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Phason hierarchy and electronic stability of quasicrystals
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We show that under a random phasonic field, there is a hierarchy in the probability of making a phason in
real space. This effect divides the quasicrystal in a stable backbone plus an unstable part. The stable backbone
and the unstable sites are obtained by the deflation rules of the corresponding quasicrystalline lattice, and thus
analytical formulas to find the stable and unstable parts are provided. A discussion is made about how the
electronic stabilization of a quasicrystal is affected by phason jumps in unstable sites. As a result, it is shown
that phasons in unstable sites do not compromise the electronic stabilization of the structure, since they only
affect low-amplitude diffraction spots of the quasicrystal.
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I. INTRODUCTION dynamic modes: two transverse and one longitudinal acous-

Quasicrystals are materials that have long-range orientdiC Phonons® These are the Goldstone modes associated
tional order but without periodicityThis particularity means With the breaking of a continuous symmetry, in this case the
that they are considered as a different kind of matter agg|omt_ran3|at|0nal invariance of the Hamiltonian. A quaSicryStal'
eration, and after two decades of intensive research that foline structure is obtained by projecting a hyperlatticeDn
lowed the discovery of quasicrystals, many features are noWimensions into a real dimensional space, and the FT con-
understood in a general fashiérsuch as the nature of the tains more reciprocal basis vectors than the dimension of the
structure, or the electronic stabilization of the structure viaspacée There areD-d of such degrees of freedom for the
the Hume-Rothery mechanismOther physical properties phases of the FT. A change thof these phases produces
still are not completely well understoddis for example, the phonons, while a change in the remaining phases produces
behavior of the elementary excitations, such as electrons decal rearrangements of some atomic sifeBhe correspond-
phonons. Both excitations are important in order to explainng hydrodynamic Goldstone modes associated with these
the thermal and electronic conductivities. Experiments shovehanging phases are callptiasons Phason modes are dif-
that although quasicrystals are made from metals, their corfusive, with very large diffusive timek! Phason jumps have
ductivity is similar to that observed among amorphousbeen seen by time-of-flight experiments.
semiconductord However, theoretical studi€®and numeri- Phasons are considered as low-energy excitations, but on
cal simulation$ predict a marginal metallic regimen due to the other hand, a phason corresponds to a rearrangement of
the Conway theorem, since from a theoretical point of viewsites that requires jumps over local energy barriers, which are
the wave function resonates in a self-similar Waiy.spite of  of the order of the energy for creating a vacancy in the lattice
this, when the effects of frustration of antibonding states(E,). This seems to be contradictory, but, in fact, the picture
around the Fermi level are considered, the conductivity cadlepends on the scale. At small scales, phasons are local
be reduced by a considerable amount by localizing the wavgimps, but at macroscopic scales, symmetry and conserva-
function” In fact, frustration produces a kind of mobility tion laws determine the dynami¢$From the atomic point
edge in two dimensionswhich has been confirmed in many of view, phasons in real space should be considered as local
numerical simulation&-1°Another question that up to now is defects with only short-distance correlations. The hydrody-
not completely solved is how do quasicrystals grow. Therenamic picture suggests long-distance correlatiénis. this
are many clues that this happens by an agglomeration gfaper, we show that a random phason field produced in a
clusterst! but it is clear that any attempt to solve this ques-hyperlattice leads to a certain spatial correlation in the prob-
tion completely must be related to the fact that quasicrystalability for making a phason because some parts of the QC
are stabilized via the Hume-Rothery mechanism, i.e., th@re more unstable against phason disorder. These sites hap-
structure has to produce a pseudogap of the density of statpsen to be obtained from the deflation rules, and thus there is
around the Fermi level in order to reduce the energy pee hierarchy in the probability for making phason jumps. As a
electron. Another particularity of quasicrystals is the extraresult, there is a well-correlated distribution for phason
degrees of freedom that are present in the elastic prop&rtiegumps, with a length scale bigger than the original lattice. In
and that are related to the behavior of the elementary excitdact, there are some direct experimental observations using
tions and stability3 In a crystal, any function of the density an atomic-resolution annular dark-field scattering transmis-
(and the density itselfis described as a superposition of sion electron microscope of localized atomic jumps that are
reciprocal wave vectors. Then the Fourier transfgfi) of ~ well correlated in a superlattice of the quasicrystal that is
the density is just a series of sharp spots in the reciprocaleflated with respect to the original oheHere we will also
space. A perturbation on the Fourier transfofdT) phases discuss some consequences of this fact, especially in the sta-
of the atomic positions induces a displacement of the atomdility and dynamics of the lattice, since we expect that the
Associated with such a perturbation, there are three hydrostructure must remain stable against phason jumps in the
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A dimensions. The coordinatesof the lattice in the tiling sub-
space aré?

N n=x N
x=2 W= X n,aW( le|)-
1

rel =1 nj=- 1=

whereg (with 1=1,...,N) are the projections of the hyper-
cubic basis vector§y;) onto the parallel subspace.

A phason field can be introduced just by moving the band
in E*X at each point. As the window is moved, some points
leave the band and some others are included in it. When this
happens, a phason is produced in the “real space” of the
quasicrystal. Points near the edges of the band fall very eas-
ily outside the band because, in such points, even a small
movement of the window can throw them out of the lattice,
whereas points at the center are very difficult to move.
N Clearly, the points near the center are very stable against
N\ window movements; they constitute what we will call the
\ stable backboneThe main property of this set of stable
points is thatir *1| is very small.

FIG. 1. Schematic illustration of the cut and projection method. 10 be more precise, the effect a phason field in the coor-
The band(space delimited between the two solid inclined dark dinates of the FL can be written asr'"Wr + " (r)], where
lines) is displaced A and -A alongE', as indicated by the arrows. #"(r) is the displacement of the band E". Using that
The corresponding bands are denoted by two different filling pat\WWr + - (r)]=Wr'+r++»'(r)], points wherert~+L/2
terns. The effective bandwidth corresponds to the intersection ofre very close to the edge of the band. This situation makes
these two patterns. Stable sites are represented by dark-filleghem “unstable” against phason disorder since, even for a
circles. Unstable sites that result from the displacement bWery sma||1li(r), they can be dropped out. This observation
—A(+A) are shown as open circlgepen squane The resulting  holds for any phason field, whatever the shape of the func-
deflated lattices are indicated by arrows aldfig tion %*(r), that can be a periodic modulation or even a ran-

dom function. In the case of a random field, we can model
unstable sites and thus the effects of phasons will depenghe field by 7' (r)=Ax(r), whereA is the amplitude of the
strongly on the atomic site, as has been found in numericaleld, and x(r) is a random variable with the most simple
investigations of the Penrose tilif§. _ distribution: a uniform distribution betwedr1/2,1/2, al-

The structure of this paper is the following. In Sec. Il we though the results for other distributions are similar. To avoid
explain how this phason hierarchy in deflated lattices arises;acancies in the lattice, we will assume tiAat 1/2, which
Section Il is devoted to finding the positions for phasonstij| is a large amount of disorder compared to the average
jumps in two-dimensional2D) and three-dimensiondBD)  distances in the lattice. For the particular case of a random
lattices. In Sec. IV, we discuss the relationship between elegie|d with a uniform distribution, it is clear that the probabil-
tronic stability and phason jumps; and finally, in Sec. V weijty of producing a phasofip,(r)] in an unstable region is
give the conclusions of the work. Por()=[Ir L= (LI12=A)]/2A, i.e., pyrlir HI/2A (note that
the 2 in the denominator is due to the fact that only half of
the movements of the window are in the direction where the
points leave the band

The phason hierarchy for the probability of making a pha- A way to generate the stable lattice is to use two displaced

dits relati th the deflati | b lai é]uasilattices irE+, one displaced by and the other one by
Son and Its reiation wi € detiation ruies can be explained A i, the direction ofE*. The points that are stable against
in a simple way by using the Fibonacci lattieL). In Fig. 1,

the usual cut-and-projection scheme is shaiva: line E the perturbation are those that remain inside the three bands,

. N ] . since even a displacement of sizeof the band can not
with an inclinationa=(y5-1)/2 crosses a 2D square lattice P

. ! a0 ' throw them away, as explained in Fig. 1. However, finding
that we denote by. The FL is obtained by projecting, onto e noints that fall in the intersection of the three bands is
E!, the points falling inside a band of width. The high

. . - - . . equivalent to obtain a quasiperiodic sequence with a different
dimensional space is subdivided inid and its orthogonal oo\ effective band width of sizé=L - 2A. Thus. the set
complementE*. Using this subspaces, any pointcan be : '

of stable points is given by'Ws®b'r) where
written as r=r'+rt. The coordinates of the FL ar& P 9 y 2

=r'"W(r), whereW(r) is the window function, which is one bl 1, if|rt<é
whenr falls inside the band and zero in any other case. W) = 0
For higher dimensions, the scheme is exactly the sane: '
is a hypercubic lattice dfl dimensions. The dimension of the As can be observed from a direct inspection of Fig. 1, the
space to be tiled can bé=2 or d=3, andE+ hasN-d effect of shrinking the bandwidth is just equivalent to create

\

Il. PHASON HIERARCHY AND DEFLATION RULES

in any other case
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a deflated lattice with some vacancidésthe band is moved N 1 *
in only one direction alonge*, the deflated lattice has no x' = >, > > | (ng+ Yes+ (N + d)g + (N + €)g
vacancies; vacancies appear when the movement along the k<i<s { %8.e=0ngn;,ng

other direction is considergdFigure 1 also shows that un- N
stable points are in two deflated lattices. + > ([R(ng Y = ADe | (, (4)
This also suggests that, has a hierarchy determined by 1#]#k#s

the deflation rules in the following sense. We say that two _ . .
vertices of a quasiperiodic tiling, say andr, belong to the yvhe:ce[z]—'[zj+d1,f['zj |s(,jtge floor function ok, andR(ns,n;,ny)
same probability hierarchy if they satisfy the following in- 'S @ function defined by

equality for a chosen degree of precision given by a small Visi +xn_m . Ve

i i R(ng,nj,Ny) =X o
quantity e bigger than zero, (ng, Ny, i) SV IV TV
1Ppn(r 1) = Ppr(r2)1l < e, (1 andng, nj, n, are integers that run fromee-to =, I, k, j,
. ands are integers that run from 1 t, Vi is the volume
and sinceppy(r ) < lIr -1/ 2A, we get, defined by Vgj=es-(e;X &), « are real numbers fol
=1,...,N that define a phase in each direction of the star
Iry =rall < 2Ae. (2)  vectors? x,_is an abbreviation fok, =ns-as+A. Note that

. ) the last sum ovel in Eq. (4) is carried only forl #j#k
The last equation means that for smalall of the points that . 5 The condition for the unstable points is similar to the
differ by e in their probabilities also have a distance in per-qne gptained for the FC and consists of an analysis of the
pendicular space given byA2. But again, all of these points o function of Eq.(4). After some algebra, using the iden-
fall inside a band determined by a window of widtA& v 7=)714{2, the condition for the unstable regions is
Thus, the set of points that satisfy Eg), when projected to
real space also form a quasiperiodic lattice where the vertex {R(ng,n;,n) = A} ={R(ng,n;,n)} + A+ 1. (5)

it e ff ; i ;
positions are at’W='{(r), and the effective window is Thus, the probability of making a phason in sités given by

1, if r] < 2Ae the condition,

Hiy =
W = {0, in any other case Por(X) = [{R(ng,nj, N} = 1/2 = (1 - A) J/A. (6)

We know that this is just a deflation of the original lattice The unstable points are those for which

because the orientation of the band has not been changed,; Visi . Vi Ve Visj Vi Ve
only the density of points has been lessened as a result of theNs,,— TG T ag * q ta +M,

k
. . . ; Vi Vg Vg Vi Vg
narrower band. Note that due to the different possible direc- S sik sik sik sik sik

tions of the band displacement, one gets more than one déor the directions defined by the star vectegse;, with re-
flated lattice. These lattices only differ by a translation in realspect to the directios,. The integeM can take the values 0
space, as can be seen in Fig. 1. In the Appendix, the case of 1. These equations correspond to regions that define worm
the FL is worked out with analytical formulas. As a result, planes. A similar calculation for a 2D tiling shows that in fact
the probability of making a phason in theh site of the the unstable regions coincide with lines that are called

lattice is given by worms?! Here we showed that there is a hierarchy in the
probabilities for creating worms in different parts of the lat-
Por(N) = ({na} — 1/2| - 1 + A)/2A, (3) tice.

where{z} denote;_ the fractional part a The points with |\, £l ECTRONIC STABILITY AND PHASON DISORDER
maximal probability are the ones that hajyer} =0, 1.

We may wonder if all of the previous properties have
some physical consequences. Suppose for example that ther-
mal noise produces random fluctuations of the band. If this is
true, at a certain temperature there will be always sites of the
In this section, we obtain an analytical expression for theattice that are more stable than others. In fact, we expect that

stable and unstable parts of a quasiperiodic tiling, usingA should be of ordek exp(—-E,/kT), where\ is the average
some formulas for the QC vertex coordinates that we obseparation of atoms. As a result, when the temperature of the
tained in a previous work Using the generalized grid quasicrystal is changed, some sites will show more jumps
method!? the QC is built fromN star vectorsg, wherel than others, and these sites are going to form a deflated sub-
=1,...,N. To detect the stable regions, we apply a shiitta lattice. Very recently, a similar effect has been obsetied

the window function. We can apply different shiffg for ~ the imaging of the thermal vibration of decagonal
each of the directions i&*. To simplify the expressions we Al;,Ni,(Cos, Which suggests that there is some degree of
will consider the same uniform shift in all directions. The hierarchy in the lattice. A second question that arises from
corresponding expressions for a 3D QC with a shift in thethe previous scenario is the following: since quasicrystals are
window function is given by stabilized by the electronic structure that produces a

Ill. STABLE BACKBONE AND UNSTABLE SITES IN 2D
AND 3D QUASICRYSTALS
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pseudogap around the Fermi level, should one expect a ro- tr[Mg(-2Mei-2ME(-3] = r[Mg—5 Mgz ME(-2) ]
bust electronic density of states with respect to sites where
there is a high probability of making a jump? It is natural to =trMeg).

tmh;}ﬁl;hgétgrormase I%gheﬁeii?gﬁcbs?fukgﬁ?g are the ones thafhus, trM g, =trMg), which shows that a phason in this

To answer this question, let us consider the most simpléped"’}I site leaves the electronic spectrum unchanged.. An-
Hamiltonian to model the electronic structure: afband  °ther important relation can be obtained from the previous
tight-binding Hamiltonian defined on a chain wkites, with ~ Seduénce of cyclic permutations
a potentialV, at siten, and hopping integral,,; between MR - Men o=t M e aMeroMeno1=trM e
sitesn andn+1. The corresponding Schrédinger equation is [MFq-3Meq-2] = M9 Meq-2 Meq-2)] F
-1+ te1¥ne1t Vot =Eth,, Where ¢y, is the value of the (10

wave function at siten. This equation can be rewritten in Since MP is a sequence with a phason flip at sid
terms of a transfer matrix,,, F-

-1), thenME(,_l)M,:“_z) is a sequence with a phason flip at a
(E=Vlthey tolto the site where two Fibonacci sequences of previous genera-
n= 1 o |’ tions are joined. For example, for generation 5, we take gen-
eration 4 with a phason flip at the erd5LSL, and we join it
and a vector¥, with components(,, ¢, ,), such that With the sequence of generationI5L If we join both se-

W,.,=T,W,. The wave function at sita is given by a suc- duences following Eq(10), we get the sequendeSLSLLSL
cessive application of the transfer matrix, which has a phason flip between sites 4 and 5, since the

original sequence iIESLLSLSL In the Appendix, it is shown

W =T Ty . T1¥, =M W,. (7)  that this site is the one with the greatest phason probability.

) . ) We can conclude that at least for this special site, there is a

The spectrum is the set of energies for which the tracgjear relationship between phason and electronic stability.
norm 7,,(E) =trM, is <2.* The FL is made with two kinds of = phasons in some other sites of the FL can change in a dra-

atoms,L andS, arranged following the Fibonacci sequence, matic way the spectrum and induce a localization transition

i.e., if one defines the first generatidh,(1)=L and the pecause of the self-similar properties of the FL Green's
second oneF.,(2)=LS the subsequent generations arefunction?? The method presented here, i.e., the decomposi-
given by Fen(l)=Fen(l—=1) @ Fe(I-2). For instanceF¢(3)  tion in products of lower generations and then the application
=LSL To each kind of site we assign a potentiql or Vs. of the cyclic permutations, allows the construction of chains
For simplicity we will suppose that all the hopping integrals with the same spectrum but different degrees of phason dis-
are equalt,=t. The total transfer matrix for a FL can be order. Although the previous demonstration is very clear, it
written using a recursion rule for the matrices of previous FLdoes not provide an explanation of what is behind this re-

generation$, markable property. To have a better understanding, let us
study the structure of the potential in reciprocal space. For a
Meg) = Me-nMgg-2) (8)  Fibonacci sequence, the potential at sitean be written as
whereF(l) is a Fibonacci number of generatibndefined as V(n) =V + AVf(n), (11
F()=F(-1)+F(1-2), with initial ditions F(0)=1 and . . '
FEl)):l( )*F(1=2), with initial conditions F(0) an wheref(n) is the hull function defined as
A simple way to perform a single-phason flip in a FL of f(n) ={na} —{(n+ 1)a}, (12
generatiorF(l) for | even, is obtained by reversing the recur- o _ _ _ —
sion rule only for the last step of the construction, «a is an irrational numbefin this case(y5-1)/2], V is the
average potential energy, given ywa+a?Vg, and AV
ME() = Meg-2Mgq-1), (9)  =|Va—Vgl is afluctuation part. The fractional part of a num-

ber is a periodic function with the shape of a sawtooth and
where M, is the resulting matrix with a phason flip. For can be Fourier expanded to get

example, the FL of generation 4 is the sequeric8tLS o
made by joining a chain of generation@&quencé.SL) and V(n)=V+ > V(s)cog msa(2n + 1)], (13
generation 2sequencd.S). If this chains are joined in re- =1

verse order in the last step of recursion, weldggt SL. which -~ ) ) )
is the original chain plus a phason flip at the end. To provevhereV(s) is thes harmonic of the Fourier series,
that the energy spectrum remains invariant under this flip, 5

consider the trace d¥lf,. Using the recursion for the trans- V(s) = 2AV

fer matrices we get

sin(msa)
s (14

Note that each harmonic of the series is in the form of a

trM ) = tr[Mg(-Mgg-1)] = r[Me M2 Meg-3)], Harper potential, for which a lot of properties are knot#a?
In other words, a Fibonacci potential is just a superposition
but using the cyclic property of a matrix product trace of Harper potentials with an appropriate weight plus an over-
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all shift given by the average potential energy As ex-  to our result, a phason in an unstable site alters mainly low-
plained in the Appendix, phasons are obtained by changingmplitude diffraction spots, and thus the spectrum remains
the fractional part with a random function. The correspond-similar since only small gaps are affected.

ing potential can be written as, A similar argument can be invoked for a higher-
" — dimensional system. For simplicity, consides-éunction po-
VP(n) =V+AV{[(n - Da+Ax(n- 1] -[na+Ax(n]}, tential of magnitudé/, centered at each point of the lattice.

In that case, the Fourier transform of the potential can be

where x(n) is a random variable with uniform distribution )
yyritten as

between -1/2 and 1/2. Sites in the stable backbone are n
affected by disorder, while the most unstable points are those V(@) = V.S dax 16
where{na}~=0,1. These points are the ones that are in the (@ OEX: ' (16)
edges of the sawtooth functidm}. An heuristic explanation ] ) )

of the stability of the spectrum is the following: to define the AS S Well known, Eq.(16) with or without phasons can be

d #2 in harp w T/( ) ficients of verv high evaluated using the convolution theorem, and many years
fe ges o a sdadp_ iy’ FS COetlicients o Ey h'ghf ago the scaling of the peaks in termsodf was the source of
requency are neede .m.t € Fourier expansion. For Nig 113 yepate petween the random tiling model and perfect qua-
quencies, these coefficients are very small, and albeit th

i | ¢ g al i able d ¢ gperiodic tilingst? Here we will concentrate on the elec-
reciprocal space of quasicrystal is a countable dense Set, b, ;. stability of phasons. For sites inside the stable back-
has been shown that only very few of the reciprocal-lattic

: . . Sone, Eq.(16) remains equal, while for points where a
vectors are of importance in altering the overall electroni

. X hason is made, we add a bounded extra térr) that
structure?® To further develop this idea, consider the case o Lo s :
just one phason between sitas and m—1. The potential produces a phason flip at positianWe obtain

energy with such a phason can be written as i'/ph(q) =V, >, €% +V, >, DA
VP(n) = V(n) + [V(n - 1) = V(n)] X<t X< Lon
X [8(n-m) - sn-m+1)], (15)  Lsdenotes the set of points that belong to the stable lattice,

_ . . . and L, is the set of vertices in the unstable part. In some
where 8(n—m) is a é function at sitem. Using Eq.(13), and  previous works%2’we showed that a quasiperiodic structure
that sif2msan)=sin27s(|an|+{an})]=sin(27s{an}), the can be described as an average structure plus a fluctuation

previous equation is converted into part, i.e., a vertex in a positior can be obtained as an
o average(x) plus a fluctuation parf(x), which is bounded?
VPh(n) = V(n) + > 2\~/(s)sin(7rsa)sin(27rs{an}) From Sec. lll, it is easy to see that this fluctuating part is
=1 given by

X[on=-m)-8n-m+1)]. N

[_( 2 _ . _ fo= 2 {Rngn;,ndle. (17
The second term in the last equation can be considered as a 1#j#k+s
perturbation of the original potentigln). However, the term
sin(2ws{an}) in the perturbation is nearly zero whenever
{an}=0 or 1. The fraction{an} is never 0 or 1 due to the
irrationality of a (except of coursen=0), but for a siten
where {an} < 1, the perturbation part potential can be ex-

As explained in Sec. lll, points in the unstable part have the
property thatf(x) is very small. Using this piece of informa-
tion, and expanding the exponential for the bounded fluctu-
ating part, Eq(16) can be written as

pressed as - - c iag- AT ia -f)7T
Wi =g +V.SS S [ig-ACOTLia )] jq00
S . t=1r=0xeLpy t! r!
8{an}AVY. siri(msa)[8(n—m) = S(n—m+ 1)],
s=1 Since A(x) and f(x) are smaller than the average atomic

separation, only for high values @f the last term has an

for any s lower than a cutoff determined by the condition important contribution. According to Eq(6), pp(x)

s.=1/2m{an}. Terms withs>s. have a higher contribution =[{R(ns,n,,nY}-1/2—(1-A)J/A, which shows that the per-

to sin2msian}), but the coefficients/(s) are already Very y,rhation decreases with the probability of making a phason.
;ma!l. This proves that for the first harmonics, the perturbayp, fact in a previous work we showed that the average struc-
tion is proportional tdan; where{an; <1 (for {an}=1,the  t,re contains a very important fraction of the scattered
proof is similay. Furthermore, sincéna}eA[1-2ppr(r*)]  amplitude?® This average structure remains the same when a
-(1/2), the perturbation decreases linearly with the probabilsmal phason field is applied, and as a result, phasons in
ity of making a phason. For higher harmonics, the perturbaunstable sites affect mainly higher harmonics, which have
tion has more weight with respect ¥(n), but this only |ess amplitude, with a small impact in the density of states. It
affects Fourier coefficients of high frequencies, which have as worthwhile mentioning that in quasicrystals, the Hume-
lower amplitude. In fact, for a rational approximant, the Rothery argument is invoked in connection with the most
spectral gap$A,) are produced by each diffraction spot of intense peaks in the diffraction pattern, which defines the
the potential in reciprocal spa¢®(q)], due to the relatio®  so-called Jones zorfdn that sense, phasons at unstable sites
Aq=|V(a)|, whereq is a reciprocal wave vector. According do not compromise the Jones zones and the Hume-Rothery
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mechanism. Also, the previous approach shows that very dif- APPENDIX
ferent effects on the density of states are expected, depending

on the site where the phason is performed. There is somt%l irTOLrJ;?ne Iirl;e tc?uet gﬂzta?ée-eiggnsggmiS'ltfas ;ree foaosr)éiaoatcs)abs-
numerical evidence that this is the ca&8sjnce the effects in : 9 Proj que,

the electronic density of states of the Penrose strongly deQf then point of the FL are given B

pends on the type of flips in the lattiééas has been seen in

the analysis of the first spectral momefits. Xn=nL+ (L - Slnal=n\ - (L - S{{na}, (A1)

wheren is an integerx:(1+a)L—aS is the average lattice
V. CONCLUSIONS parametef/ L andS are the two possible separations of the

In this paper, we have studied the probabilities of makingduasilattice pointdz| is the integer part of, and{z} is the
a phason in quasiperiodic lattices. In particular, we havdractional part ofz. If we apply a phason field into this ex-
shown that the lattice can be divided into a stable backbonBression, a sequenog is obtained. Phasons are produced
plus sites where the probability of making a phason is biggetvhen both sequences differ,
Furthermore, sites with a similar probability are in deflated , _
structures of the original lattice. The possibility of having X =% = (L=9({nat Af(n[na)]} = A-{naj)
sites with high probabilities of phason jumps raises the ques- =+(L-9),
tion of how the electronic stability of a quasicrystal depends
on such jumps. In a simple one-dimensional model, phasofince {na} has period one. The stable points satisfy
jumps in unstable sites do not change the electronic spedha+A}={na}+A, and unstable points are those for which
trum. These unstable sites seem to affect less the electronjoa+A}={na}+ A+ 1. Stable points correspond mncsuch that
spectrum due to the property of only changing reciprocalA<{na}<1-A, and unstable points satisfy=0{na}<A and
vectors with a high moment. A similar argument in two and1-A<{na}<1. If A— 0 the most unstable points are those
three dimensions can be responsible for the robust electronighere{na}~0 or 1, which means thata=~|na). Whena is
density of states against phason disorder in unstable sitegpproximated by the rational approximaf(l—1)/F(l),
Note that very probably, there are some connections betweeRese points have the formemF(l), wherem is any integer.
how quasicrystals grow and the creation of a stable backbonghen, unstable points are separated by Fibonacci numbers.
with a hierarchical structure via some kind of self-similar For a uniform distribution of the random field with+ 0, the
Peierls instability. probability of making a phason in the unstable region is
given by
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