PHYSICAL REVIEW E 71, 026114(2005

Energy landscape and rigidity
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The effects of floppy modes in the thermodynamical properties of a system are studied. From thermody-
namical arguments, we deduce that floppy modes are not at zero frequency and thus a modified Debye model
is used to take into account this effect. The model predicts a deviation from the Debye law at low temperatures.
Then, the connection between the topography of the energy landscape, the topology of the phase space, and the
rigidity of a glass is explored. As a result, we relate the number of constraints and floppy modes to the statistics
of the landscape. We apply these ideas to a simple model for which we provide an approximate expression for
the number of energy basins as a function of the rigidity. This helps to understand certain features of the glass
transition, like the jump in the specific heat or the reversible window observed in chalcogenide glasses.
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[. INTRODUCTION tally observed[6,17]. Even for simple systems like hard
disks[18] and colloids[19], it seems that rigidity plays an
The physics of glass formation is a complex multiparticleimportant role. For more complex systems like proteins, ri-
problem, and in spite of its importance from the fundamentabidity has been used as a very powerful tool to understand
and technological points of view, many important questiongolding and long-time scale motion&0].
remain unanswerefd]. As an example, we can cite the ori- A very puzzling fact of RT that has not been explored is
gin of the nonexponential relaxation la\&| or the ability of  the following. According to the idea of looking at rigidity as
certain materials to reach the glassy s{&fe To tackle these a vector percolation problem, at the rigidity threshold the
problems there are many different approachds phenom-  entropy is higH 21], due to strong fluctuations as happens in
enological models like the Gibbs-Dimarzio model, theoreti-any phase transition. One even can define a free energy and
cal theories like mode coupling, or the use of extensive comspecific heat as a function of the flexibility of the system that
puter simulation$5]. A very interesting question is how the has a singularity at the transitig@2]. However, the experi-
glass transition temperatut&y) depends on chemical com- mental data from modulated scanning calorimetry in chalco-
position. Chalcogenide glassésrmed with elements from genide glasses shows the opposite: at the rigidity transition
the VI column doped with impuritigsare very useful for the configurational entropy is less and there iwiadow of
understanding these effe¢®. As was discovered more than reversibility [6,23]. In particular, it has been observed that
2000 years agal, can be raised or lowered by adding im- protein folding is reversible because it occurs at the rigidity
purities, and the fragility of the glass can be changed froniransition[20], and this seems to be a crucial property for life
strong to fragile[7]. Recently, by using stochastic matrices to exist[20].
[8,9], the law that gives the relation betwedly and the Mainly, the problem resides in the fact that although RT
concentration of modifiergl0] has been obtained, including provides a framework to understand many features of a sys-
a constant that appears in the law for almost any chalcogeriem, its use in a quantitative way has not been fully devel-
ide glasg[11]. Another interesting property of glasses is theoped to provide a link with the thermodynamics of the sys-
behavior of their viscosity, which is usually referred to as thetem. In a previous paper we approached this problem by
fragility [7]. The fragility of a glass is also related to the using a phenomenological free energy to account for many
glass forming tendency in that melts of a strong or nonfragileéhermodynamical properties of the glass transifi24], and
liguid do not require a high speed of cooling to form glassesthen we made extensive computer simulations with associa-
On the other hand, fragile glasses are poor glass formers attigre fluids to show that many concepts of the RT work in a
require a rapid quench to form glasses. The ease of glasthermodynamical environmen{25,26. However, the con-
formation can be explained at least in a qualitative way bynection with thermodynamics is still not mature, since there
the rigidity theory(RT), introduced by Phillipg12] and fur-  is no general way of introducing thermodynamics in the RT.
ther refined by Thorpd13]. By considering the covalent In a different context, the energy landscape is a formalism
bonding as a mechanical constraint, the ease of glass forméhat has been very useful for describing the molecular scale
tion is related to the ratio between available degrees of freeevents that happen during the glass transit®d. The land-
dom and the number of constraints. If the number of conscape is a multidimensional surface generated by the system
straints is lower than the degrees of freedom, there are zergotential energy as a function of the molecular coordinates
frequency vibrational modes called floppy modéd]. The  [4]. In anN-body system the landscape is thus determined by
resulting network is underconstrained. A transition occurghe potential energy function, given ld(r 4, ...,ry) wherer;
when a disordered lattice becomes rigid. Glasses that ammprise position, orientation, and vibration coordinates. For
rigid at a certain chemical composition are easier to formthe simplest case of a particle possessing no internal degrees
and many features of this transition have been experimersf freedom, the landscape is(a8N+1) object. The topogra-
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phy of this landscape is fundamental for the thermodynamicangles are also rigid, in three dimensiof&D) there are

of the system. At high temperatures the system does not fe¢pr —3) constraints, to give

the summits and valleys @b(r 4, ...,ry) because the kinetic

energy contribution dominates. However, as the temperature ¢ - 3N-N, =1-> M =2- §<r>

is lowered the system is unable to surmount the highest en- 3N p 3 6

ergy barriers and therefore is forced to sample deep minima. ,
When this happen, the kinetics of relaxation changes fronjVhere the last term corresponds to the angular constraints,
exponential to stretched exponenfia]. An important obser- 1S the fraction Qf pgmcles with coo'rd|nat|(m and(r) is the
vation is that, according to statistical mechanics, the entropiverage coordination number, defined as

of the system depends on the accessible volume in the phase B

space. However, inside a local minimum of the potential en- (r)= Er: M-

ergy, it can happen that if there are no paths that connect to

other minima, the system cannot sample that part of thé\ rigidity transition occurs wheri=0 and the system passes
phase space. In such a case, ergodicity is broken and thieom a floppy network to a rigid one. Glasses are rigidl i$
system is no longer in thermal equilibrium. Such a glass willa negative number, i.e., if there are more constraints than
have a residual entropy28]. In this article, we show that degrees of freedom, the lattice is overconstrained and the
rigidity can be related to the statistics of the energy landimportant number is how many stressed bonds are present. In
scape, since the number of floppy modes is related to th@D, the rigidity transition leads to the critical value.)
number of different configurations of the system with nearly=2.4 if all angular constraints are considered. In real sys-
equal minimal energies, and thus provides an estimation folems, the Maxwell counting breaks near the rigidity transi-
the number of minimal energy basins of the landscape. Bution, and the number of floppy modes is obtained from the
floppy modes also provide channels in phase space that ipebble game algorithifil4].

crease the entropy, which in part explains the paradox of the What are the simple thermodynamical effects of floppy
window of reversiblity. To show these connections, we will modes? To answer this question, first we use the simplest
concentrate on the effects of rigidity on the shape of themodel for atomic vibrations in the harmonic approximation,

energy landscape. where the interatomic potentials are replaced by springs. The
The layout of this work is the following. In Sec. Il we corresponding Hamiltonian is

discuss a simple way to introduce thermodynamics into RT,; N 52 3N(I-f)

however, as we will see, the straightforward manner of doing H= g S Cme’Q? (1)

this does not agree with the experimental results. Thus, we m2m o2 1=l

propose that the effects of floppy modes are important only

at low temperatures or during glass transition. In Sec. lll thevhere Q; and P; are thejth normal mode coordinates in

connection with the energy landscape is made and a simpleghase space, ang; is the corresponding eigenfrequency of

model is worked out. Finally, in Sec. IV we give the conclu- €ach normal mode. Observe that floppy modes have zero

sions. frequency; they do not contribute to the elastic energy. Using
simple statistical mechanics, we can obtain the partition
function in the canonical ensemble at the classical litmigh

II. RIGIDITY AND THERMODYNAMICS temperatures compared with the Debye temperature
N
In this section we explore some simple thermodynamical Z:J - [ T] dP,dQeHkT
consequences of the RT. As explained before, the rigidity =1 =
ideas of Phillipg29] and Thorpg 14] were used in order to aN(I-f) ,
understand the ease of glass formation. In this theory, the B <Z7kaT>3N/2 I <27TkT u
ability to make a glass is optimized when the number of B h2 i1 me,Z '

freedom degrees, in this casBl,3vhereN is the number of '
particles, is equal to the number of mechanical constrainthereT is the temperature ankl the Boltzmann constant.
(No) that are given by the bond length and angles betweerhe free energy of the system is now given by

bonds. 3N(1-f)
The number(3N-N,)/3N gives the fraction of cyclic Fz—M— (277ka> _kT |n<277k;r)_
variables of the Hamiltonian, i.e., when one of these vari- 2 h? 2 o Mw

j
ables is changed, the energy of the system does not change, . . . .
as for example happens with the center of mass coordinat%%om this last expression, the corresponding specific heat
This fraction also corresponds to the fraction of vibrational Cy) is

modes with zero frequencf), called floppy modes, with 3Nk

respect to the total number of vibrational modes. The count- Cy=3Nk- Tf'

ing of floppy modes in a mean field, known as Maxwell

counting, goes as followj80-32. Since each of the bonds In this simple approach, the prediction is ti@t is given by

in a site of coordinatiom is shared by two sites, there a2 the Dulong-Petit law, minus a term that depends on the num-
constraints due to distance fixing between neighbors. If théer of floppy modes. The reason is cleffmppy modes do not
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store energysince they are cyclic variables of the Hamil- experiments at low temperatures performed on chalcogenide
tonian; the energy of the system does not change, as f@lasses will provide characteristic features of rigidity.
example the center of mass coordinate. However, a careful

examination of the experimental data shows that for chalco-

genide glasseps], like compounds of As-Ge-Se and ferro- IIl. ENERGY LANDSCAPE AND RIGIDITY

electric materialg15], C,, does not depends oh Instead,

they follow the Dulong-Petit law. From this simple thermo- |, the last section we discussed that floppy modes have
dynamical argument, one is led to propose that floppy modeggtects mainly at lowT. In spite of this, an examination of

do not have a perfect zero frequency, i.e., in real glasses thg}e experimental results shows that the number of floppy
are shifted by residual forces, like the van der Waals interacyqdes is also important for the thermodynamical properties
tion. This argument is confirmed by neutron scattering eX-; the glass transitiof7]. For example, the magnitude in the
periments, where it has been shown that floppy modes iihmp of Cp, usually denoted bACp, the jump in the thermal
As-Ge-Se are blueshiftdd6,17, forming a peak at around 5 ‘gxpansion, the energy for activation of viscosity, the fragility,
me\_/. Thus, at high temperatures, all thd 8scillators are _ and the entropy of a liquid melt depend brMoreover, very
excited. We suggest that the effects of floppy modes are inygcently Boolchandt al. discovered the window of revers-
portant only at low temperatures since all floppy modes argjity in the heat flow, associated with a phase of zero inter-
frozen nearly at the same temperature. The correspondl%d stress in the network3]. Angell has pointed out the
temperaturé©y) where these modes are frozen, can be estiygjitative relationship between energy landscape and fragil-
mated from the energy required to excite modes of 5 meVity during glass transitiofi27]. However, it is still not clear
which givesO;~60 K. Furthermore, an Einstein-like mode oy to relate these features to the statistics of the landscape.
in the vibrational density of states is suggested by the giantiere we will show that the number of floppy modes provides
softening of the *'°Sn Lamb-Méssbauer factor in 4 useful parameter to represent the roughness of the land-
(Gey.985M.00:S@ -« glassed 17] asx steadily decreases to 0, scape. This roughness is evident when the glass is melted,
i.e., as the glass gets more floppy. The mean square displacgxplaining why floppy modes are important during glass
ment at absolute zero or the first moment of the vibrationatransition, since they are collective motions that provide

density of states is the quantum property that contains inforpathways across the phase space and energy landscape.

mation on these floppy modes, and its variatiomicely As a first and tentative step, we start again by supposing
scales with the scattering strength of the 5 meV mode obthat floppy modes are at zero frequency. Around any given
served in inelastic scatteririd7]. inherent structure, the potential has a minimum and thus can

This behavior at low temperatures, where a quantunpe expanded in a Taylor series, which turns out to be the
treatment is needed, can be modeled by using a simple degxpression of a harmonic potential. From the Hamiltonian
sity of statesp(w) that takes into account the floppy peak in presented in Eq1) is clear that in an inherent structure, each
the spectrum. First we use a Debye type of density of statesloppy mode provides ahannel in the landscapsince the
normalized to 8I(1-f). Then we add the contribution from energy does not depend upon a change in a floppy coordi-
the floppy modes, with @ function centered around a char- nate. A very simple example is shown in Fig. 1, which shows
acteristic peak aivy. The corresponding density of states is the bottom of the landscape for a system with two normal

ONL-T) , modes. In the first systeffrig. 1(a)] =0, but the other has

w2+ 3Nf&(w - wp) if < wp, f=1[Fig. 1(b)] since one of the spring constants was set to
plw) = wp zero(of course, by excluding the center of mass coordinate
0 if o> wp, In a more general way, for a given inherent structure, the

) ) number of channels is clearly given by Each channel in-
wherewy, is the Debye cutoff frequency. By using the Bose-creases the available phase space allowed to visit. The en-
Einstein distribution for the number of phonons in equi"b' tropy due to f|oppy modes is easy to calculate. In the micro-
rium at a certain temperature, we get that the specific heat iganonical ensemble, the number of accessible states

2 [Q(E,V,N)] for a system with a volum¥ is proportional to
Cy=(1-1)3NKD(xo) + f3Nk———— the area defined by the surface of constant enefgy
(-1 =H(Py4,...,Pn,Qq,-..,Qy). Since floppy modes are cyclic
wherex=04/T, X,=6p/T, andOp =/ wp, is the Debye tem-  Variables of the Hamiltonian, we can write
perature.D(x) is the well known Debye function. At high
temperatures, the model predicts the Dulong-Petit law as ex-
pected, while at lowT, the following behavior is obtained:

4 4 T 3 [e) 2
Cy=(1- f)3Nk?7T<6—) + f3Nk<?f> g o, 3N 3N(L-f) i3 aNf
i xI1dp, I1 ko(J dQ) ,
which is a Debye law of the typ&®, but with a contribution ji=1 k=1 0

that is in the form of the Einstein model. Each contribution is
determined from the fraction of floppy modes for a given
composition of the glass. The present model suggest thand using the Boltzmann relatidgek In Q(E,V,N) we get
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FIG. 2. A system of bars and hinges with three different con-
figurations. The squares with the diagonal bars are rigid, while the
others are flexible. The corresponding floppy modes are shown with
(b) arrows.

FIG. 1. Bottom of the landscape for a systénwith no floppy = fNkIn V which is only activated when the glass traverses
modes and a potential energy in arbitrary units givenddy,y) the glass transition. This entropy is just a maximal bound,
=x?+y? and (b) with one floppy mode obtained by removing a since it can be less depending on the range of the floppy

“spring,” ¢(x,y)=x2 A channel is generated in thedirection. coordinate. We can speculate that these channels are in fact
the ones that explains the fragility and ease of glass forma-
(2arm)NZENA~112) 3N(1-F) 5 tion sinc'e is clear that.it is much more difficult to trap the
S=1In ( ) +fNKIn V. system in a local minimum of the landscape when many
h3N{[3N(1 - f/2)] - 1}! i1 Ma? channels are present.

) However, there are two important facts to consider in all
the previous statements. First the number of floppy modes is

The entropy provided by the channels in the landscape i@ function of the energy. In fact, when the glass becomes
simply given by the last terr§,=fNklIn V. At first glance, it fluid, most of the constrictions upon the bond lengths and
seems that this result agrees with the experimental observangles are relaxed arfds raised. For the extreme case of no
tions, because during glass transition, it has been observétpnding between atoms, the system behaves without con-
that floppy glasses have a large entropy and as a result, théfraints and all the modes are floppy 1. Notice that an
have a more fragile behavior as deduced from the Adamddeal gas is a perfect “floppy system.” An improvement to
Gibbs relation{7]. However, a more detailed analysis showsEd. (2) is to makef a function of E; then the number of
that if we suppose an entropy of the type given by m’ f|0ppy modes is Nf(E) In such a case, the jump in the

the specific heat does not follow the Dulong-Petit law. Thisspecific heat will also depend diy as observed in the ex-
is due to the dependence $uponE3N2 \which is justa Periments. The functiof(E) is zero wherE> kT, and has a

result of the independence df with respect to floppy Value determined by the average coordination number below
modes. As discussed in the previous section, this leads to tlibe glass transition, i.e.f,(E):2—§<r>. The shape of this
conclusion that floppy modes are not strictly at zero fre-function can be estimated using a procedure that we will
quency. The blueshift of the floppy modes means that thelescribe later.
channels in phase space are not fléitere is a small curva- The second consideration is that the number of floppy
ture in the direction of the floppy variable. This effect has themodes affects the number of minimal energy valleysually
property that it restores the Dulong-Petit law and providesalled inherent structurg¢hat are available when the system
directions in phase space where the system can relax withohas a certain energy. This effect is explained in Fig. 2, where
big changes in energy. a system of bars and hinges is considered. In the example of
In a floppy glass there is a hierarchy in the strength of therig. 2, there are no angular forces. Each bar provides a re-
forces. The forces that restore the Dulong-Petit law are thstriction to the system. There are three squares. In one of the
weakest. Then it is natural to assume that the anharmonisquares there is a diagonal bar. As a result, this square cannot
contributions of these residual forces are also small. Undelbe deformed, since the distances between all the hinges are
this assumption, the extra entropy due to these modé&s is fixed. The other two squares are flexible as indicated by the
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arrows. Each of these flexible squares can be deformed inde- Ty

pendently, and the system has two floppy modagain, 14
without counting the center of mass translation and rotations 1.2
around i}. Now we move the diagonal bar to the second 14
square and the system has the same number of floppy modes, 0.8-

but the structure is different, and the same thing happens if
we put the diagonal in the first square. In the landscape for-
malism, each of these configurations is in a different “inher-
ent structure” and corresponds to a basin with the same en-
ergy. This part of the entropy has been studied extensively in
the context of rigidity transitionf21]. However, as we will 02 04 0.6 0.8 1
see next, there is a competition between the channel and f

configurational entropies.

N . FIG. 3. Contributions to the total entroggrossesin units of
Tosee h(,)w these concepts are app“ed '.n a particular CaSQk The dotted line is the contribution from channé®) with the

let us consider the fOI_IOW'ng two-dlmensmna_ll model thataribitrary valueA-b=4. The solid line is the contribution from

contains all of the previous features that we discussed. Conyifterent configurationss,).

sider a system oN disks interacting with a central force

where no angular forces are considered. Each disk has a hard , , _

core potential and an attractive part which has a range deter- ?ﬁeagiﬁe?cggﬁlﬁgu?i};;h?odItiﬂég]e’n?rgpl\yg:g:{s 2.from the

i h . If o is the di f the disk
mined by the parametex. If o is the diameter of the dis Sh umber of ways in which a configuration with a givémn

andr is the distance between the centers of two disks, thé . o
potential is written as can be made. Although this number is difficult to calculate,

one can suppose a cell model of the fluid, and then just

», ifr<o, consider the number of ways in which absent bonds can be
V(r)=1-V;, if o<r<\o, deleted from the lattice with maximal packing. This number
0. if r>\o. of configurationd Q(f,N)] is
The nature of the fluid and solid phases of this system has Q(f,N) = (rmadN/2)! (4)
been studied in previous wofl9]. Here we study only the ’ (rmaN/2 =(r)N/2) ' ((r)N/2)!

rigidity. Within this model, a bond is formed when the dis- . . . )
tance between two disks is betweenand Aa. Each bond vyhere(r) IS a _funct|on off. The corresponding configura-
has an energy V4, and the energy of the system is just tional entropy isS,=k In Q(f,N). A natural way to compute

proportional to the number of bonds. This number is proporthis entropy is to define an order parametf) as

tional to the average coordination number divided by 2 since (Fra= () = () 4f—1
each bond is shared by two sites. Then, the amount of energy m(f) = —= = (5)
(E) of the system is given by Fmax 3
(r) In terms of this parameter, and using Stirling’s approxima-
E=- VlN? =-2V;N(1 - 1), 3 tion, the total entropy fof =0 now reads
where it was used that for the mean field approximation in S*S =In2+fIn(A-b) - Mln[l +m(f)]
two dimensionsf =[2N—-(N(r)/2)]/2N. From the last equa- k 2
tion, it is observed that a gas is obtained when the system is [1-m(f)]

100% flexible(f=1) and the state of maximal packirithe In[1 —m(f)].

hexagonal lattice with maximal coordination,,,=6) is

overconstrainedthere areN/2 redundant bonds in the mean For an overconstrained lattice, the expression for the entropy

field approximation From the last equation, is clear tifais  is just given byS,. The expression fof =0 contains the

a function ofE. effects that were discussed previously, i.e., the linear depen-
As said previously, there is an entropy provided by floppydence of the entropy upoh and the contribution from dif-

mode channel¢S;) and by the different configurations of ferent structures with the same energy. In Fig. 3 we show a

floppy modes(S,). According to our previous assumptions, plot of the total entropy and the corresponding contributions

the first contribution isS, = fNkIn A whereA is the area of for a givenA-b. It is interesting to note th&, tends to grow

the system. This is only valid in the flexible phase, i.e., be-as we diminish the number of floppy modes, since the num-

fore the freezing of the system since at that point it has beeher of configurations with the same energy grows. Notice

suggested that there is a rigidity transiti@5]. After freez-  thatS, does not have a maximum exactly when0 due to

ing, this contribution is zer@S,;=0). At high temperatures, the mean field approximations; the maximum is shifted to the

the system is a fluid and the entropy is just the same as thiéght. From Eq.(5), this occurs neafr)=4, i.e., near the

one obtained from the available phase space without aniwo-dimensional rigidity transition. This fact seems to con-

interaction. A more realistic assumption although still verytradict the observation that in the rigidity transition, the ex-

rough is to use thab, = fNkIn(A—b) whereb is proportional  perimental nonreversible heat flow is a minimum, which

2

026114-5



GERARDO G. NAUMIS PHYSICAL REVIEW E71, 026114(2009

means that the configurational entropy is a minimum. One __ { _ [m(E) +1] _
can expect that in the rigidity transition, a lot of fluctuations G(E) = expN| = m(E)In(A-b) = ————In[1 + m(E)]
will be observed, while in the experiments it seems that the 2

contrary is trug 7]. However, the present results show that [ —m(E)] . ]

floppy modes havénvo competing effect®ne is the entropy - ———=In[1-m(E)] (9)
due to the different configurations, but the other is the shape 2

2E
3V;N

of each basin, since around each minimum, floppy modes

form channels that increase the entropy. Thus, as is shown in

Fig. 3, when the system passes from flexible to rigid, the . o

number of configurations increases, but the number of chan- mE)=1-2f(E)=|1+ )

effect is more important, since the configurational entropy of]c the channel term is the most im ortam(E) can be ap-

a melt with a floppy glass former is higher as the number 01! imated b P P

floppy modes is increasdd,17]. proximated by
F(f)=-2vi1 -HN-T(5+S). ®)  Wwhich has the same general shape as that proposed by Still-

To compare with the energy landscape formalism, we usénger[35]. The factorm(E)|[In(A—b)] in the exponential can

that the partition function is the sum of partition functions atpe identified with the landscape complexj86].

Wherem(E) is obtained from Eqgs(3) and (5),
nels diminishes. Experimental results suggest that this last
Finally, the free energy fof=0 can be written as G(E) - exp{N|m(E)|[|n(A— )]}
inherent structuref34],

Z(T) =Z"Y(T) f i G(E)e FKTdE, (7)

0

where G(E) is the number of energy basins with enefgy
andZiha(T) is the partition function for a system of harmonic
oscillators[34]. Since G(E) is always a growing function,
ande ¥ T is always decreasing, the integral of E@) can be

replaced by the value at the maximun

r

The corresponding free energyis

G(E)e F¥TdE ~ G(E) BT,

F__ — N Z"T) — In G(E) + £
=—InZ(T)=-InZ"¥T) InG(E)+kT.

NKT &

IV. CONCLUSIONS

In this article, we have explored the effects of floppy
modes in the thermodynamics of glasses. In particular, we
showed that a blueshift of floppy modes can be predicted
using simple thermodynamical arguments. This leads to the
formulation of a simple model, which suggests effects of
floppy modes at low temperatures. During the glass transi-
tion, floppy modes also play a role. Thus we explored how
flexibility and rigidity determine the energy landscape. We
found two competing effects that contribute to the entropy in
the liquid melt; one contribution is given by channels and the
other is the existence of different energy basins. By consid-
ering a simple example, we showed how to estimate both
contributions, and we discussed the importance of both ef-
fects in the window of reversibility. The results of this article
seem to confirm Phillip’s idea that the glass forming ten-
dency is enhanced at the rigidity transitip®7], since al-

As usual, the free energy is just the contribution from thethough there is an increase in the entropy due to the different
vibrations inside the basin, the entropic component due tenergy basins, the pathways provided by floppy modes are
the existence of different basins, and an energetic componeabsent and the system is easier to trap in a certain minimum.
which reflects the average depth of the landscape at a certain

T. Now we turn our attention to ho®(E) is affected by the
floppy modes. Comparing Eqé6) and (8), we get an esti-

mation for G(E),
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