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Abstract

The effects of anharmonic interactions on the phonon modes in quasiperiodic systems are studied by looking at
evolution Fourier spectrum. The results reveal an efficient generation of high-amplitude harmonics in Fibonacci ch
also perform an energy-level-spacing analysis of the spectrum. Anharmonic contributions do clearly manifest by c
the level clustering behavior observed in quasiperiodic chains, and contrary to the periodic case, where the distr
insensitive to weak anharmonic interactions. This result suggests a structural instability of the self-similar vibrational s
in quasiperiodic systems.
 2005 Elsevier B.V. All rights reserved.
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The study of non-linear effects in materials h
been subject of intense research in the last decade[1].
From the theoretical point of view there are many i
portant questions that are still open, and at the s
time many important applications have been fou
for example, the generation of optical harmonics us
a quasiperiodic superlattice[2]. An interesting ques
tion is how non-linearity affects the localization a

* Corresponding author.
E-mail address: chumin@servidor.unam.mx(C. Wang).
0375-9601/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2005.01.054
the transport properties of a system[3]. For instant, it
is known that non-linear interactions are essentia
explain the finite thermal conductivity of a materia
A common belief is that in periodic systems, whe
the phonons have extended wave functions, the a
tion of a non-linear term to the Hamiltonian leads
localization. This type of localization is called intrin
sic [1] and is not produced by disorder, as in the lin
Anderson Hamiltonian[4]. These localized modes a
also known as discrete breathers[5], and have been
observed in different physical systems ranging fr
electronic and magnetic solids, Josephson juncti
.
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optical waveguides arrays and laser-induced phot
crystals[1]. From these considerations, it is natu
to expect that when both non-linearity and disor
are present, localization is enhanced. However,
situation is much more complex since several o
dimensional models with correlated disorder exh
delocalized states[6], which have recently been con
firmed using microwave waveguides[7].

Another fascinating question is what happen
quasiperiodic systems, since they are not rando
disordered neither periodic, instead they have a lo
range order. A quasiperiodic potential can be
scribed as a Fourier series with more reciprocal b
vectors than the dimensionality of the system[8]. For
example, the two-dimensional Penrose lattice can
obtained by projecting a five-dimensional hypercu
lattice into a plane. As a consequence, its recip
cal space is generated by five reciprocal basis vec
[9]. In real systems, quasiperiodicity can occur at
atomic level as in quasicrystalline metallic alloys[10],
or can be found in artificial superlattices, for examp
by alternating layers of GaAlAs and GaAs followin
a Fibonacci sequence[11,12]. Recently, it has bee
found that quasiperiodic multilayers are useful
efficient generation of optical second and third h
monics [2]. This kind of multilayers can be treate
theoretically as one-dimensional systems[13]. How-
ever, up to our knowledge, the anharmonic effects
quasiperiodic systems have not been studied syste
ically. For instance, there is an experimental obse
tion of a softening of the eigenmodes in an equival
electric circuit [14]. In this Letter, we further pur
sue this problem by looking at the phonon spectr
of a quasiperiodic system with anharmonic inter
tions.

Let us consider the most simple quasiperiodic s
tem, known as the Fibonacci chain (FC), in whi
two kinds of atoms,A and B, are arranged follow
ing the Fibonacci sequence[8], i.e., if one defines
the first generationF1 = A and the second oneF2 =
BA, the subsequent generations are given byFn =
Fn−1 ⊕ Fn−2. For instance,F5 = BAABABAA. In
a FC, the spring strength between atoms depend
their nature, giving two different force constantsβAA

andβAB = βBA. Thus, the phonon dynamics of a F
including a quartic anharmonic term in the phon
Hamiltonian, can be described by
-

mj

d2uj

dt2
= βj (uj+1 − uj ) − βj−1(uj − uj−1)

(1)+ η(uj+1 − uj )
3 − η(uj − uj−1)

3,

wheremj can either bemA or mB , anduj is the dis-
placement of atomj at timet . The anharmonic inter
action parameterη is supposed to be smaller than t
harmonic interactionβj and then is taken as a co
stant. In this Letter, we set the units of massmA = m

and for spring constantβAA = β. Usually, to obtain
the stationary solutions of non-linear equations(1),
the well known rotating-wave approximation is us
[15]. In a previous article, we used this method in co
junction with the perturbation theory to study the F
However, this approximation only predicts a shift
the original frequencies[16]. Also, there was no est
mation of the accuracy of the solution. To go beyo
this approximation, in the present work we use a
tally different approach. We solved the equations
motion (1) by using a discrete time�t = 0.1/ω0 to
optimize the efficiency of the simulation, whereω0 =√

β/m. At each time we calculated the force, veloc
and acceleration of the atoms in the chain, using
leap-frog integration method[17]. Periodic boundary
conditions were used for chains ofNs = 2584 sites.
As initial conditions, we chose zero velocity for a
atoms, i.e.,vj (0) = 0, and a delta function at a site
the chain, for example,uj (0) = aδj,1, wherea is the
interatomic separation. This delta function is a sup
position of all normal modes and its Fourier transfo
is just a flat function in the reciprocal space. As a c
sequence, one is sure from the beginning of exci
all modes with the same weight for periodic system
avoiding the mode recurrence problem that was fo
after the pioneering work of Ulam–Fermi–Pasta[18].
Once the chain was excited with this initial conditio
the system was allowed to evolve until it reache
number of time stepsNt = 2l , wherel is an integer
that usually had the value 24, determined by the lar
integer that the computer can handle. Then, we t
the fast Fourier transform of the whole set of displa
mentsuj (t)

(2)U(ω) ≡
Ns∑

j=1

∥∥∥∥∥
1

Nt

tmax∑

t=0

uj (t)e
iωt

∥∥∥∥∥,

wheretmax= Nt�t .
To test the procedure, we use a periodic ch

(β = β = β andm = m = m) with only har-
AB AA A B
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Fig. 1. Fourier spectrum of the displacements with (open squa
and without (open circles) non-linear interaction(η = 0.2β) for (a)
a periodic chain, and (b) a Fibonacci chain withβAB = βAA/2, both
containing 2584 atoms. Insets: amplifications of two regions of e
spectrum. In all the figures, the harmonic data have been verti
shifted by a factor of 10−4.

monic interactions, and its spectrum (U(ω)) is shown
in Fig. 1(a) as open circles, where the peaks are
cated exactly at the same frequencies as those obta
from the diagonalization of the dynamic matrix
from the analytical dispersion relation, i.e.,ω(k) =
2ω0 sin(ka/2), being the wave vectork = 2πn/Nsa,
with n ∈ Z. Notice that there is a peak at zero fr
quency that can be deduced by integrating the mom
tum conservation and using the initial conditions

(3)
Ns∑

j=1

uj (t) = a.

Applying a Fourier transform to the previous equatio
we get

(4)
Ns∑

j=1

ũj (ω) = aδ(ω),
d

where

(5)ũj (ω) ≡
tmax∑

t=0

uj (t)e
iωt ,

and

(6)δ(ω) =
tmax∑

t=0

eiωt .

The last function becomes a Dirac delta in the lim
tmax→ ∞. In particular, forω = 0, this function gives
δ(0) = Nt . Considering the nature of the zero fr
quency mode, i.e.,̃uj (0) is a positive constant due t
the initial conditions, the summation of displaceme
for the zero frequency mode is

(7)U(0) = 1

Nt

Ns∑

j=1

∥∥ũj (0)
∥∥ = a.

In general, for the case of harmonic Hamiltonia
the height of each peak in the spectrum can be ea
obtained by a decomposition of the solution in norm
modes of frequencyωα , which leads to

(8)U(ω) ≡
Ns∑

α=1

U(ωα)δ(ω − ωα),

where

(9)U(ωα) ≡
Ns∑

j=1

‖Ajα‖

is the height of the peak with frequencyωα in the
spectrum, and the coefficientsAjα are obtained by a
projection of the initial conditions onto each norm
mode. For the periodic case, our initial conditions c
duct to

(10)U(ωα) = a

Ns

Ns∑

j=1

∣∣cos
[
2πα(j − 1)/Ns

]∣∣.

In the limit Ns → ∞, the value ofU(ωα) is 2a/π ,
which is in agreement with our numerical results (op
circles in Fig. 1(a)), where it is important to remar
that in the data from the harmonic systems have b
vertically shifted by a factor of 10−4 in order to im-
prove the comparison with the non-linear cases.

For non-linear Hamiltonians, we first tested t
procedure by using a three-atom chain, where
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analytical results obtained from perturbation the
[18] show a good agreement with the numerical on
Then, we introduce a small non-linear term(η = 0.2β)

to Eq. (1) for a periodic chain of 2584 atoms, an
the spectrum remains almost equal (open square
Fig. 1(a)). A blown-up of the acoustic region show
that the main effect is just a shift of the peaks
wards higher frequencies. This shift is more eviden
the middle of the spectrum, as shown in the inset
Fig. 1(a). These shifts in frequency can be predic
within the rotating-wave approximation[16]. For the
case of an harmonic FC withmB = m andβAB = β/2,
open circles inFig. 1(b), we got exactly the sam
eigenfrequencies than those obtained from a diago
ization of the Hamiltonian. The shape of this spectr
is known to be a multifractal set[19], and correspond
to a singular continuous spectra, with critically loc
ized normal modes[20]. This kind of spectrum ha
gaps almost everywhere since the reciprocal spac
a quasicrystal is a dense set. Open squares inFig. 1(b)
show the spectrum of the same FC including a sm
non-linear term (η = 0.2β). In this case, the effect i
dramatic in the sense that not only the original h
monic peaks are shifted, but also new peaks app
inside the gaps of the spectrum. The intensity of th
new peaks is in general two orders of magnitude lar
than those found in the periodic case. Furtherm
for an anharmonic FC, the spectral limit is extend
well beyond the case of a pure harmonic FC. From
analysis, it is clear that the FC is much more effici
for generating high order harmonics. A simple exp
nation for this phenomena is given by the structure
the reciprocal space of a quasicrystal. Quasiperio
systems can always be described as a succession
tional approximants, this succession tends to the q
siperiodic system in the limit of an infinite unitary ce
[8]. Each approximant has bands, well defined w
vectors (k), and a dispersion relation of the typeωγ (k),
whereγ is the band index. Now, if we look to th
quartic anharmonic interaction as a phonon collisi
where two phonons with wavevectorsk1 andk2 anni-
hilates to form two new phonons with wave vectorsk3
andk4, then, for each process the energy is conser
ωγ1(k1)+ωγ2(k2) = ωγ3(k3)+ωγ4(k4), as well as mo-
mentum,k1+ k2 + k3+ k4 = Gm,s , where for a FC
Gm,s = 2π〈λ〉−1(m + sτ ) is a vector in the reciproca
space,τ = (1 + √

5)/2, m,s ∈ Z, and〈λ〉 is the aver-
age lattice parameter[21]. If the lattice momentum is
-

Gm,s = 0, the process is known as normal. Proces
with Gm,s �= 0 are responsible for thermal conduct
ity and are known as umklapp. In a quasicrystal,Gm,s

covers in a dense way the reciprocal space[8], thus
almost all processes are umklapp. In fact, there is
ways aGm,s as close as needed and then momen
conservation is not a restriction anymore. The only
maining condition is energy conservation. As a res
three of these wave vectors can be chosen without
restriction, making the system much more efficien
generate harmonics.

A useful way to extract information from the spe
trum is to do level spacing statistics, since there
close relationship between the nature of localizat
and its eigenvalue statistics[22], e.g., for a disordere
metal, a Wigner distributionPW(s) ∼ s exp(−πs2/4)

is observed, while for a disordered insulator it b
comes a Poisson’s lawPP (s) ∼ exp(−s), wheres =
|ωi+1 − ωi |/∆ is the frequency difference of conse
utive peaks in the spectrum divided by the mean le
spacing∆. The essential difference between these
distributions arises from their smalls behavior. Re-
cently, a new kind of level statistics has been found
one-dimensional quasiperiodic systems, that show
power law behavior, revealing a level clustering me
anism[23]. To do the spectral statistics, in princip
one needs to find the phonon eigenvalue spectrum
then obtain the level spacing statistics through an
folding process[22]. A very important fact is that the
level statistics do not care about the height of e
frequency peak in the Fourier spectrum. In order
include this fact, we made cutoffs at different heig
in the spectra ofFigs. 1(a) and (b), as shown, respe
tively, in Figs. 2 and 3, where the unnormalizedP(s)

are presented to show the number of harmonics
ated for each level spacing. When the cutoff is hi
we only get the most prominent peaks, while fo
cutoff at zero all the peaks are considered. Com
ing Figs. 2(a) and 3(a), it is observed that the dif
ference between the harmonic (open circles) and
harmonic (open squares) spectra is larger in the
than in the periodic chain, as obtained in an analy
based on the rotating-wave approximation[16]. Nev-
ertheless, in the present analysis when a non-lin
interaction is introduced in the FC,P(s) grows for
small s, which means a tendency towards level cl
tering and an efficient creation of new peaks, contr
to the results obtained from the rotating-wave appr
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Fig. 2. Level-spacing distribution [P(s)] with unfolding for the
same periodic chain as inFig. 1, using cutoffs in the displacemen
spectrum of (a) 0.1, (b) 0.01, and (c) 0.0. The open circles corre
spond to non-linear interactionη = 0 and open squares toη = 0.2β .

imation, where the total number of resonance frequ
cies remains the same since they are only shifted f
their original positions. When the cutoff is decreas
to 0.01, Figs. 2(b) and 3(b), more anharmonic mode
with high amplitude are observed in the FC, whi
supports the hypothesis of an efficient generation
harmonics. Finally,Figs. 2(c) and 3(c)show a similar
P(s), where a series of peaks separated by a reg
distance are obtained. This happens because the
ber of peaks is of the same order of magnitude t
the grid points of the frequency and then, the pe
are separated by few grids spacings. In our case
count of peaks is almost 2.1× 105 peaks and the par
tition of time produces a discretization inω of size
�ω = 2π/(Nt�t), i.e., there are 6.6 × 105 frequency
partitions in the interval[0,2.5ω0]. One would ex-
pect that this feature could be removed by increas
Nt . To test this idea, we have performed a calculat
using aNt = 225 and surprisingly the results rema
essentially unchanged. This fact could be due to
-

Fig. 3. Level-spacing distribution [P(s)] with unfolding for the
same FC as inFig. 1, using cutoffs in the displacement spectru
of (a) 0.1, (b) 0.01, and (c) 0.0. The open circles correspond
non-linear interactionη = 0 and open squares toη = 0.2β .

fractal nature of the attractors in both periodic and q
siperiodic systems when anharmonic interactions
present[18].

In summary, we have studied the anharmonic
brational modes in quasiperiodic systems beyond
rotating wave approximation. The results show an
ficient generation of harmonics with high amplitu
in the FC compared with the periodic case. The le
spacing statistics reveals that the self-similar vib
tional spectrum of the FC is unstable upon anharmo
interactions. This fact could be important in the und
standing of the mode softening in quasiperiodic el
tric circuits[14], and the lack of clear observations
self-similar spectra in real quasicrystals[8].
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