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We show that under a random phasonic field, there is a hierarchy in the probability of making a phason in
real space. This effect divides the quasicrystal in a stable backbone plus an unstable part. The stable backbone
and the unstable sites are obtained by the deflation rules of the corresponding quasicrystalline lattice, and thus
analytical formulas to find the stable and unstable parts are provided. A discussion is made about how the
electronic stabilization of a quasicrystal is affected by phason jumps in unstable sites. As a result, it is shown
that phasons in unstable sites do not compromise the electronic stabilization of the structure, since they only
affect low-amplitude diffraction spots of the quasicrystal.
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I. INTRODUCTION

Quasicrystals are materials that have long-range orienta-
tional order but without periodicity.1 This particularity means
that they are considered as a different kind of matter agglom-
eration, and after two decades of intensive research that fol-
lowed the discovery of quasicrystals, many features are now
understood in a general fashion,2 such as the nature of the
structure, or the electronic stabilization of the structure via
the Hume-Rothery mechanism.2 Other physical properties
still are not completely well understood,3 as for example, the
behavior of the elementary excitations, such as electrons or
phonons. Both excitations are important in order to explain
the thermal and electronic conductivities. Experiments show
that although quasicrystals are made from metals, their con-
ductivity is similar to that observed among amorphous
semiconductors.3 However, theoretical studies4,5 and numeri-
cal simulations6 predict a marginal metallic regimen due to
the Conway theorem, since from a theoretical point of view,
the wave function resonates in a self-similar way.6 In spite of
this, when the effects of frustration of antibonding states
around the Fermi level are considered, the conductivity can
be reduced by a considerable amount by localizing the wave
function.7 In fact, frustration produces a kind of mobility
edge in two dimensions,7 which has been confirmed in many
numerical simulations.8–10Another question that up to now is
not completely solved is how do quasicrystals grow. There
are many clues that this happens by an agglomeration of
clusters,11 but it is clear that any attempt to solve this ques-
tion completely must be related to the fact that quasicrystals
are stabilized via the Hume-Rothery mechanism, i.e., the
structure has to produce a pseudogap of the density of states
around the Fermi level in order to reduce the energy per
electron. Another particularity of quasicrystals is the extra
degrees of freedom that are present in the elastic properties12

and that are related to the behavior of the elementary excita-
tions and stability.13 In a crystal, any function of the density
sand the density itselfd is described as a superposition of
reciprocal wave vectors. Then the Fourier transformsFTd of
the density is just a series of sharp spots in the reciprocal
space. A perturbation on the Fourier transformsFTd phases
of the atomic positions induces a displacement of the atoms.
Associated with such a perturbation, there are three hydro-

dynamic modes: two transverse and one longitudinal acous-
tic phonons.12 These are the Goldstone modes associated
with the breaking of a continuous symmetry, in this case the
translational invariance of the Hamiltonian. A quasicrystal-
line structure is obtained by projecting a hyperlattice inD
dimensions into a reald dimensional space, and the FT con-
tains more reciprocal basis vectors than the dimension of the
space.2 There areD−d of such degrees of freedom for the
phases of the FT. A change ind of these phases produces
phonons, while a change in the remaining phases produces
local rearrangements of some atomic sites.12 The correspond-
ing hydrodynamic Goldstone modes associated with these
changing phases are calledphasons. Phason modes are dif-
fusive, with very large diffusive times.14 Phason jumps have
been seen by time-of-flight experiments.15

Phasons are considered as low-energy excitations, but on
the other hand, a phason corresponds to a rearrangement of
sites that requires jumps over local energy barriers, which are
of the order of the energy for creating a vacancy in the lattice
sEvd. This seems to be contradictory, but, in fact, the picture
depends on the scale. At small scales, phasons are local
jumps, but at macroscopic scales, symmetry and conserva-
tion laws determine the dynamics.12 From the atomic point
of view, phasons in real space should be considered as local
defects with only short-distance correlations. The hydrody-
namic picture suggests long-distance correlations.16 In this
paper, we show that a random phason field produced in a
hyperlattice leads to a certain spatial correlation in the prob-
ability for making a phason because some parts of the QC
are more unstable against phason disorder. These sites hap-
pen to be obtained from the deflation rules, and thus there is
a hierarchy in the probability for making phason jumps. As a
result, there is a well-correlated distribution for phason
jumps, with a length scale bigger than the original lattice. In
fact, there are some direct experimental observations using
an atomic-resolution annular dark-field scattering transmis-
sion electron microscope of localized atomic jumps that are
well correlated in a superlattice of the quasicrystal that is
deflated with respect to the original one.17 Here we will also
discuss some consequences of this fact, especially in the sta-
bility and dynamics of the lattice, since we expect that the
structure must remain stable against phason jumps in the
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unstable sites and thus the effects of phasons will depend
strongly on the atomic site, as has been found in numerical
investigations of the Penrose tiling.18

The structure of this paper is the following. In Sec. II we
explain how this phason hierarchy in deflated lattices arises.
Section III is devoted to finding the positions for phason
jumps in two-dimensionals2Dd and three-dimensionals3Dd
lattices. In Sec. IV, we discuss the relationship between elec-
tronic stability and phason jumps; and finally, in Sec. V we
give the conclusions of the work.

II. PHASON HIERARCHY AND DEFLATION RULES

The phason hierarchy for the probability of making a pha-
son and its relation with the deflation rules can be explained
in a simple way by using the Fibonacci latticesFLd. In Fig. 1,
the usual cut-and-projection scheme is shown:19 a line Ei

with an inclinationa=sÎ5−1d /2 crosses a 2D square lattice,
that we denote byL. The FL is obtained by projecting, onto
Ei, the points falling inside a band of widthL. The high
dimensional space is subdivided intoEi and its orthogonal
complementE'. Using this subspaces, any pointr can be
written as r =r i+r '. The coordinates of the FL arex
=r iWsr d, whereWsr d is the window function, which is one
when r falls inside the band and zero in any other case.

For higher dimensions, the scheme is exactly the same:L
is a hypercubic lattice ofN dimensions. The dimension of the
space to be tiled can bed=2 or d=3, and E' has N−d

dimensions. The coordinatesx of the lattice in the tiling sub-
space are,19

x = o
rPL

r iWsr d = o
l=1

N

o
nl=−`

nl=`

nlelWSo
l=1

N

nlqlD ,

whereel swith l =1,… ,Nd are the projections of the hyper-
cubic basis vectorssqld onto the parallel subspace.

A phason field can be introduced just by moving the band
in E' at each pointr . As the window is moved, some points
leave the band and some others are included in it. When this
happens, a phason is produced in the “real space” of the
quasicrystal. Points near the edges of the band fall very eas-
ily outside the band because, in such points, even a small
movement of the window can throw them out of the lattice,
whereas points at the center are very difficult to move.
Clearly, the points near the center are very stable against
window movements; they constitute what we will call the
stable backbone. The main property of this set of stable
points is thatir 'i is very small.

To be more precise, the effect a phason field in the coor-
dinates of the FL can be written asx=r iWfr +h'sr dg, where
h'sr d is the displacement of the band inE'. Using that
Wfr +h'sr dg=Wfr i+r '+h'sr dg, points wherer '< ±L /2
are very close to the edge of the band. This situation makes
them “unstable” against phason disorder since, even for a
very smallh'sr d, they can be dropped out. This observation
holds for any phason field, whatever the shape of the func-
tion h'sr d, that can be a periodic modulation or even a ran-
dom function. In the case of a random field, we can model
the field byh'sr d=Axsr d, whereA is the amplitude of the
field, andxsr d is a random variable with the most simple
distribution: a uniform distribution betweenf−1/2,1/2g, al-
though the results for other distributions are similar. To avoid
vacancies in the lattice, we will assume thatA,1/2, which
still is a large amount of disorder compared to the average
distances in the lattice. For the particular case of a random
field with a uniform distribution, it is clear that the probabil-
ity of producing a phasonfpphsr dg in an unstable region is
pphsr d=fir 'i−sL /2−Adg /2A, i.e., pph~ ir 'i /2A snote that
the 2 in the denominator is due to the fact that only half of
the movements of the window are in the direction where the
points leave the bandd.

A way to generate the stable lattice is to use two displaced
quasilattices inE', one displaced byA and the other one by
−A in the direction ofE'. The points that are stable against
the perturbation are those that remain inside the three bands,
since even a displacement of sizeA of the band can not
throw them away, as explained in Fig. 1. However, finding
the points that fall in the intersection of the three bands is
equivalent to obtain a quasiperiodic sequence with a different
narrow effective band width of sized;L−2A. Thus, the set
of stable points is given byr iWstablesr d, where

Wstablesr d = H1, if ir 'i ø d

0, in any other case
. J

As can be observed from a direct inspection of Fig. 1, the
effect of shrinking the bandwidth is just equivalent to create

FIG. 1. Schematic illustration of the cut and projection method.
The bandsspace delimited between the two solid inclined dark
linesd is displaced +A and −A alongEi, as indicated by the arrows.
The corresponding bands are denoted by two different filling pat-
terns. The effective bandwidth corresponds to the intersection of
these two patterns. Stable sites are represented by dark-filled
circles. Unstable sites that result from the displacement by
−As+Ad are shown as open circlessopen squared. The resulting
deflated lattices are indicated by arrows alongEi.
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a deflated lattice with some vacanciessif the band is moved
in only one direction alongE', the deflated lattice has no
vacancies; vacancies appear when the movement along the
other direction is consideredd. Figure 1 also shows that un-
stable points are in two deflated lattices.

This also suggests thatpph has a hierarchy determined by
the deflation rules in the following sense. We say that two
vertices of a quasiperiodic tiling, sayr 1 andr 2 belong to the
same probability hierarchy if they satisfy the following in-
equality for a chosen degree of precision given by a small
quantitye bigger than zero,

ipphsr 1
'd − pphsr 2

'di , e, s1d

and sincepphsr 'd~ ir 'i /2A, we get,

ir 1
' − r 2

'i , 2Ae. s2d

The last equation means that for smalle, all of the points that
differ by e in their probabilities also have a distance in per-
pendicular space given by 2Ae. But again, all of these points
fall inside a band determined by a window of width 2Ae.
Thus, the set of points that satisfy Eq.s2d, when projected to
real space also form a quasiperiodic lattice where the vertex
positions are atr iWeffsr d, and the effective window is

Weffsr d = H1, if ir 'i ø 2Ae

0, in any other case
. J

We know that this is just a deflation of the original lattice
because the orientation of the band has not been changed;
only the density of points has been lessened as a result of the
narrower band. Note that due to the different possible direc-
tions of the band displacement, one gets more than one de-
flated lattice. These lattices only differ by a translation in real
space, as can be seen in Fig. 1. In the Appendix, the case of
the FL is worked out with analytical formulas. As a result,
the probability of making a phason in thenth site of the
lattice is given by

pphsnd = suhnaj − 1/2u − 1 +Ad/2A, s3d

where hzj denotes the fractional part ofz. The points with
maximal probability are the ones that havehnaj.0,1.

III. STABLE BACKBONE AND UNSTABLE SITES IN 2D
AND 3D QUASICRYSTALS

In this section, we obtain an analytical expression for the
stable and unstable parts of a quasiperiodic tiling, using
some formulas for the QC vertex coordinates that we ob-
tained in a previous work.20 Using the generalized grid
method,12 the QC is built fromN star vectorsel, where l
=1,… ,N. To detect the stable regions, we apply a shift ±A to
the window function. We can apply different shiftsAl for
each of the directions inE'. To simplify the expressions we
will consider the same uniform shift in all directions. The
corresponding expressions for a 3D QC with a shift in the
window function is given by

x8 = o
k, j,s

N H o
g,d,e=0

1

o
ns,nj,nk

` Fsns + gdes + snj + ddej + snk + edek

+ o
lÞ jÞkÞs

N

„ dRsns,nj,nkd 7 Ae …elGJ , s4d

wheredze= bzc+1, bzc is the floor function ofz, andRsns,nj ,nkd
is a function defined by

Rsns,nj,nkd = xns

Vlsj

Vsjk
+ xnj

Vljk

Vsjk
+ xnk

Vslk

Vsjk
− al

and ns, nj , nk are integers that run from −̀ to `, l , k, j ,
and s are integers that run from 1 toN, Vlsj is the volume
defined by Vsjk=es·sej 3ekd, al are real numbers forl
=1,… ,N that define a phase in each direction of the star
vectors.20 xns

is an abbreviation forxns
=ns−as±A. Note that

the last sum overl in Eq. s4d is carried only forl Þ j Þk
Þs. The condition for the unstable points is similar to the
one obtained for the FC and consists of an analysis of the
floor function of Eq.s4d. After some algebra, using the iden-
tity z= bzc+hzj, the condition for the unstable regions is

hRsns,nj,nkd 7 Aj = hRsns,nj,nkdj 7 A ± 1. s5d

Thus, the probability of making a phason in sitex is given by
the condition,

pphsxd = fhRsns,nj,nkdj − 1/2 −s1 − Adg/A. s6d

The unstable points are those for which

ns
Vlsj

Vsjk
+ nj

Vljk

Vsjk
+ nk

Vslk

Vsjk
< as

Vlsj

Vsjk
+ a j

Vljk

Vsjk
+ ak

Vslk

Vsjk
+ M ,

for the directions defined by the star vectorses,ej, with re-
spect to the directionel. The integerM can take the values 0
or 1. These equations correspond to regions that define worm
planes. A similar calculation for a 2D tiling shows that in fact
the unstable regions coincide with lines that are called
worms.21 Here we showed that there is a hierarchy in the
probabilities for creating worms in different parts of the lat-
tice.

IV. ELECTRONIC STABILITY AND PHASON DISORDER

We may wonder if all of the previous properties have
some physical consequences. Suppose for example that ther-
mal noise produces random fluctuations of the band. If this is
true, at a certain temperature there will be always sites of the
lattice that are more stable than others. In fact, we expect that

A should be of orderl̄ exps−Ev /kTd, wherel̄ is the average
separation of atoms. As a result, when the temperature of the
quasicrystal is changed, some sites will show more jumps
than others, and these sites are going to form a deflated sub-
lattice. Very recently, a similar effect has been observed17 in
the imaging of the thermal vibration of decagonal
Al72Ni20Co8, which suggests that there is some degree of
hierarchy in the lattice. A second question that arises from
the previous scenario is the following: since quasicrystals are
stabilized by the electronic structure that produces a
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pseudogap around the Fermi level, should one expect a ro-
bust electronic density of states with respect to sites where
there is a high probability of making a jump? It is natural to
think that points in the stable backbone are the ones that
mainly determine the electronic structure.

To answer this question, let us consider the most simple
Hamiltonian to model the electronic structure: ans-band
tight-binding Hamiltonian defined on a chain ofn sites, with
a potentialVn at site n, and hopping integraltn+1 between
sitesn andn+1. The corresponding Schrödinger equation is
tncn−1+ tn+1cn+1+Vncn=Ecn, where cn is the value of the
wave function at siten. This equation can be rewritten in
terms of a transfer matrixTn,

Tn = FsE − Vnd/tn+1 tn/tn+1

1 0
G ,

and a vectorCn with componentsscn,cn−1d, such that
Cn+1;TnCn. The wave function at siten is given by a suc-
cessive application of the transfer matrix,

Cn = TnTn−1 . . .T1C1 ; MnC1. s7d

The spectrum is the set of energies for which the trace
normtnsEd; trMn is ,2.4 The FL is made with two kinds of
atoms,L andS, arranged following the Fibonacci sequence,
i.e., if one defines the first generationFchs1d;L and the
second oneFchs2d;LS, the subsequent generations are
given by Fchsld=Fchsl −1d % Fchsl −2d. For instance,Fchs3d
=LSL. To each kind of site we assign a potentialVL or VS.
For simplicity we will suppose that all the hopping integrals
are equaltn= t. The total transfer matrix for a FL can be
written using a recursion rule for the matrices of previous FL
generations,4

MFsld = MFsl−1dMFsl−2d, s8d

whereFsld is a Fibonacci number of generationl, defined as
Fsld=Fsl −1d+Fsl −2d, with initial conditions Fs0d=1 and
Fs1d=1.

A simple way to perform a single-phason flip in a FL of
generationFsld for l even, is obtained by reversing the recur-
sion rule only for the last step of the construction,

MFsld
p = MFsl−2dMFsl−1d, s9d

where MFsld
p is the resulting matrix with a phason flip. For

example, the FL of generation 4 is the sequence:LSLLS
made by joining a chain of generation 3ssequenceLSLd and
generation 2ssequenceLSd. If this chains are joined in re-
verse order in the last step of recursion, we getLSLSL, which
is the original chain plus a phason flip at the end. To prove
that the energy spectrum remains invariant under this flip,
consider the trace ofMFsld

p . Using the recursion for the trans-
fer matrices we get

trMFsld
p = trfMFsl−2dMFsl−1dg = trfMFsl−2dMFsl−2dMFsl−3dg,

but using the cyclic property of a matrix product trace

trfMFsl−2dMFsl−2dMFsl−3dg = trfMFsl−2dMFsl−3dMFsl−2dg

= trMFsld.

Thus, trMFsld
p = trMFsld, which shows that a phason in this

special site leaves the electronic spectrum unchanged. An-
other important relation can be obtained from the previous
sequence of cyclic permutations

trfMFsl−1d
p MFsl−2dg = trfMFsl−3dMFsl−2dMFsl−2dg = trMFsld.

s10d

Since MFsl−1d
p is a sequence with a phason flip at siteFsl

−1d, thenMFsl−1d
p MFsl−2d is a sequence with a phason flip at a

the site where two Fibonacci sequences of previous genera-
tions are joined. For example, for generation 5, we take gen-
eration 4 with a phason flip at the end,LSLSL, and we join it
with the sequence of generation 3,LSL. If we join both se-
quences following Eq.s10d, we get the sequenceLSLSLLSL,
which has a phason flip between sites 4 and 5, since the
original sequence isLSLLSLSL. In the Appendix, it is shown
that this site is the one with the greatest phason probability.
We can conclude that at least for this special site, there is a
clear relationship between phason and electronic stability.
Phasons in some other sites of the FL can change in a dra-
matic way the spectrum and induce a localization transition22

because of the self-similar properties of the FL Green’s
function.22 The method presented here, i.e., the decomposi-
tion in products of lower generations and then the application
of the cyclic permutations, allows the construction of chains
with the same spectrum but different degrees of phason dis-
order. Although the previous demonstration is very clear, it
does not provide an explanation of what is behind this re-
markable property. To have a better understanding, let us
study the structure of the potential in reciprocal space. For a
Fibonacci sequence, the potential at siten can be written as

Vsnd = V̄ + DVfsnd, s11d

where fsnd is the hull function defined as

fsnd = hnaj − hsn + 1daj, s12d

a is an irrational numberfin this casesÎ5−1d /2g, V̄ is the
average potential energy, given byaVA+a2VB, and DV
;uVA−VBu is a fluctuation part. The fractional part of a num-
ber is a periodic function with the shape of a sawtooth and
can be Fourier expanded to get

Vsnd = V̄ + o
s=1

`

Ṽssdcosfpsas2n + 1dg, s13d

whereṼssd is thes harmonic of the Fourier series,

Ṽssd = 2DV
sinspsad

ps
. s14d

Note that each harmonic of the series is in the form of a
Harper potential, for which a lot of properties are known.23,24

In other words, a Fibonacci potential is just a superposition
of Harper potentials with an appropriate weight plus an over-
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all shift given by the average potential energyV. As ex-
plained in the Appendix, phasons are obtained by changing
the fractional part with a random function. The correspond-
ing potential can be written as,

Vphsnd = V̄ + DVhfsn − 1da + Axsn − 1dg − fna + Axsndgj,

where xsnd is a random variable with uniform distribution
between −1/2 and 1/2. Sites in the stable backbone are not
affected by disorder, while the most unstable points are those
wherehnaj<0,1. These points are the ones that are in the
edges of the sawtooth functionhzj. An heuristic explanation
of the stability of the spectrum is the following: to define the

edges ofhzj in a sharp way,Ṽssd coefficients of very high
frequency are needed in the Fourier expansion. For high fre-
quencies, these coefficients are very small, and albeit the
reciprocal space of quasicrystal is a countable dense set, it
has been shown that only very few of the reciprocal-lattice
vectors are of importance in altering the overall electronic
structure.25 To further develop this idea, consider the case of
just one phason between sitesm and m−1. The potential
energy with such a phason can be written as

Vphsnd = Vsnd + fVsn − 1d − Vsndg

3 fdsn − md − dsn − m+ 1dg, s15d

wheredsn−md is a d function at sitem. Using Eq.s13d, and
that sins2psand=sinf2pssbanc+hanjdg=sins2pshanjd, the
previous equation is converted into

Vphsnd = Vsnd + o
s=1

`

2Ṽssdsinspsadsins2pshanjd

3 fdsn − md − dsn − m+ 1dg.

The second term in the last equation can be considered as a
perturbation of the original potentialVsnd. However, the term
sins2pshanjd in the perturbation is nearly zero whenever
hanj.0 or 1. The fractionhanj is never 0 or 1 due to the
irrationality of a sexcept of coursen=0d, but for a siten
where hanj!1, the perturbation part potential can be ex-
pressed as

8hanjDVo
s=1

sc

sin2spsadfdsn − md − dsn − m+ 1dg,

for any s lower than a cutoff determined by the condition
sc<1/2phanj. Terms withs.sc have a higher contribution

to sins2pshanjd, but the coefficientsṼssd are already very
small. This proves that for the first harmonics, the perturba-
tion is proportional tohanj wherehanj!1 sfor hanj.1, the
proof is similard. Furthermore, sincehnaj~Af1−2pphsr 'dg
−s1/2d, the perturbation decreases linearly with the probabil-
ity of making a phason. For higher harmonics, the perturba-
tion has more weight with respect toVsnd, but this only
affects Fourier coefficients of high frequencies, which have a
lower amplitude. In fact, for a rational approximant, the
spectral gapssDqd are produced by each diffraction spot of
the potential in reciprocal spacefVsqdg, due to the relation26

Dq.iVsqdi, whereq is a reciprocal wave vector. According

to our result, a phason in an unstable site alters mainly low-
amplitude diffraction spots, and thus the spectrum remains
similar since only small gaps are affected.

A similar argument can be invoked for a higher-
dimensional system. For simplicity, consider ad-function po-
tential of magnitudeV0 centered at each point of the lattice.
In that case, the Fourier transform of the potential can be
written as

Ṽsqd = V0o
x

eiq·x. s16d

As is well known, Eq.s16d with or without phasons can be
evaluated using the convolution theorem, and many years
ago the scaling of the peaks in terms ofq' was the source of
a debate between the random tiling model and perfect qua-
siperiodic tilings.12 Here we will concentrate on the elec-
tronic stability of phasons. For sites inside the stable back-
bone, Eq. s16d remains equal, while for points where a
phason is made, we add a bounded extra termDsxd that
produces a phason flip at positionx. We obtain

Ṽphsqd = V0 o
xPLst

eiq·x + V0 o
xPLph

eiq·fx+Dsxdg.

Lst denotes the set of points that belong to the stable lattice,
and Lph is the set of vertices in the unstable part. In some
previous works,20,27we showed that a quasiperiodic structure
can be described as an average structure plus a fluctuation
part, i.e., a vertex in a positionx can be obtained as an
averagekxl plus a fluctuation partfsxd, which is bounded.20

From Sec. III, it is easy to see that this fluctuating part is
given by

fsxd = o
lÞ jÞkÞs

N

hRsns,nj,nkdjel . s17d

As explained in Sec. III, points in the unstable part have the
property thatfsxd is very small. Using this piece of informa-
tion, and expanding the exponential for the bounded fluctu-
ating part, Eq.s16d can be written as

Ṽphsqd = Ṽsqd + V0o
t=1

`

o
r=0

`

o
xPLph

fiq · Dsxdgt

t!

fiq · fsxdgr

r!
eiq·kxl.

Since Dsxd and fsxd are smaller than the average atomic
separation, only for high values ofq the last term has an
important contribution. According to Eq.s6d, pphsxd
=fhRsns,nj ,nkdj−1/2−s1−Adg /A, which shows that the per-
turbation decreases with the probability of making a phason.
In fact, in a previous work we showed that the average struc-
ture contains a very important fraction of the scattered
amplitude.28 This average structure remains the same when a
small phason field is applied, and as a result, phasons in
unstable sites affect mainly higher harmonics, which have
less amplitude, with a small impact in the density of states. It
is worthwhile mentioning that in quasicrystals, the Hume-
Rothery argument is invoked in connection with the most
intense peaks in the diffraction pattern, which defines the
so-called Jones zone.2 In that sense, phasons at unstable sites
do not compromise the Jones zones and the Hume-Rothery
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mechanism. Also, the previous approach shows that very dif-
ferent effects on the density of states are expected, depending
on the site where the phason is performed. There is some
numerical evidence that this is the case,18 since the effects in
the electronic density of states of the Penrose strongly de-
pends on the type of flips in the lattice,18 as has been seen in
the analysis of the first spectral moments.29

V. CONCLUSIONS

In this paper, we have studied the probabilities of making
a phason in quasiperiodic lattices. In particular, we have
shown that the lattice can be divided into a stable backbone
plus sites where the probability of making a phason is bigger.
Furthermore, sites with a similar probability are in deflated
structures of the original lattice. The possibility of having
sites with high probabilities of phason jumps raises the ques-
tion of how the electronic stability of a quasicrystal depends
on such jumps. In a simple one-dimensional model, phason
jumps in unstable sites do not change the electronic spec-
trum. These unstable sites seem to affect less the electronic
spectrum due to the property of only changing reciprocal
vectors with a high moment. A similar argument in two and
three dimensions can be responsible for the robust electronic
density of states against phason disorder in unstable sites.
Note that very probably, there are some connections between
how quasicrystals grow and the creation of a stable backbone
with a hierarchical structure via some kind of self-similar
Peierls instability.
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APPENDIX

For the FL, the unstable and stable sites are easy to ob-
tain. Using the cut and projection technique, the coordinates
of the n point of the FL are given by27

xn = nL + sL − Sdbnac = nl̄ − sL − Sdhnaj, sA1d

wheren is an integer,l̄=s1+adL−aS is the average lattice
parameter,27 L andS are the two possible separations of the
quasilattice points,bzc is the integer part ofz, and hzj is the
fractional part ofz. If we apply a phason field into this ex-
pression, a sequencexn8 is obtained. Phasons are produced
when both sequences differ,

xn8 − xn = sL − Sdshna ± Axfsn,bnacdgj 7 A − hnajd

= ± sL − Sd,

since hnaj has period one. The stable points satisfy
hna±Aj=hnaj±A, and unstable points are those for which
hna±Aj=hnaj±A±1. Stable points correspond ton such that
A, hnaj,1−A, and unstable points satisfy 0ø hnajøA and
1−Aø hnajø1. If A→0 the most unstable points are those
wherehnaj<0 or 1, which means thatna< bnac. Whena is
approximated by the rational approximantFsl −1d /Fsld,
these points have the formn=mFsld, wherem is any integer.
Then, unstable points are separated by Fibonacci numbers.
For a uniform distribution of the random field withAÞ0, the
probability of making a phason in the unstable region is
given by

pphsnd = suhnaj − 1/2u − 1 +Ad/2A, sA2d

since ir 'i is the distance between the pointsn, bnacd in L,
and the subspaceEi defined by the liney=ax.
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