
Journal of Non-Crystalline Solids 329 (2003) 48–52

www.elsevier.com/locate/jnoncrysol
Section 3. Stability and crystallization

Theoretical method for non-crystalline growth

R. Paredes, G.G. Naumis *, R.A. Barrio

Instituto de F�ıısica, Universidad Nacional Aut�oonoma de M�eexico (UNAM), Apartado Postal 20-364, Mexico DF 01000, Mexico
Abstract

A method of agglomeration of atomic units is developed to investigate some important features of the statistical

processes that take place when a glass is formed. In particular, by allowing several free valences to be saturated in a

single agglomeration step, the growth is non-dendritic. The process becomes non-linear, and it has to be treated self-

consistently. The sites whose bonds are completely saturated in each step become important and their final concen-

tration changes abruptly at the transition temperature for any value of the modifier concentration.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The glass transition is of considerable practical

and technological importance; however, little is

known about the thermodynamic and structural

factors that determine it [1]. For instance, chal-

cogenide glasses have electric and infrared trans-

mission properties that make them useful in

technological applications [2]; consequently, a lot

of effort has been devoted to correlate the glass
transition temperature (Tg) with other physical and

chemical properties, such as composition [3]. In

this paper we shall focus our attention on this

problem. For example, the properties of an AxB1�x

glass as the chemical composition varies is far from

trivial. Tg can be raised or lowered by increasing x,
and the nature of the glass can be changed from
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fragile to strong [4]. The stochastic matrix method

(SMM), introduced by Kerner and co-workers [5–
7] to study glass formation, has succeeded in ob-

taining the empirical modified Gibbs–DiMarzio

Law [8,9], that allows a calculation of the change in

Tg for low concentrations of modifiers [2], but the

main problem with the SMM is that it describes a

dendritic growth process. Although this feature

makes the model quite simple, it is likely to be ac-

curate only for small x, when the correlations be-
tween pairs of impurities are negligible. Here we

propose a scheme that deals with non-dendritic

growth in an approximate way. This new approach

allows to obtain the variation of Tg for a glass of the
type AxB1�x in all the range of x resembling some

unexplained experimental data.
2. Theory

The SMM describes the formation of a glass by

assuming that small atomic-like units, existing in a
ed.
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Fig. 1. (a) The four possible configurations at the surface. A

square means a site with all bonds saturated. (b) If one con-

siders configuration 1, there are four possibilities for a proper

neighbor being of a certain kind, with different probabilities Ri.

(c) Small membered rings should be avoided by correctly in-

terpreting the two neighbor site representation.
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liquid, can be attached to the free bonds at the
surface of solid clusters [5]. At a given time, one

has a collection of clusters, and at their surfaces

there is a finite number n of different local con-

figurations. One can form a n-dimensional vector

v ¼ ðP1; P2; . . . ; PnÞ whose entries are the probabil-

ities of finding each one of these configurations [5].

The agglomeration process is represented by the

transformation S�vv ¼ �vv0, where S is a stochastic
matrix [6]. The matrix elements Sði; jÞ contain the

probabilities of starting with a configuration i and
ending with a different configuration j, and are

given by [5]

Sði; jÞ ¼ Mði; jÞ=Qi ¼ XijpjðxÞeEij=kBT=Qi; ð1Þ

where Eij is the activation energy associated with

the bond formed, pjðxÞ is the probability of having

a unit of type j in the liquid, which is proportional

to the concentration relation between units (x), Qi

is the normalizing factor
P

j Xije
Eij=kBT pjðxÞ, and Xij

is the statistical factor counting the number of all
equivalent processes that start with i and end with

j. The macroscopic solid can be regarded as the

result of applying this transformation a large

number of times. It can be shown [5] that a sto-

chastic matrix has at least one eigenvector (say êe1)
with eigenvalue 1, and the final distribution of

configurations [6] is given by the elements of

êe1 � ðP1
1 ; P1

2 ; . . . ; P1
n Þ. If it is assumed that only

one bond can be attached to a given configuration,

the sites at the surface are uncorrelated, and the

growth process is necessarily dendritic. If one al-

lows for simultaneous formation of two bonds,

either one produces two-atom rings, which is

usually considered unrealistic, or one attaches one

single unit to various sites, in which case neigh-

boring sites at the surface become correlated. In
real systems, though, there is no reason preventing

several bonds to form simultaneously. In what

follows we present a simple way of dealing with

this situation.

Consider a hypothetical AxB1�x alloy, where B

has coordination 2, and A coordination 3. There

are three possible sites offering unsaturated bonds

at the surface: a unit A with two unsaturated
bonds, a unit A with one unsaturated bond, and a

unit B with one unsaturated bond. We still avoid
the formation of two-fold rings; simultaneous
formation of two bonds will require two different

sites at the surface. Since it is quite possible that

there is no neighbor at the right distance offering

an unsaturated bond, the sites with all bonds sat-

urated must be considered as playing their own

role in the growth process. The immediate conse-

quence of considering two neighbor sites is that

the elements of S will depend on the site prob-
abilities Ri of having a neighbor of type i enter-
ing the agglomeration game. Therefore, the

equation SðR1; R2; . . . ;RnÞ1�vv0 ¼ êe1 ¼ ðP1; P2; . . . ;
PnÞ that describes the full growth process has to

be solved self-consistently, in order to assure

that at the end one has Ri ¼ P1
i . Let us solve in

detail our example, to illustrate the whole proce-

dure.
In Fig. 1(a), the complete single site configura-

tions for this case are shown, where the vertical bar

represents the surface of the cluster. The empty site

is named P0. To write down the transformation

rules for a given site, we need to know which types

of site are available with bonds that can be satu-

rated in a single agglomeration step, if any. We

assume that the probability of encountering a site
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Fig. 2. Configurations obtained from a site P1 when one con-

siders a neighbor. The transition probabilities that give the

elements of S, containing Boltzmann and degeneracy factors

(where y ¼ 1� x), are written in parenthesis. One needs a fur-

ther Boltzmann factor e when a ring is made.
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of type i is Ri, which in principle is different from
the true site probability Pi. For instance, take a site

of type P1, as in Fig. 1(b). To investigate the

number of ways to obtain any of the four basic site

configurations after one agglomeration step, one

needs to consider all the contributions from the

two-site situations depicted in the right hand side

of Fig. 1(b).

There is a word of warning concerning the in-
terpretation of the two-site diagrams. In Fig. 1(c)

we show a diagram with a pair of sites of type 2.

These sites are at the surface of the cluster and the

two free bonds can be connected in a single step.

They are surely already connected somewhere in

the bulk, but it is not known how many sites in the

bulk one should visit to go from one site to the

other: there are at least two such paths, as shown
in the figure with dotted lines. In dendritic growth

all paths reach the starting cluster necessarily, but

when rings are formed the minimal path is shorter,

or even made by one link only, as shown in the

lower part of Fig. 1(c). In this latter case, the

configuration should be interpreted as twice P2R0,

as shown in the figure. This is the reason why the

original site probabilities Pi need not to be the
same as the neighboring site probabilities Ri. The

elements of S now depend on the site probabilities

Ri. One also needs to consider three energy pa-

rameters, namely e1 ¼ e�EAA=kBT , e2 ¼ e�EAB=kBT ,

e3 ¼ e�EBB=kBT to take into account the three types

of bonds in the alloy.

Let us examine the bonding processes that

occur when considering a P1 site. We need to
consider the combinations when having any type

of site as neighbor, including the possibility of no

neighbor. In Fig. 2 we show the final configura-

tions obtained from Fig. 1(b). With these rules,

one can write all the contributions to the matrix

element in the second row and third column

Sð2; 3Þ; that is, all the possible one-step agglom-

erations that result in creating a type 2 site from a
type 1 site. In Fig. 2, these are labeled with P2 and
also the statistical energetic and configurational

factors are indicated, thus one has to include them

all, once they have been multiplied by the corre-

sponding probabilities Ri. From the figure it is

clear that
MðP1; P2Þ ¼ Sð2; 3Þ � Q1

¼ R0½6xe1 þ 4ye2� þ R1

� ½12xe1 þ 36xeþ 8ye2 þ 16ye�
þ R2½12xe1 þ 12xeþ 8ye2 þ 4ye�
þ R3½6xe1 þ 12xeþ 4ye2 þ 4ye�: ð2Þ

All the other elements can be obtained in a similar

fashion. Now, the solution of the problem involves

finding the eigenvalues of a 4 · 4 matrix, once
the energy parameters, the concentration x and the

temperature are fixed. Of special interest is the

element Sð1; 1Þ, containing all the processes that

start and result on an empty site.
MðP0; P0Þ ¼ Sð1; 1Þ � Q0

¼ 2R0 þ ðR1 þ R2 þ R3Þ½6xe1 þ 4ye2�:
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Fig. 3. Plot of the first element of êeF , as a function of x and T ,
for the parameters indicated in the text.
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Since there is no possibility of �resurrecting� any
saturated site, that is, there is no process that

converts a square in Fig. 2 to any other configu-

ration, the elements of column 1 have to be in-

terpreted as the amount of bulk made. Observe

that due to the inhomogeneous term 2R0, when the

temperature is sufficiently low to make all the

Boltzmann factors negligible, êe1 ¼ ½1; 0; 0; 0� � êes,
which means that the solid is formed. For a given

set of energy parameters, the appearance of this

eigenvector should depend on concentration and

temperature only. At low temperature, this is the

only solution, but at high temperature the other

sites are always present. Therefore, we shall in-

terpret the temperature that signals the appearance

of the solution êes as Tg, since the solid cluster is in
dynamical equilibrium with its surroundings.

Given the energy parameters, the concentration

x and the temperature, one writes down S using an

initial guess for the probabilities Ri, and finds êe1.
The components of the latter have to be consid-

ered as a new starting point, with which a new

matrix S is written. The process is continued until

the difference between the obtained vector does
not differ from the previous, and one obtains a

single solution êeF ¼ ½P1
0 ; P1

1 ; P1
2 ; P1

3 �. The result

contains the final concentrations of A or B atoms

in the cluster, and the number of bonds of each

type (bAA, bAB and bBB), because these are encoded
in the elements Mði; jÞ. With this information, we

can write the internal energy [6] as, UðT Þ ¼
ð3NkT=2Þ þ EAAbAA þ EABbAB þ EBBbBB, where the
first term is the kinetic contribution.
3. Results and discussion

We can apply the method to an hypothetical

AxB1�x compound. Usually, in many binary

chalcogenide glasses, the bonds of type bAB and
bAA are more favored than bBB due to the energies

involved. Let us choose arbitrary energy parame-

ters to reflect this fact. The parameter EBB has to

give the correct transition temperature when x ¼ 0,

and if kBTgð0Þ ¼ kBTg0 is taken as unity, the value

EBB ¼ 10:805 signals the transition temperature

Tg0 ¼ 1. The parameter EAA has to reflect the fact
that this type of bond is stronger than the BB type;

therefore we choose EAA ¼ 8:7EBB. The more ro-

bust bAB means that the remaining energy has to
be larger, we choose EAB ¼ 12:5EBB. In order to

isolate the effect of considering two neighbor sites

in the SMM, let us set the different ring forming

energies, represented by the parameter e in Fig. 2,

by the corresponding products eiej for creating

two uncorrelated bonds. In Fig. 3, the behavior of

P1
0 in the ðT ; xÞ plane is shown. The solution

P1
0 ¼ 1 is found at low temperatures, and its value

changes at Tg. Notice that Tg, as a function of x, is
the curve defined by the points in which P1

0 ceases

to have its maximum value. Observe that Tg rises in
the small x region and that a maximum is attained

in the stoichiometric concentration. The non-lin-

ear character of the approach is the reason to

obtain this maximum, and thus non-dendritic

growth plays an extremely important role in set-
ting Tg. One can also verify that the specific heat

(CpðT Þ), calculated as the derivative of UðT Þ, also
presents an inflexion point and a jump at Tg. This
jump can be related to the minimum speed

required to form the glass (�strong� or �fragile�
character), and was also predicted by simple

thermodynamic rigidity arguments [10]. Our the-

ory can be applied to any system fulfilling the
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requirements, and the actual form of the trans-

formation matrix depends very much on the par-

ticular problem at hand. For instance, one can

study the system GexSe1�x, as an agglomeration of
four-fold and two-fold coordinated atomic units.

In this case, one obtains a 5 · 5 stochastic matrix.

In Fig. 4, we show the result of the calculation for

GexSe1�x, and data from different experimental

groups. Observe that compared with the Gibbs–

DiMarzio equation, our theory gives a more

accurate description of Tg in the low x range, re-

producing the shoulder found in the experimental
data. It is clear that all the main experimental

features are well reproduced by the theory in this

particular system. However, the theory gives un-

physical results (negative values of CpðT Þ) beyond
a certain value of the modifier concentration. The

point at which this is seen depends on the values of

the energy parameters, particularly on EAA, and

can be interpreted as a prediction for the limit of
the glass formation region, since it occurs very

near the experimental composition where the glass

is not possible to form anymore.
4. Conclusions

We have presented a modified SMM with two

novel features: (1) The agglomeration rules now

depend on the situation of a neighboring site. (2)

One is able to completely saturate surface bonds in

a single agglomeration operation. This is extremely

important, since one is allowing the formation of
rings (relaxing the condition for dendritic growth),

and one can keep track (in a rather approximate

way, though) of the several units formed the solid.

The price to pay is that one is forced to consider

the possibility of finding a site without free bonds

at the surface.
Acknowledgements

This work was supported by UNAM through

grant DGAPA-UNAM project IN108502-3 and

IN108199. Enlightening discussions with Professor

R. Kerner are also acknowledged.
References

[1] S.R. Elliot, Physics of Amorphous Materials, Wiley, New

York, 1989.

[2] A.N. Sreeram, D.R. Swiler, A.K. Varshneya, J. Non-Cryst.

Solids 127 (1991) 287.

[3] L. Tich�yy, H. Tich�aa, Mater. Lett. 21 (1994) 313.

[4] M. Tatsumisago, B.L. Halfpap, J.L. Green, S.M. Lindsay,

C.A. Agnell, Phys. Rev. Lett. 64 (1990) 1549.

[5] R.A. Barrio, R. Kerner, M. Micoulaut, G.G. Naumis, J.

Phys.: Condens. Matter 9 (1997) 9219.

[6] R. Kerner, G.G. Naumis, J. Phys.: Condens. Matter 12

(2000) 1641.

[7] G.G. Naumis, J. Non-Cryst. Solids 232–234 (1998)

769.

[8] G.G. Naumis, R. Kerner, J. Non-Cryst. Solids 231 (1998)

111.

[9] M. Micoulaut, G.G. Naumis, Europhys. Lett. 47 (1999)

568.

[10] G.G. Naumis, Phys. Rev. B 61 (2000) R9205.

[11] A. Feltz, H. Aust, A. Blayer, J. Non-Cryst. Solids 55 (1983)

179.

[12] F. Xingwei, W.J. Bresser, P. Boolchand, Phys. Rev. Lett.

78 (1997) 4422.


	Theoretical method for non-crystalline growth
	Introduction
	Theory
	Results and discussion
	Conclusions
	Acknowledgements
	References


