites for states atE = 0 are
three-coordinated sites. We can exclude these states in order to obtain the overall shape of the
LDOS, if we assume that the fraction of states atE = 0 is known. For doing this, we define
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a new LDOS at three-coordinated sites (ρ∗i (E)) which excludes the delta function atE = 0.
This LDOS is a scaled version of the original LDOS,ρ∗i (E) = λρi(E), whereλ is equal to
(1− f0)

−1, andf0 is the fraction of states atE = 0. The new LDOS satisfies the following
condition:

2 lim
ε→0

∫ ε

−∞
ρ∗i (E) dE = 1. (15)

The moments ofρ∗i (E) are also a scaled version of the original moments, i.e.,µ
∗(n)
i = λµ(n)i .

The corresponding parameters∗ of ρ∗i (E) is given by

s∗ = s + 1

λ
− 1= (1− f0)(s + 1)− 1. (16)

Sincef0 is nearly 1/10 in the PT [13], we obtain that the unimodality of three-coordinated
sites is reduced when we exclude states atE = 0.

3. Spectral moments of the tiling with phason flips

In a PT, a phason flip consists in a rearrangment of three tiles, and can be made only at a Q or
D vertex, as shown in figure 3. According to table 1, there are two different configurations of
first neighbours for a Q vertex and four for D. This gives six different kind of flips. However,
in the hexagon that contains a Q vertex, one of the vertices can be an S site or an S4. This
fact leads to the seven different types of flips considered by Schwabeet al. In order to label
all the possible flips, we followed the scheme of Schwabeet al, as shown in figure 3. The
labels can also be found in table 2, where (a), (b), (c), (d), (e), (f ) and (g) denote the possible
neighbouring configurations of a Q and D vertex. The effect on the first moments of the
LDOS of the phason flips can be obtained by counting the new number of paths produced
by each kind of flip. The sites affected by these changes are the Q or D sites where phasons

d)

c)

e)

g)

f)

a)

b)

Figure 3. The seven kinds of flip that can be made in a PT, with their corresponding labels. The
hexagons that surround the phason flips are shown with bold lines, and the new configurations that
appear after the flip are shown with dotted lines. In the bottom left corner of the figure, the circles
correspond to the sites that can change their second or/and fourth moment after a phason flip is
applied in their neighbourhood.
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Table 2. Phason flips.

Vertex Flip label Neighbours 〈Z′γ,c〉 s′

Q (a) S3, 2J 4.67 1.89
(b) S3, 2J 5.0 2.0
(c) S4, 2J 4.67 1.89

D (d) S, 2J 4.33 1.78
(e) S,S3, J 4.0 1.67
(f ) K ,S3, J 4.67 1.89
(g) K,S4, J 4.67 1.89

are made, the sites that form the hexagon that contains the three-coordinated sites and the
sites that are first neighbours of the hexagon. These three kinds of vertices that are in the
neighbourhood of a phason flip are shown with dashed, black and grey circles in figure 3,
respectively.

First we will consider the effect on the Q or D vertex where the phason is made. In this
case, after a flip is performed, the first neighbours of a Q or Dchange, but since the coordination
number remains constant, the second moment is the same as before. However, the new average
coordination of the neighbours〈Z′γ,c〉 is decreased, and thus the unimodality of the spectrum
is also slightly decreased, as can be seen in the corresponding new parameters ′ that appears
in the last column of table 2. A comparison with table 1 shows that phasons of type (a) and
(e) have a greater impact on the LDOS than other kinds.

The sites that are in the hexagon that surround a flipped vertex change their second and
fourth moments. In this hexagon, there are three sites that change their coordination fromZi
toZi − 1 when the flip is produced, while there are three others that change fromZi toZi + 1.
The new fourth moment is

µ
(4)
i,c = (Zi ± 1)2 + 2(Zi ± 1) +

Zi∑
σ=1

(Zσ − 1) (17)

where the upper sign corresponds to the case when the coordination is raised, while the other
holds for the opposite case. HereZσ is the coordination of the neighbours of sitei in the
original PT. The new parameters ′ is given by

s ′ = 2

Zi ± 1
+

Zi

(Zi ± 1)2
(〈Zσ 〉 − 1). (18)

To elucidate whether this parameter is bigger or smaller than the original one, we perform an
expansion of(1 + (1/Zi))−1, which gives up to first order

s ′ ≈ s ∓ 2

(
1

Zi
+
(〈Zσ 〉 − 1)

Z2
i

)
. (19)

From here, it is clear that sites which reduce (raise) their coordination with the phason flip
increase (decrease) their unimodality. Observe that this result does not depend on the kind of
phason flip.

The sites that have as neighbours the sites in the hexagon (grey circles in figure 3) are also
affected by the flip in their fourth moment but not in the second. In this case, the number of
four-hop paths is reduced only by one if the site is neighbour of a site that was connected to
the Q or D site of the flip, while it is increased by one in any other case. Thus, in the first case
the unimodality is decreased, while in the second it is raised.
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From the above results, we can say that at the level of the second and fourth moments,
each type of phason flip changes the DOS in a different way, and the difference comes from
the changes in the average coordination number around the Q or D site where the phason is
made.

4. Conclusions

In this work, we calculated the first moments of a Penrose tiling using the Cyrot-Lackmann
theorem. These moments were used to investigate the LDOS and the localization of states.
The results show that for sites with high coordination numbers, there is a tendency for a
depletion of the LDOS at the middle of the spectrum. This is due to the local fluctuations
of the coordination number. Furthermore, near the centre of the spectrum, states follow a
localization pattern similar to those for states atE = 0, with a reduction of the amplitude at
sites of high coordination. This phenomenon can be attributed to the topology of the lattice,
where sites of high coordination are surrounded by sites with lower coordination numbers.
These high-coordination regions form strings which isolate low-coordination-number sites.
Observe that this phenomenon is very similar to what happens in the split-band regimen of a
random binary alloy, in which sites with high self-energy act as barriers to the wave-function,
and tend to localize inside regions of low self-energy [32]. For the PT, the coordination number
acts as a self-energy. In fact, the spectrum of the binary alloy in the split-band regimen for
a square lattice has many properties that are observed in the PT, like confined states and a
gap [32] atE = 0. This is why the spectrum of the PT can be compared much better with the
square-lattice random alloy [33] than a pure square lattice, as was proposed by Choy [34].

In this paper, it was also shown that phason disorder changes the LDOS in different ways,
depending on the kind of flips, since the average coordination number of neighbours around a
phason is changed.

The present approach suggests the study of much more realistic models in order to evaluate
the cohesive energy of quasicrystals. Some of this work is currently in progress.
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