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The effect of substitutional disorder in a Fibonacci chain is studied. In particular it is shown that the presence
of a single impurity affects all the states of the unperturbed system, reducing the fractal dimension of the
spectrum. Resonant eigenstates are also observed. The consequences of the instability of the spectrum are
discussed in the context of the experimental electronic measurements and also the effect of boundary condi-
tions in theoretical calculations.@S0163-1829~96!07545-5#

I. INTRODUCTION

Over the 12 years after their discovery in 1982, quasic-
rystals have been the focus of intense experimental and theo-
retical research devoted to exploring the effects of quasiperi-
odicity on the properties of these materials. In particular, the
self-similarity of the structure was expected to lead to a new
type of electronic structure. Many theoretical works, mainly
in one- and two-dimensional quasiperiodic systems, con-
firmed the expectations. In these systems, three kinds of
wave functions coexist: extended, localized, and critical.1

Critical states are neither localized nor extended; they have
self-similar wave functions in real space. The band structure
of the electronic spectrum of a Fibonacci chain is a Cantor
set with a hierarchical distributions of gaps.2 The spectrum
of the Penrose lattice is of a different nature;3 it does not
present self-similarity and shows ad function of degenerate
states at the center of the spectrum, separated from the rest of
the states by a sizable gap.4 The wave functions of the states
near the center of the spectrum are localized as opposed to
the case of Anderson localization, where localization~due to
disorder! is stronger near the band edges.

However, experimental results on transport properties and
specific heat measurements had been rather disappointing.
Measurements apparently indicated that quasicrystals shared
the same transport properties with their crystalline or amor-
phous counterparts.5 The origin of this result was considered
to be the presence of secondary crystalline phases and of
structural defects. The discovery of highly stable quasicrys-
tals with a small defect density was of great advantage in
investigating the intrinsic physical properties of quasicrys-
tals. Recent results have shown that in fact quasicrystals are
of a different nature than crystals or amorphous concerning
their transport properties.6 For instance, the extremely large
resistivities, explainable only by some sort of localization
effect, are the most striking physical property of
quasicrystals.7,8 Moreover, in conductor crystals, the electri-
cal resistivity decreases as the perfection of the crystal in-
creases; on the contrary, in quasicrystals resistivity decreases
as defects increase, so that they become semiconductors and
insulators. Up to now, the effect of disorder in quasiperiodic
systems is not completely understood, and there remain some
questions such as what is the minimal amount of defects
allowed in quasicrystalline samples such that the theoretical

predictions of perfect quasiperiodic structres can be mea-
sured experimentally?

Studies of the effects of disorder in quasiperiodic struc-
tures have shown that a minimal amount of phason disorder
dramatically changes the extended states to localized
states.9,10 In a previous paper,11 we proposed a renormaliza-
tion approach to study the effect of phason disorder in large
Fibonacci chains. The amount of disorder can be easily con-
trolled and it was shown that less than 5% of disorder in a
chain of;1020 sites was enough to smooth the energy spec-
trum of the chain.

It is the aim of this paper to explore the effect of substi-
tutional disorder in a Fibonacci chain with a tight-binding
Hamiltonian. It shall be shown that all the states of the chain
are affected by the presence of a single impurity. The fractal
dimension of the spectrum is reduced, and unlike the one-
dimensional periodic chain, resonant eigenstates arise. The
former result turns out to be relevant in theoretical calcula-
tions since the same effect will be observed when consider-
ing free boundary conditions.

The paper is organized as follows. In Sec. II we explain
the Green’s function approach to the treatment of substitu-
tional disorder in a Fibonacci chain. In Sec. III, we evaluate
the effect of the impurity on the eigenvalues and the energy
spectrum. In Sec. IV the effect of the impurity on eigenstates
is described, and finally, conclusions are given in Sec. V.

II. FORMALISM

The Fibonacci sequence is a quasiperiodic alternation of
two words,L andS, given by the concatenation rule

F~n!5F~n21!* F~n22!, F~0!5S, F~1!5L,

where * denotes string concatenation.
A quasiperiodic structure in one dimension can be con-

structed by arranging two types of bonds following the Fi-
bonacci sequence~bond problem!. A simple tight-binding
model of electronic states of this quasicrystal is

H05(
i
t i j u i &^ j u, ~1!

whereu i & is the Wannier state associated with theith site of
the chain andt i j is the nearest-neighbor hopping integral,
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which in this case is given by the Fibonacci sequence. A
different model~site problem! is obtained if the Fibonacci
sequence is used to define a self-energy (e) on each site of
the chain. The corresponding Hamiltonian of this model is

H05(
i

~e i u i &^ i u1tu i &^ i11u1tu i &^ i21u!. ~2!

It has been proved that the spectra of previous Hamilto-
nians are Cantor sets of zero Lebesgue measure,12,2 with
eigenstates which are neither localized nor extended, but
critical.12,2,13–15This kind of spectra is called singular con-
tinuous.

There are powerful ways of solving Eqs.~1! and~2!, such
as renormalization and techniques which take advantage of
the self-similar properties of the Fibonacci chain.13–15

We will now consider the case of a Fibonacci chain with
a single substitutional impurity at sitel . As will be shown, it
is enough to understand the consequences of this kind of
disorder on the eigenstates and the spectra ofH0.

The easiest way of introducing disorder in a Hamiltonian
like Eq. ~1! or ~2! consists of changing the diagonal element
of H0 at site l , from e l to e l1e. This situation can be
thought of as a substitution of the host atom at sitel by an
impurity with a level lyinge times higher than those of the
remaining atoms.16 The new Hamiltonian now reads

H5H01H1 ,

where

H15eu l &^ l u

is the perturbation due to the substitutional impurity.
The problem is to determine the eigenvalues and eigen-

functions ofH. By following a perturbative approach, this
task can be divided in parts. Determine firstG0(E), the
Green’s function ofH0 ~one possibility is to use a renormal-
ization procedure as described in Refs. 17–19!. Next, ex-
pressG(E) in terms ofG0(E) and, finally, obtain informa-
tion about the eigenfunctions and eigenvalues ofH from
G, defined as

G~E!5~E2H !21,

whereE is the energy.
Using a Dyson expansion, the Green’s function of the

perturbed system is given by

G5G01G0SG0 ,

where

S5H11H1G0H11H1G0H1G0H11•••,

which in this case is written as

S5eu l &^ l u1e2u l &^ l uG0u l &^ l u

1e3u l &^ l uG0u l &^ l uG0u l &^ l u1•••.

After a simple summation, a closed expression forS is
obtained:

S5
e

12e^ l uG0u l &
u l &^ l u, ~3!

with which the final expression for the Green’s function
reads

G5G01
e

12e^ l uG0u l &
G0u l &^ l uG0 .

The discrete eigenvalues ofH are the poles ofG ~or S),
that is,

^ l uG0~Ep!u l &51/e, ~4!

which is only fulfilled when the imaginary part ofG0 is zero.
Since the imaginary part ofG0 is directly related to the local
density of states through16

r l l ~E!52
1

p
Im~^ l uG0~Ep!u l &!,

if there are new states due to the impurity, they must lie
inside a gap of the original spectrum.

In a periodic chain, the polesEp are outside the band of
H0, because inside the band, the spectrum is continuous
~there are no gaps! and Eq.~4! cannot be satisfied. On the
contrary, the singular continuous spectrum of a Fibonacci
chain contains an infinite number of gaps, and so relation~4!
can in principle be satisfied between any two eigenvalues of
H0. Consequently, substitutional disorder affects all the
states of a singular continuous spectrum and not only those
at the top of the band as in the case of a periodic chain. As
will be shown in Sec. III, this effect consists of a shifting of
all the original eigenstates.

One may visualize this effect of the impurity in a Fi-
bonacci chain using the following arguments. Let us first
consider a perfect periodic chain with lattice parametera.
When a defect is introduced, the most scattered modes are
those at the top of the band and a localized impurity mode
appears outside the original band, that is, neark5p/a,
wherek is the usual wave vector of a periodic system. Now
suppose that the chain is transformed onto a diatomic linear
chain. Since the cell parameter is doubled, the new spectrum
is obtained by folding the original spectrum around
k5p/2a and a gap of sizeVk arises at the limit of the new
Brillouin zone. In this diatomic chain there are two impurity
modes which now appear due to disorder, the one at
k5p/2a and the other atk50. Since the Fibonacci chain is
obtained by folding the Brillouin zone an infinite number of
times20 ~each folding corresponding to a rational approxi-
mant!, an infinite number of gaps are opened and also an
infinite number of impurity modes are created.

III. EIGENVALUES AND SPECTRUM

In general, the introduction of disorder in a finite lattice
with e.0 leads to a shift of the states to higher energies.21

An estimation of these shifts, arising from one single impu-
rity, can be given as follows. In a discrete or a singular
continuous spectrum, the imaginary part of the Green’s func-
tion is written as a sum ofd functions at the polesEn of
H0 with a weight given by the amplitudeufn( l )u2 of the
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wave function at sitel , that is,

Im^ l uG~E!u l &52p(
n

ufn~ l !u2d~E2En!.

The real part ofG is obtained with the help of the
Kramers-Kronig relations

Rê l uG~E!u l &5
1

p
PFp(nufn~ l !u2d~E82En!

~E2E8!
G

5(
n

ufn~ l !u2

~E2En!
, ~5!

whereP stands for the principal part. In the region between
two states, say,Es andEs11, the main contribution to the
sum comes from the terms withn5s andn5s11, so that
the right-hand side of Eq.~5! can be approximated by

ufs~ l !u2

~E2Es!
1

ufs11~ l !u2

~E2Es11!
5
1

e
. ~6!

Now if d(s) denotes the shift of the states, then we have
d(s)5(E2Es) and (E2Es11)5d(s)2Ds , whereDs is the
separation between levelsEs andEs11 .

With these definitions, Eq.~6! is reduced to a second-
order equation with the solution

d~s!5
Ds

2
1eufs~ l !u2

2AS Ds

2
1eufs~ l !u2D 22eDsufs~ l !u2, ~7!

where ufs( l )u25@ ufs( l )u21ufs11( l )u2#/2, and the minus
sign was chosen to assure thatd(s) is zero for«50.

In a periodic but finite latticeufs( l )u2 and the spacing
between levels scale as the inverse of the number of sites

N, thend(s) is also scaled by 1/N. Consequently, in the limit
N→`, new solutions arise only at an energy higher than the
top of the band, since the other solutions are undistinguish-
able from the original ones.

In a Fibonacci chain the space between levels follows an
anomalous 1/Nb(E) law.22 This is also true for the size de-
pendence of wave functions which follows the law
ufs( l )u2;1/Ng(Es).22 As a consequence of the singularity of
the spectra, bothg andb are smaller than one in the regions
of the largest gaps and larger than one in the remaining re-
gions. From Eq.~7! it can be seen that, in an infinite lattice,
the tendency of the spectrum is to be smoothed, sinced is
larger~smaller! in regions whereb andg are smaller~larger!
than 1. The smoothening effect is enhanced at the edges of
the spectra whereb andg take their minimum values.22 The
self-similarity of the spectra also means that states are shifted
at all scales.

Numerical direct diagonalization ofH was carried out in
order to confirm the above considerations. Figure 1 shows a
plot of d(s) against the eigenvalues for the bond problem
(tL521.5 and tS521.0) of a Fibonacci chain with
N5987 and with a single defect (e510) at the middle of the
lattice. The largest value ofd(s) is at the top of the band and
corresponds to the localized state that appears outside the
band nearE;e. In general,d(s) is larger for states near to
the largest gaps, as is expected from Eq.~7!. Observe that
d(s) is self-similar as a consequence of the self-similarity of
ufs( l )u2 andDs .

The integrated density of states~IDOS! of a perfect Fi-
bonacci chain has a devil’s staircase structure which is typi-
cal of a Cantor-like set. When the defect is introduced, and
sinced(s) is self-similar, all the steps of this devil’s staircase
are reduced and the IDOS is transformed into a Besicovitch
staircase which is a multifractal curve with a larger fractal
dimension.23 Albeit this tendency should be observed with a
single defect, the transition to a Besicovitch staircase is even
more evident in a Fibonacci lattice with two defects of the
same type. In Fig. 2 an enlarged view of a section of the

FIG. 1. Displacementd(s) of the eigenvalues
of the Fibonacci chain with a single impurity
from the eigenvalues of the perfect chain. Calcu-
lations were made for a chain with 987 sites.
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IDOS of the Fibonacci chain with two defects is shown~bold
line! and compared with that of the perfect chain~thin line!.

The scaling properties of the DOS can be obtained by
means of a multifractal analysis.25 First, observe that the
level spacing for a finite system is given byDE51/Nr(E)
whereDE is the separation between two eigenvalues. Then,
the system size dependence of the level spacing (dE) is
given bydE5r(E)DE. In a periodic systemdE is always
1/N.

Now, let us define a scaling exponent (a) through24

a52
ln~dE!

lnN
. ~8!

The fractal dimension for each exponent is given by25

f ~a!52
lnG~a!

ln~dĒ!
, ~9!

wheredE is the average ofdE, andG(a) is the number of
level spacings with a scaling exponent betweena and
a1da.

The spectrum is the union of fractal sets, each of them
with a fractal dimension given byf (a). The fractal dimen-
sion of the whole set, which is the Hausdorff-Besicovitch
dimension of the DOS, is the maximum off (a). If this
maximum is smaller than 1, the spectrum is singular
continuous.25

In Fig. 3 we showf (a) for the lattice with a single defect.
The maximum off (a) is ;0.45. This value is smaller than
the maximum of the same curve obtained from the Fibonacci

FIG. 2. Enlarged view of a section of the in-
tegrated density of states of the perfect Fibonacci
chain ~thin line! compared with the chain with
two defects~bold line!.

FIG. 3. The multifractal distribution of scal-
ing exponents for the energy spectrum of the Fi-
bonacci chain with a single defect.
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chain where fmax;0.56 for a lattice of sizeN5987. If
N→`, the fractal dimension lies between 0.6 and 0.7.22

The reduction of the fractal dimension has its origin in the
widening of the functionG(a). Since(aG(a)5N, a disper-
sion in the scaling leads to a reduction of the maximum value
of G(a) which in fact determines the fractal dimension since
the factor ln(dĒ) is almost the same for both lattices. For the
sake of comparison, we calculate the integrated distribution
of scaling exponents~IDS!, defined as*0

aG(a)da, for the
perfect Fibonacci chain, and chains with one and two de-
fects. In all the cases it was found thats̄ approaches 1/N. The
dispersion ofG(a) is evident in Fig. 4 where the IDS is
shown. In a periodic chain, the IDS jumps from 0 toN when
a51, but for the Fibonacci chain it shows dispersion near
a51. As can be seen, the IDS of the chain with a single
defect shows a larger dispersion than the perfect one and the
IDS of a chain with two defects shows even more dispersion.
From here it is clear that the reduction of the fractal dimen-
sion is a consequence of a change in the level statistics.

It is interesting to comment that a similar reduction of the
Hausdorff-Besicovitch dimension was found in the transition
from a singular continuous to a pure point spectrum in the
Harper potential.26 In that case, the Hausdorff-Besicovitch
dimension of the pure point spectrum~which corresponds to
localized eigenstates! is zero while in the singular continuous
regimen is given by the fractal dimension of a Cantor set.26

IV. EIGENSTATES

We consider here the eigenstates ofH which are given
by16

uc~E!&5uf~E!&1G0
1~E!S1~E!uf~E!&, ~10!

where uf(E)& are the eigenfunctions of the unperturbed
Hamiltonian. The plus sign inG andS denotes the use of the
retarded Green’s function, in such a way that only physically
outgoing solutions are admitted.

Substituting Eq.~3! into Eq. ~10!, the wave function at
siten results:

^nuc~E!&5^nuf~E!&1e
^nuG0

1~E!u l &^ l uf~E!&

12e^ l uG0
1~E!u l &

.

At the sitel of the impurity, the above expression is reduced
to

^ l uc~E!&5
^ l uf~E!&

12e^ l uG0
1~E!u l &

, ~11!

from where the amplitude at sitel is easily obtained:

^ l uc~E!&25T^ l uf~E!&2, ~12!

whereT is defined as

T5
1

u12e^ l uG0
1~E!u l &u2

. ~13!

Some words about the quantityT can be said here. In
one-dimensional latticesT usually stands for the transmis-
sion coefficient. In a quasiperiodic lattice, it turns out that
k is not a good quantum number, and so Eq.~13! does not
represent the transmitted amplitude across the chain since
also the system without defects shows scattering. Then, in
this caseT is a measure of the scattering of critical states due
to the presence of defects.

Equation~13! can be written as

FIG. 4. Integrated distribution
of scaling exponents for the per-
fect Fibonacci chain~solid line!,
chains with one~dotted line!, and
two ~dashed line! defects.
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T5
1

@12eRê l uG0
1~E!u l &#21@pr~E,l !#2

. ~14!

T has its maximum value wheneverr(E,l ) is small and
12eRê l uG0

1(E)u l & approaches zero, which is indicative of
a resonant eigenstate. Observe that for the original states
inside the band,̂l uG0

1(E)u l & is always a complex number so
thatT<1. Therefore, a resonant eigenstate ofH0 leads to a
peak of size 1 in the curve ofT plotted againstE.

For instance, in a perfect periodic chainr(E,l ) is small at
the center of the band and tends to infinity at the band edges,
and so states at the band edges~the most coherent ones! are
more strongly scattered than those at the middle. In this kind
of chain,T does not exhibit any resonance since there are no
possibilities for interference effects.16

T can also be calculated considering Eq.~12! as a defini-
tion for all the states, i.e., for states inside the band and for
the new states that appear with the defects. In that caseT can
be larger than 1 for the defect states, meaning that defect
states are localized.

Figure 5 showsT as a function of the eigenvalues of the
perfect Fibonacci chain calculated using Eq.~12! as the defi-
nition of T. Observe that states at the edge of the largest gaps
fulfill T.1 since they become defect states and are local-
ized. Eigenstates withT approaching zero are strongly scat-
tered by the defect. Resonant states are those withT ap-
proaching 1 and are less scattered by the disorder.

The existence of scattering and resonant eigenstates is
preferable due to the infinity folding of the Brillouin zone. In
a periodic chain, states with largerT are at the middle of the
band. Each time that a new folding takes place, a new region
appears in the middle of each subband that can support reso-
nant eigenstates.

V. CONCLUSIONS

In this article we studied the consequence of introducing a
single defect on a Fibonacci chain. Our results can be sum-

marized as follows. As a consequence of the self-similarity
of the spectra, the disorder affects all the states of the unper-
turbed system and consequently the fractal dimension of the
IDOS increases. On the contrary, the fractal dimension of the
DOS with a defect is reduced since the multifractal distribu-
tion of the scaling exponents shows a larger dispersion re-
spect to the perfect Fibonacci chain. This change in the mul-
tifractal distribution is a consequence of the change in the
level statistics. This last is expected since a singular continu-
ous spectrum shows a tendency toward clustering of levels,
producing a new class of level statistics,27 while a disordered
system follows a Poisson distribution with a width propor-
tional to 1/N.28 Finally, unlike the case of periodic one-
dimensional chains, resonant eigenstates appear.

The present study, in spite of the simplicity of introducing
a single defect, is capable of showing the essential conse-
quences of the presence of substitutional disorder in one-
dimensional quasiperiodic structures. Two conclusions can
be drawn. First, since free boundary conditions can be
viewed as impurities, the use of periodic boundary condition
is preferable in numerical calculations. As was shown, free
boundaries lead to surface states appearing at all energies.
Second, singular continuous spectra and critical states may
be very difficult to observe in a real quasicrystal since even a
small amount of disorder can destroy these features.

All the ideas portrayed here can be extended to the vertex
problem for the Penrose lattice where an infinite series of
gaps appears near the center of the spectrum,29 and therefore
this region is expected to be strongly affected by disorder.
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FIG. 5. T is plotted as a function of the en-
ergy. States withT.1, T'1, andT'0 are, re-
spectively, localized, resonant, and scattering
eigenstates.
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