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Abstract

The effects of anharmonic interactions on the phonon modes in quasiperiodic systems are studied by looking at the time-
evolution Fourier spectrum. The results reveal an efficient generation of high-amplitude harmonics in Fibonacci chains. We
also perform an energy-level-spacing analysis of the spectrum. Anharmonic contributions do clearly manifest by changing
the level clustering behavior observed in quasiperiodic chains, and contrary to the periodic case, where the distribution is
insensitive to weak anharmonic interactions. This result suggests a structural instability of the self-similar vibrational spectrum
in quasiperiodic systems.
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The study of non-linear effects in materials has the transport properties of a systéB). For instant, it
been subject of intense research in the last defdde  is known that non-linear interactions are essential to
From the theoretical point of view there are many im- explain the finite thermal conductivity of a material.
portant questions that are still open, and at the sameA common belief is that in periodic systems, where
time many important applications have been found, the phonons have extended wave functions, the addi-
for example, the generation of optical harmonics using tion of a non-linear term to the Hamiltonian leads to
a quasiperiodic superlattid@]. An interesting ques-  localization. This type of localization is called intrin-
tion is how non-linearity affects the localization and sic[1] and is not produced by disorder, as in the linear

Anderson Hamiltoniap4]. These localized modes are
also known as discrete breath¢s, and have been
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optical waveguides arrays and laser-induced photonic ,, @
crystals[1]. From these considerations, it is natural ! dr2
to expect that when both non-linearity and disorder i —u)d—nw;—uj—13 Q)
are present, localization is enhanced. However, the
situation is much more complex since several one-
dimensional models with correlated disorder exhibit
delocalized state6], which have recently been con-

firmed using mlqrowave Wave.gwd.Eﬁ. ~stant. In this Letter, we set the units of mass = m
Another fascinating question is what happen in and for spring constan, 4 = B. Usually, to obtain

quasiperiodic systems, since they are not randomly ¢, stationary solutions of non-linear equatiqas,
disordered neither periodic, instead they have a long- tne well known rotating-wave approximation is used
range order. A quasiperiodic potential can be de- [15]. |n a previous article, we used this method in con-
scribed as a Fourier series with more reciprocal baSiSjunction with the perturbation theory to study the FC.
vectors than the dimensionality of the systfgh For However, this approximation only predicts a shift of
example, the two-dimensional Penrose lattice can be the original frequenciefl6]. Also, there was no esti-
obtained by projecting a five-dimensional hypercubic mation of the accuracy of the solution. To go beyond
lattice into a plane. As a consequence, its recipro- this approximation, in the present work we use a to-
cal space is generated by five reciprocal basis vectorstally different approach. We solved the equations of
[9]. In real systems, quasiperiodicity can occur at an motion (1) by using a discrete timé\t = 0.1/wg to
atomic level as in quasicrystalline metallic alldy9)], optimize the efficiency of the simulation, whebg =

or can be found in artificial superlattices, for example, +/B/m. At each time we calculated the force, velocity
by alternating layers of GaAlAs and GaAs following and acceleration of the atoms in the chain, using the
a Fibonacci sequendd1,12] Recently, it has been leap-frog integration methofd 7]. Periodic boundary
found that quasiperiodic multilayers are useful for conditions were used for chains of = 2584 sites.
efficient generation of optical second and third har- As initial conditions, we chose zero velocity for all
monics[2]. This kind of multilayers can be treated ~atoms, i.e.p;(0) =0, and a delta function at a site in
theoretically as one-dimensional systefh8]. How- .the chaln,. for exam'ple4j(0.) =adj1, Whgreq is the
ever, up to our knowledge, the anharmonic effects in interatomic separation. This delta function is a super-

quasiperiodic systems have not been studied systematJ_Oo_Sition of all nor_mal_ modes a_nd its Fourier transform
ically. For instance, there is an experimental observa- Is just a flat function in the reciprocal space. As a con-

tion of a softening of the eigenmodes in an equivalent ;ﬁqrﬁgggg’va?he t'hsessu;reng?/vrgitiet ftc)) ?glgzg](?icol esxtgrtr']nsg
electric circuit[14]. In this Letter, we further pur- 9 P y '

sue this problem by looking at the phonon spectrum avoiding the mode recurrence problem that was found

f iveriodi ¢ ith anh i int after the pioneering work of Ulam—Fermi—Pagi8).
Ei)o:squasmerlo IC system with - anharmonic INterac- 5 e the chain was excited with this initial condition,

L ider th ol iveriodi the system was allowed to evolve until it reached a
EtkUS consl er:t E.LnOSt S|_mphe _quangaer!o 'Ch?yﬁ' number of time stepsV; = 2, where! is an integer
tem, known as the Fibonacci chain (FC), in which ¢ usually had the value 24, determined by the largest

two kinds of atoms,A and B, are arranged follow-

. he Fib . : i defi integer that the computer can handle. Then, we took
Ing the Fi onaccl sequend@], i.e., if one defines 0 fact Fourier transform of the whole set of displace-
the first generatiorf; = A and the second ong, =

=Bjujt1—u;)—pBj_1(uj —uj_1)

wherem; can either ben or mp, andu; is the dis-
placement of atonj at timer. The anharmonic inter-
action parametey is supposed to be smaller than the
harmonic interactiors; and then is taken as a con-

, , mentsu ; ()
BA, the subsequent generations are givenHyy=
F,_1® F,_». For instancefs = BAABABAA. In Ns || 1 fmax .
a FC, the spring strength between atoms depends onU(@) = A D uj@e )
their nature, giving two different force constartg, j=tl7" =0

andBap = Bpa. Thus, the phonon dynamics of a FC, wheretmax= N;At.
including a quartic anharmonic term in the phonon To test the procedure, we use a periodic chain
Hamiltonian, can be described by (Bap = Baa = B andm 4 = mp = m) with only har-
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Fig. 1. Fourier spectrum of the displacements with (open squares)
and without (open circles) non-linear interaction= 0.28) for (a)

a periodic chain, and (b) a Fibonacci chain withg = 844 /2, both
containing 2584 atoms. Insets: amplifications of two regions of each
spectrum. In all the figures, the harmonic data have been vertically
shifted by a factor of 10%.

monic interactions, and its spectruii ()) is shown

in Fig. 1(a) as open circles, where the peaks are lo-
cated exactly at the same frequencies as those obtaine
from the diagonalization of the dynamic matrix or
from the analytical dispersion relation, i.ev(k) =

2wg sin(ka/2), being the wave vectar = 27n/Nia,

with n € Z. Notice that there is a peak at zero fre-
quency that can be deduced by integrating the momen-
tum conservation and using the initial conditions

Ny

Zuj(t)za.

j=1

®3)

Applying a Fourier transform to the previous equation,
we get

Ns
> () =ad(w), 4

j=1

143
where
fmax
ij(@) =Y ujn)e”, (5)
t=0
and
fmax
(6)

S(w) = Z el
t=0

The last function becomes a Dirac delta in the limit
tmax — oo. In particular, forw = 0, this function gives
8(0) = N;. Considering the nature of the zero fre-
quency mode, i.ei;;(0) is a positive constant due to
the initial conditions, the summation of displacements
for the zero frequency mode is

NS
U@ = NiZHQj(O)H =a. @)
=]

In general, for the case of harmonic Hamiltonians,
the height of each peak in the spectrum can be easily
obtained by a decomposition of the solution in normal
modes of frequency, , which leads to

NV
U) =) U8 — o),

(8)
a=1
where
Nis
Uo) =) 1Azl ©
j=1

d

is the height of the peak with frequeney, in the
spectrum, and the coefficients;, are obtained by a
projection of the initial conditions onto each normal
mode. For the periodic case, our initial conditions con-
duct to

NS
Ul@a) =1 D_|cod2ralj - /M| (10)
N j=1

In the limit Ny — oo, the value ofU (wy) is 2a/m,
which is in agreement with our numerical results (open
circles inFig. 1(a)), where it is important to remark
that in the data from the harmonic systems have been
vertically shifted by a factor of 10 in order to im-
prove the comparison with the non-linear cases.

For non-linear Hamiltonians, we first tested the
procedure by using a three-atom chain, where the
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analytical results obtained from perturbation theory G, s =0, the process is known as normal. Processes
[18] show a good agreement with the numerical ones. with G,, s # 0 are responsible for thermal conductiv-
Then, we introduce a small non-linear tetm= 0.28) ity and are known as umklapp. In a quasicrysta),

to Eq. (1) for a periodic chain of 2584 atoms, and covers in a dense way the reciprocal spfje thus

the spectrum remains almost equal (open squares inalmost all processes are umklapp. In fact, there is al-
Fig. 1(a)). A blown-up of the acoustic region shows ways aG,, s as close as needed and then momentum
that the main effect is just a shift of the peaks to- conservation is not a restriction anymore. The only re-
wards higher frequencies. This shift is more evident at maining condition is energy conservation. As a result,
the middle of the spectrum, as shown in the insets of three of these wave vectors can be chosen without any
Fig. 1(a). These shifts in frequency can be predicted restriction, making the system much more efficient to
within the rotating-wave approximatidi6]. For the generate harmonics.

case of an harmonic FC withg = m andBap = 8/2, A useful way to extract information from the spec-
open circles inFig. 1(b), we got exactly the same trum is to do level spacing statistics, since there is a
eigenfrequencies than those obtained from a diagonal-close relationship between the nature of localization
ization of the Hamiltonian. The shape of this spectrum and its eigenvalue statisti§®2], e.g., for a disordered

is known to be a multifractal s¢t9], and corresponds  metal, a Wigner distributioPy (s) ~ s exp(—ms2/4)

to a singular continuous spectra, with critically local- is observed, while for a disordered insulator it be-
ized normal mode$20]. This kind of spectrum has comes a Poisson’s laWp (s) ~ exp(—s), wheres =
gaps almost everywhere since the reciprocal space of|w;+1 — w;|/A is the frequency difference of consec-
a quasicrystal is a dense set. Open squaregini(b) utive peaks in the spectrum divided by the mean level
show the spectrum of the same FC including a small spacingA. The essential difference between these two
non-linear term{ = 0.28). In this case, the effectis  distributions arises from their smaidl behavior. Re-
dramatic in the sense that not only the original har- cently, a new kind of level statistics has been found in
monic peaks are shifted, but also new peaks appearsone-dimensional quasiperiodic systems, that shows a
inside the gaps of the spectrum. The intensity of these power law behavior, revealing a level clustering mech-
new peaks is in general two orders of magnitude larger anism[23]. To do the spectral statistics, in principle
than those found in the periodic case. Furthermore, one needs to find the phonon eigenvalue spectrum, and
for an anharmonic FC, the spectral limit is extended then obtain the level spacing statistics through an un-
well beyond the case of a pure harmonic FC. From this folding procesg22]. A very important fact is that the
analysis, it is clear that the FC is much more efficient level statistics do not care about the height of each
for generating high order harmonics. A simple expla- frequency peak in the Fourier spectrum. In order to
nation for this phenomena is given by the structure of include this fact, we made cutoffs at different heights
the reciprocal space of a quasicrystal. Quasiperiodic in the spectra oFigs. 1a) and (b), as shown, respec-
systems can always be described as a succession of ratively, in Figs. 2 and 3where the unnormalizeff (s)
tional approximants, this succession tends to the qua-are presented to show the number of harmonics cre-
siperiodic system in the limit of an infinite unitary cell ated for each level spacing. When the cutoff is high,
[8]. Each approximant has bands, well defined wave we only get the most prominent peaks, while for a
vectors ), and a dispersion relation of the type (), cutoff at zero all the peaks are considered. Compar-
where y is the band index. Now, if we look to the ing Figs. 2(a) and 3(a)it is observed that the dif-
quartic anharmonic interaction as a phonon collision, ference between the harmonic (open circles) and an-
where two phonons with wavevectors andkz anni- harmonic (open squares) spectra is larger in the FC
hilates to form two new phonons with wave vectbgs than in the periodic chain, as obtained in an analysis
andky, then, for each process the energy is conserved, based on the rotating-wave approximat{@6]. Nev-

Wy, (k1) +wy, (k2) = Wy (k3) +wy, (ks), as well as mo- ertheless, in the present analysis when a non-linear
mentum,k1+ k2 + k3+ k4 = G, 5, Where for a FC interaction is introduced in the FQ(s) grows for
Gns=2r1 (\)~Y(m + s7) is a vector in the reciprocal  small s, which means a tendency towards level clus-
spacegr = (14 +/5)/2,m, s € Z, and () is the aver- tering and an efficient creation of new peaks, contrary
age lattice paramet¢?1]. If the lattice momentum is  to the results obtained from the rotating-wave approx-
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Fig. 2. Level-spacing distributionH(s)] with unfolding for the Fig. 3. Level-spacing distributionH(s)] with unfolding for the

same periodic chain as Iig. 1, using cutoffs in the displacement  same FC as iffFig. 1, using cutoffs in the displacement spectrum
spectrum of (a) @, (b) 001, and (c) . The open circles corre- of (a) 01, (b) 001, and (c) . The open circles correspond to
spond to non-linear interactiop= 0 and open squares {o= 0.28. non-linear interactiom = 0 and open squares to= 0.28.

imation, where the total number of resonance frequen- fractal nature of the attractors in both periodic and qua-
cies remains the same since they are only shifted from Siperiodic systems when anharmonic interactions are
their original positions. When the cutoff is decreased Presen{18]. o
to 0.01, Figs. 2(b) and 3(h)more anharmonic modes In summary, we have studied the anharmonic vi-
with high amplitude are observed in the FC, which brational modes in quasiperiodic systems beyond the
supports the hypothesis of an efficient generation of rotating wave approximation. The results show an ef-
harmonics. FinallyFigs. 2(c) and 3(c3how a similar ficient generation of harmonics with high amplitude
P(s), where a series of peaks separated by a regulari” the FC compared with the periodic case. The level
distance are obtained. This happens because the numspaCing statistics reveals that the self-similar vibra-
ber of peaks is of the same order of magnitude than tional spectrum of the FC is unstable upon anharmonic
the grid points of the frequency and then, the peaks interactions. This fact could be important in the under-
are separated by few grids spacings. In our case, thesStanding of the mode softening in quasiperiodic elec-
count of peaks is almost 2x 10° peaks and the par- tric circuits[14], and the lack of clear observations of
tition of time produces a discretization in of size ~ Self-similar spectra in real quasicrystg.

Aw =21 /(N; A1), i.e., there are 6 x 10° frequency

partitions in the intervalO, 2.5»0]. One would ex-

pect that this feature could be removed by increasing Acknowledgements

N;. To test this idea, we have performed a calculation
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