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The effects of floppy modes in the thermodynamical properties of a system are studied. From thermody-
namical arguments, we deduce that floppy modes are not at zero frequency and thus a modified Debye model
is used to take into account this effect. The model predicts a deviation from the Debye law at low temperatures.
Then, the connection between the topography of the energy landscape, the topology of the phase space, and the
rigidity of a glass is explored. As a result, we relate the number of constraints and floppy modes to the statistics
of the landscape. We apply these ideas to a simple model for which we provide an approximate expression for
the number of energy basins as a function of the rigidity. This helps to understand certain features of the glass
transition, like the jump in the specific heat or the reversible window observed in chalcogenide glasses.
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I. INTRODUCTION

The physics of glass formation is a complex multiparticle
problem, and in spite of its importance from the fundamental
and technological points of view, many important questions
remain unansweredf1g. As an example, we can cite the ori-
gin of the nonexponential relaxation lawsf2g or the ability of
certain materials to reach the glassy statef3g. To tackle these
problems there are many different approachesf4g: phenom-
enological models like the Gibbs-Dimarzio model, theoreti-
cal theories like mode coupling, or the use of extensive com-
puter simulationsf5g. A very interesting question is how the
glass transition temperaturesTgd depends on chemical com-
position. Chalcogenide glassessformed with elements from
the VI column doped with impuritiesd are very useful for
understanding these effectsf6g. As was discovered more than
2000 years ago,Tg can be raised or lowered by adding im-
purities, and the fragility of the glass can be changed from
strong to fragilef7g. Recently, by using stochastic matrices
f8,9g, the law that gives the relation betweenTg and the
concentration of modifiersf10g has been obtained, including
a constant that appears in the law for almost any chalcogen-
ide glassf11g. Another interesting property of glasses is the
behavior of their viscosity, which is usually referred to as the
fragility f7g. The fragility of a glass is also related to the
glass forming tendency in that melts of a strong or nonfragile
liquid do not require a high speed of cooling to form glasses.
On the other hand, fragile glasses are poor glass formers and
require a rapid quench to form glasses. The ease of glass
formation can be explained at least in a qualitative way by
the rigidity theorysRTd, introduced by Phillipsf12g and fur-
ther refined by Thorpef13g. By considering the covalent
bonding as a mechanical constraint, the ease of glass forma-
tion is related to the ratio between available degrees of free-
dom and the number of constraints. If the number of con-
straints is lower than the degrees of freedom, there are zero-
frequency vibrational modes called floppy modesf14g. The
resulting network is underconstrained. A transition occurs
when a disordered lattice becomes rigid. Glasses that are
rigid at a certain chemical composition are easier to form,
and many features of this transition have been experimen-

tally observedf6,17g. Even for simple systems like hard
disks f18g and colloidsf19g, it seems that rigidity plays an
important role. For more complex systems like proteins, ri-
gidity has been used as a very powerful tool to understand
folding and long-time scale motionsf20g.

A very puzzling fact of RT that has not been explored is
the following. According to the idea of looking at rigidity as
a vector percolation problem, at the rigidity threshold the
entropy is highf21g, due to strong fluctuations as happens in
any phase transition. One even can define a free energy and
specific heat as a function of the flexibility of the system that
has a singularity at the transitionf22g. However, the experi-
mental data from modulated scanning calorimetry in chalco-
genide glasses shows the opposite: at the rigidity transition
the configurational entropy is less and there is awindow of
reversibility f6,23g. In particular, it has been observed that
protein folding is reversible because it occurs at the rigidity
transitionf20g, and this seems to be a crucial property for life
to exist f20g.

Mainly, the problem resides in the fact that although RT
provides a framework to understand many features of a sys-
tem, its use in a quantitative way has not been fully devel-
oped to provide a link with the thermodynamics of the sys-
tem. In a previous paper we approached this problem by
using a phenomenological free energy to account for many
thermodynamical properties of the glass transitionf24g, and
then we made extensive computer simulations with associa-
tive fluids to show that many concepts of the RT work in a
“thermodynamical environment”f25,26g. However, the con-
nection with thermodynamics is still not mature, since there
is no general way of introducing thermodynamics in the RT.

In a different context, the energy landscape is a formalism
that has been very useful for describing the molecular scale
events that happen during the glass transitionf27g. The land-
scape is a multidimensional surface generated by the system
potential energy as a function of the molecular coordinates
f4g. In anN-body system the landscape is thus determined by
the potential energy function, given byFsr 1,… ,r Nd wherer i

comprise position, orientation, and vibration coordinates. For
the simplest case of a particle possessing no internal degrees
of freedom, the landscape is as3N+1d object. The topogra-
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phy of this landscape is fundamental for the thermodynamics
of the system. At high temperatures the system does not feel
the summits and valleys ofFsr 1,… ,r Nd because the kinetic
energy contribution dominates. However, as the temperature
is lowered the system is unable to surmount the highest en-
ergy barriers and therefore is forced to sample deep minima.
When this happen, the kinetics of relaxation changes from
exponential to stretched exponentialf5g. An important obser-
vation is that, according to statistical mechanics, the entropy
of the system depends on the accessible volume in the phase
space. However, inside a local minimum of the potential en-
ergy, it can happen that if there are no paths that connect to
other minima, the system cannot sample that part of the
phase space. In such a case, ergodicity is broken and the
system is no longer in thermal equilibrium. Such a glass will
have a residual entropyf28g. In this article, we show that
rigidity can be related to the statistics of the energy land-
scape, since the number of floppy modes is related to the
number of different configurations of the system with nearly
equal minimal energies, and thus provides an estimation for
the number of minimal energy basins of the landscape. But
floppy modes also provide channels in phase space that in-
crease the entropy, which in part explains the paradox of the
window of reversiblity. To show these connections, we will
concentrate on the effects of rigidity on the shape of the
energy landscape.

The layout of this work is the following. In Sec. II we
discuss a simple way to introduce thermodynamics into RT;
however, as we will see, the straightforward manner of doing
this does not agree with the experimental results. Thus, we
propose that the effects of floppy modes are important only
at low temperatures or during glass transition. In Sec. III the
connection with the energy landscape is made and a simple
model is worked out. Finally, in Sec. IV we give the conclu-
sions.

II. RIGIDITY AND THERMODYNAMICS

In this section we explore some simple thermodynamical
consequences of the RT. As explained before, the rigidity
ideas of Phillipsf29g and Thorpef14g were used in order to
understand the ease of glass formation. In this theory, the
ability to make a glass is optimized when the number of
freedom degrees, in this case 3N, whereN is the number of
particles, is equal to the number of mechanical constraints
sNcd that are given by the bond length and angles between
bonds.

The numbers3N−Ncd /3N gives the fraction of cyclic
variables of the Hamiltonian, i.e., when one of these vari-
ables is changed, the energy of the system does not change,
as for example happens with the center of mass coordinate.
This fraction also corresponds to the fraction of vibrational
modes with zero frequencysfd, called floppy modes, with
respect to the total number of vibrational modes. The count-
ing of floppy modes in a mean field, known as Maxwell
counting, goes as followsf30–32g. Since each of ther bonds
in a site of coordinationr is shared by two sites, there arer /2
constraints due to distance fixing between neighbors. If the

angles are also rigid, in three dimensionss3Dd there are
s2r −3d constraints, to give

f =
3N − Nc

3N
= 1 −o

r

fr/2 + s2r − 3dgxr

3
= 2 −

5

6
krl

where the last term corresponds to the angular constraints,xr
is the fraction of particles with coordinationr, andkrl is the
average coordination number, defined as

krl = o
r

rxr .

A rigidity transition occurs whenf =0 and the system passes
from a floppy network to a rigid one. Glasses are rigid iff is
a negative number, i.e., if there are more constraints than
degrees of freedom, the lattice is overconstrained and the
important number is how many stressed bonds are present. In
3D, the rigidity transition leads to the critical valuekrcl
=2.4 if all angular constraints are considered. In real sys-
tems, the Maxwell counting breaks near the rigidity transi-
tion, and the number of floppy modes is obtained from the
pebble game algorithmf14g.

What are the simple thermodynamical effects of floppy
modes? To answer this question, first we use the simplest
model for atomic vibrations in the harmonic approximation,
where the interatomic potentials are replaced by springs. The
corresponding Hamiltonian is

H = o
j=1

3N Pj
2

2m
+ o

j=1

3Ns1−fd 1

2
mv j

2Qj
2 s1d

where Qj and Pj are the j th normal mode coordinates in
phase space, andv j is the corresponding eigenfrequency of
each normal mode. Observe that floppy modes have zero
frequency; they do not contribute to the elastic energy. Using
simple statistical mechanics, we can obtain the partition
function in the canonical ensemble at the classical limitshigh
temperatures compared with the Debye temperatured,

Z =E ¯E p
j=1

N

dPjdQje
−H/kT

= S2pmkT

h2 D3N/2

p
j=1

3Ns1−fd S2pkT

mv j
2 D1/2

,

where T is the temperature andk the Boltzmann constant.
The free energy of the system is now given by

F = −
3NkT

2
lnS2pmkT

h2 D −
kT

2 o
j=1

3Ns1−fd

lnS2pkT

mv j
2 D .

From this last expression, the corresponding specific heat
sCVd is

CV = 3Nk−
3Nk

2
f .

In this simple approach, the prediction is thatCV is given by
the Dulong-Petit law, minus a term that depends on the num-
ber of floppy modes. The reason is clear:floppy modes do not
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store energysince they are cyclic variables of the Hamil-
tonian; the energy of the system does not change, as for
example the center of mass coordinate. However, a careful
examination of the experimental data shows that for chalco-
genide glassesf6g, like compounds of As-Ge-Se and ferro-
electric materialsf15g, CV does not depends onf. Instead,
they follow the Dulong-Petit law. From this simple thermo-
dynamical argument, one is led to propose that floppy modes
do not have a perfect zero frequency, i.e., in real glasses they
are shifted by residual forces, like the van der Waals interac-
tion. This argument is confirmed by neutron scattering ex-
periments, where it has been shown that floppy modes in
As-Ge-Se are blueshiftedf16,17g, forming a peak at around 5
meV. Thus, at high temperatures, all the 3N oscillators are
excited. We suggest that the effects of floppy modes are im-
portant only at low temperatures since all floppy modes are
frozen nearly at the same temperature. The corresponding
temperaturesU fd where these modes are frozen, can be esti-
mated from the energy required to excite modes of 5 meV,
which givesU f ,60 K. Furthermore, an Einstein-like mode
in the vibrational density of states is suggested by the giant
softening of the 119Sn Lamb-Mössbauer factor in
sGe0.99Sn0.01dxSe1−x glassesf17g asx steadily decreases to 0,
i.e., as the glass gets more floppy. The mean square displace-
ment at absolute zero or the first moment of the vibrational
density of states is the quantum property that contains infor-
mation on these floppy modes, and its variationx nicely
scales with the scattering strength of the 5 meV mode ob-
served in inelastic scatteringf17g.

This behavior at low temperatures, where a quantum
treatment is needed, can be modeled by using a simple den-
sity of statesrsvd that takes into account the floppy peak in
the spectrum. First we use a Debye type of density of states,
normalized to 3Ns1− fd. Then we add the contribution from
the floppy modes, with ad function centered around a char-
acteristic peak atv0. The corresponding density of states is

rsvd = 59Ns1 − fd
vD

3 v2 + 3Nfdsv − v0d if v ø vD,

0 if v . vD,
6

wherevD is the Debye cutoff frequency. By using the Bose-
Einstein distribution for the number of phonons in equilib-
rium at a certain temperature, we get that the specific heat is

CV = s1 − fd3NkDsx0d + f3Nk
x2ex

sex − 1d2

wherex=U f l /T, x0=UD /T, andUD="vD is the Debye tem-
perature.Dsx0d is the well known Debye function. At high
temperatures, the model predicts the Dulong-Petit law as ex-
pected, while at lowT, the following behavior is obtained:

CV < s1 − fd3Nk
4p4

5
S T

UD
D3

+ f3NkSU f

T
D2

e−Uf/T,

which is a Debye law of the typeT3, but with a contribution
that is in the form of the Einstein model. Each contribution is
determined from the fraction of floppy modes for a given
composition of the glass. The present model suggest that

experiments at low temperatures performed on chalcogenide
glasses will provide characteristic features of rigidity.

III. ENERGY LANDSCAPE AND RIGIDITY

In the last section we discussed that floppy modes have
effects mainly at lowT. In spite of this, an examination of
the experimental results shows that the number of floppy
modes is also important for the thermodynamical properties
at the glass transitionf7g. For example, the magnitude in the
jump of CP, usually denoted byDCP, the jump in the thermal
expansion, the energy for activation of viscosity, the fragility,
and the entropy of a liquid melt depend onf. Moreover, very
recently Boolchandet al. discovered the window of revers-
ibility in the heat flow, associated with a phase of zero inter-
nal stress in the networkf23g. Angell has pointed out the
qualitative relationship between energy landscape and fragil-
ity during glass transitionf27g. However, it is still not clear
how to relate these features to the statistics of the landscape.
Here we will show that the number of floppy modes provides
a useful parameter to represent the roughness of the land-
scape. This roughness is evident when the glass is melted,
explaining why floppy modes are important during glass
transition, since they are collective motions that provide
pathways across the phase space and energy landscape.

As a first and tentative step, we start again by supposing
that floppy modes are at zero frequency. Around any given
inherent structure, the potential has a minimum and thus can
be expanded in a Taylor series, which turns out to be the
expression of a harmonic potential. From the Hamiltonian
presented in Eq.s1d is clear that in an inherent structure, each
floppy mode provides achannel in the landscapesince the
energy does not depend upon a change in a floppy coordi-
nate. A very simple example is shown in Fig. 1, which shows
the bottom of the landscape for a system with two normal
modes. In the first systemfFig. 1sadg f =0, but the other has
f =1 fFig. 1sbdg since one of the spring constants was set to
zerosof course, by excluding the center of mass coordinated.
In a more general way, for a given inherent structure, the
number of channels is clearly given byf. Each channel in-
creases the available phase space allowed to visit. The en-
tropy due to floppy modes is easy to calculate. In the micro-
canonical ensemble, the number of accessible states
fVsE,V,Ndg for a system with a volumeV is proportional to
the area defined by the surface of constant energyE
=HsP1,… ,PN,Q1,… ,QNd. Since floppy modes are cyclic
variables of the Hamiltonian, we can write

VsE,V,Nd =
1

h3NE ¯E E=HsP1,…,Q3Ns1−fdd

3p
j=1

3N

dPj p
k=1

3Ns1−fd

dQkSE
0

V1/3

dQD3Nf

,

and using the Boltzmann relationS=k ln VsE,V,Nd we get
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S= lnF s2pmd3N/2E3Ns1−f/2d

h3Nhf3Ns1 − f/2dg − 1j! p
j=1

3Ns1−fd S 2

mv j
2DG + fNk ln V.

s2d

The entropy provided by the channels in the landscape is
simply given by the last termSc= fNk ln V. At first glance, it
seems that this result agrees with the experimental observa-
tions, because during glass transition, it has been observed
that floppy glasses have a large entropy and as a result, they
have a more fragile behavior as deduced from the Adams-
Gibbs relationf7g. However, a more detailed analysis shows
that if we suppose an entropy of the type given by Eq.s2d,
the specific heat does not follow the Dulong-Petit law. This
is due to the dependence ofS uponE3Ns1−f/2d, which is just a
result of the independence ofH with respect to floppy
modes. As discussed in the previous section, this leads to the
conclusion that floppy modes are not strictly at zero fre-
quency. The blueshift of the floppy modes means that the
channels in phase space are not flat: there is a small curva-
ture in the direction of the floppy variable. This effect has the
property that it restores the Dulong-Petit law and provides
directions in phase space where the system can relax without
big changes in energy.

In a floppy glass there is a hierarchy in the strength of the
forces. The forces that restore the Dulong-Petit law are the
weakest. Then it is natural to assume that the anharmonic
contributions of these residual forces are also small. Under
this assumption, the extra entropy due to these modes isS

. fNk ln V which is only activated when the glass traverses
the glass transition. This entropy is just a maximal bound,
since it can be less depending on the range of the floppy
coordinate. We can speculate that these channels are in fact
the ones that explains the fragility and ease of glass forma-
tion since is clear that it is much more difficult to trap the
system in a local minimum of the landscape when many
channels are present.

However, there are two important facts to consider in all
the previous statements. First the number of floppy modes is
a function of the energy. In fact, when the glass becomes
fluid, most of the constrictions upon the bond lengths and
angles are relaxed andf is raised. For the extreme case of no
bonding between atoms, the system behaves without con-
straints and all the modes are floppyf =1. Notice that an
ideal gas is a perfect “floppy system.” An improvement to
Eq. s2d is to make f a function of E; then the number of
floppy modes is 3NfsEd. In such a case, the jump in the
specific heat will also depend onf, as observed in the ex-
periments. The functionfsEd is zero whenE@kTg and has a
value determined by the average coordination number below
the glass transition, i.e.,fsEd=2−5

6krl. The shape of this
function can be estimated using a procedure that we will
describe later.

The second consideration is that the number of floppy
modes affects the number of minimal energy valleyssusually
called inherent structuresd that are available when the system
has a certain energy. This effect is explained in Fig. 2, where
a system of bars and hinges is considered. In the example of
Fig. 2, there are no angular forces. Each bar provides a re-
striction to the system. There are three squares. In one of the
squares there is a diagonal bar. As a result, this square cannot
be deformed, since the distances between all the hinges are
fixed. The other two squares are flexible as indicated by the

FIG. 1. Bottom of the landscape for a systemsad with no floppy
modes and a potential energy in arbitrary units given byfsx,yd
=x2+y2 and sbd with one floppy mode obtained by removing a
“spring,” fsx,yd=x2. A channel is generated in they direction.

FIG. 2. A system of bars and hinges with three different con-
figurations. The squares with the diagonal bars are rigid, while the
others are flexible. The corresponding floppy modes are shown with
arrows.
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arrows. Each of these flexible squares can be deformed inde-
pendently, and the system has two floppy modessagain,
without counting the center of mass translation and rotations
around itd. Now we move the diagonal bar to the second
square and the system has the same number of floppy modes,
but the structure is different, and the same thing happens if
we put the diagonal in the first square. In the landscape for-
malism, each of these configurations is in a different “inher-
ent structure” and corresponds to a basin with the same en-
ergy. This part of the entropy has been studied extensively in
the context of rigidity transitionsf21g. However, as we will
see next, there is a competition between the channel and
configurational entropies.

To see how these concepts are applied in a particular case,
let us consider the following two-dimensional model that
contains all of the previous features that we discussed. Con-
sider a system ofN disks interacting with a central force
where no angular forces are considered. Each disk has a hard
core potential and an attractive part which has a range deter-
mined by the parameterl. If s is the diameter of the disks
and r is the distance between the centers of two disks, the
potential is written as

Vsrd = 5 `, if r , s,

− V1, if s ø r ø ls,

0, if r . ls.
6

The nature of the fluid and solid phases of this system has
been studied in previous workf19g. Here we study only the
rigidity. Within this model, a bond is formed when the dis-
tance between two disks is betweens and ls. Each bond
has an energy −V1, and the energy of the system is just
proportional to the number of bonds. This number is propor-
tional to the average coordination number divided by 2 since
each bond is shared by two sites. Then, the amount of energy
sEd of the system is given by

E = − V1N
krl
2

. − 2V1Ns1 − fd, s3d

where it was used that for the mean field approximation in
two dimensionsf .f2N−sNkrl /2dg/2N. From the last equa-
tion, it is observed that a gas is obtained when the system is
100% flexiblesf =1d and the state of maximal packingsthe
hexagonal lattice with maximal coordinationrmax=6d is
overconstrainedsthere areN/2 redundant bonds in the mean
field approximationd. From the last equation, is clear thatf is
a function ofE.

As said previously, there is an entropy provided by floppy
mode channelssS1d and by the different configurations of
floppy modessS2d. According to our previous assumptions,
the first contribution isS1. fNk ln A whereA is the area of
the system. This is only valid in the flexible phase, i.e., be-
fore the freezing of the system since at that point it has been
suggested that there is a rigidity transitionf25g. After freez-
ing, this contribution is zerosS1=0d. At high temperatures,
the system is a fluid and the entropy is just the same as the
one obtained from the available phase space without any
interaction. A more realistic assumption although still very
rough is to use thatS1. fNk lnsA−bd whereb is proportional

to the area occupied by the disksf33g, b<Npslsd2/2.
The other contribution to the entropy comes from the

number of ways in which a configuration with a givenkrl
can be made. Although this number is difficult to calculate,
one can suppose a cell model of the fluid, and then just
consider the number of ways in which absent bonds can be
deleted from the lattice with maximal packing. This number
of configurationsfVsf ,Ndg is

Vsf,Nd =
srmaxN/2d!

srmaxN/2 − krlN/2d ! skrlN/2d!
s4d

where krl is a function of f. The corresponding configura-
tional entropy isS2=k ln Vsf ,Nd. A natural way to compute
this entropy is to define an order parametermsfd as

msfd =
srmax− krld − krl

rmax
.

4f − 1

3
. s5d

In terms of this parameter, and using Stirling’s approxima-
tion, the total entropy forf ù0 now reads

S1 + S2

Nk
= ln 2 + f lnsA − bd −

fmsfd + 1g
2

lnf1 + msfdg

−
f1 − msfdg

2
lnf1 − msfdg.

For an overconstrained lattice, the expression for the entropy
is just given byS2. The expression forf ù0 contains the
effects that were discussed previously, i.e., the linear depen-
dence of the entropy uponf, and the contribution from dif-
ferent structures with the same energy. In Fig. 3 we show a
plot of the total entropy and the corresponding contributions
for a givenA−b. It is interesting to note thatS2 tends to grow
as we diminish the number of floppy modes, since the num-
ber of configurations with the same energy grows. Notice
that S2 does not have a maximum exactly whenf =0 due to
the mean field approximations; the maximum is shifted to the
right. From Eq.s5d, this occurs nearkrl=4, i.e., near the
two-dimensional rigidity transition. This fact seems to con-
tradict the observation that in the rigidity transition, the ex-
perimental nonreversible heat flow is a minimum, which

FIG. 3. Contributions to the total entropyscrossesd in units of
Nk. The dotted line is the contribution from channelssS1d with the
aribitrary valueA−b=4. The solid line is the contribution from
different configurationssS2d.
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means that the configurational entropy is a minimum. One
can expect that in the rigidity transition, a lot of fluctuations
will be observed, while in the experiments it seems that the
contrary is truef7g. However, the present results show that
floppy modes havetwo competing effects; one is the entropy
due to the different configurations, but the other is the shape
of each basin, since around each minimum, floppy modes
form channels that increase the entropy. Thus, as is shown in
Fig. 3, when the system passes from flexible to rigid, the
number of configurations increases, but the number of chan-
nels diminishes. Experimental results suggest that this last
effect is more important, since the configurational entropy of
a melt with a floppy glass former is higher as the number of
floppy modes is increasedf7,17g.

Finally, the free energy forf ù0 can be written as

Fsfd = − 2V1s1 − fdN − TsS1 + S2d. s6d

To compare with the energy landscape formalism, we use
that the partition function is the sum of partition functions at
inherent structuresf34g,

ZsTd = ZhasTdE
0

`

GsEde−E/kTdE, s7d

whereGsEd is the number of energy basins with energyE,
andZi

hasTd is the partition function for a system of harmonic
oscillatorsf34g. SinceGsEd is always a growing function,
ande−E/kT is always decreasing, the integral of Eq.s7d can be

replaced by the value at the maximumĒ,

E
0

`

GsEde−E/kTdE< GsĒde−Ē/kT.

The corresponding free energyF is

F

NkT
= − ln ZsTd = − ln ZhasTd − ln GsĒd +

Ē

kT
. s8d

As usual, the free energy is just the contribution from the
vibrations inside the basin, the entropic component due to
the existence of different basins, and an energetic component
which reflects the average depth of the landscape at a certain

T. Now we turn our attention to howGsĒd is affected by the
floppy modes. Comparing Eqs.s6d and s8d, we get an esti-

mation forGsĒd,

GsĒd < expNF− msĒdlnsA − bd −
fmsĒd + 1g

2
lnf1 + msĒdg

−
f1 − msĒdg

2
lnf1 − msĒdgG s9d

wheremsĒd is obtained from Eqs.s3d and s5d,

msĒd = 1 − 2fsĒd = S1 +
2Ē

3V1N
D .

If the channel term is the most important,GsĒd can be ap-
proximated by

GsĒd < exphNumsĒduflnsA − bdgj,

which has the same general shape as that proposed by Still-

ingerf35g. The factorumsĒduflnsA−bdg in the exponential can
be identified with the landscape complexityf36g.

IV. CONCLUSIONS

In this article, we have explored the effects of floppy
modes in the thermodynamics of glasses. In particular, we
showed that a blueshift of floppy modes can be predicted
using simple thermodynamical arguments. This leads to the
formulation of a simple model, which suggests effects of
floppy modes at low temperatures. During the glass transi-
tion, floppy modes also play a role. Thus we explored how
flexibility and rigidity determine the energy landscape. We
found two competing effects that contribute to the entropy in
the liquid melt; one contribution is given by channels and the
other is the existence of different energy basins. By consid-
ering a simple example, we showed how to estimate both
contributions, and we discussed the importance of both ef-
fects in the window of reversibility. The results of this article
seem to confirm Phillip’s idea that the glass forming ten-
dency is enhanced at the rigidity transitionf37g, since al-
though there is an increase in the entropy due to the different
energy basins, the pathways provided by floppy modes are
absent and the system is easier to trap in a certain minimum.
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