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We show that a localization mobility edge can appear around the Fermi energy in graphene by introducing
impurities or by producing vacancies in the lattice. The edge appears at the center of the spectrum and not at
the band edges, in contrast with the usual picture of localization. Such result is explained by showing that the
bipartite nature of the lattice allows one to renormalize the Hamiltonian, and this internal edge appears because
of frustration effects in the renormalized lattice. The size in energy of the spectral region with localized states
is similar in value to that observed in narrow gap semiconductors.
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Only very recently, a two dimensional form of carbon was
obtained.1 This material, known as graphene, has attracted a
lot of research due to its amazing electrical and mechanical
properties.2–4 For example, electrons in graphene behave as
massless relativistic fermions that satisfy the Dirac
equation.5 Such property is a consequence of the bipartite
crystal structure,6 in which a linear dispersion relationship
appears at the center of the electronic spectrum. Also, one
can cite the high mobility of its charge carriers that remains
higher even at high electric-field-induced concentration,
which translates into ballistic transport on a submicron scale7

at 300 K. These and other unusual electronic properties of
graphene make it a promising material for building elec-
tronic devices. However, from the point of view of applica-
tions, the use of pure graphene poses some problems. The
transmission probability of electrons across a potential bar-
rier is always unity, irrespective of the height and width of
the barrier. This behavior is related to the Klein paradox in
relativistic quantum mechanics.2 As a result, conductivity
cannot be changed by an external gate voltage, a feature
required to build a field effect transistor, although a quantum
dot has been used to perform the required task.8 In a previous
work, the density of states of graphene with Anderson type
of disorder revealed that the linear dispersion relationship
was affected,9 and recently, many electrical properties of
graphene with disorder have been obtained.10–14 Here, we
show that graphene doped with impurities or with vacancies
presents a very unusual property; instead of having a local-
ization mobility edge �defined as the energy at which the
states change from extended to localized15� at the band limits
as in the usual Anderson localization, the localized states
appear at the center of the spectrum, around the Fermi en-
ergy. As we will show, this is a simple consequence of the
bipartite crystal structure, which produces a frustration effect
in a renormalized Hamiltonian that removes the bipartite
symmetry.

Let us start by considering the tight-binding Hamiltonian
of graphene with disorder, which can be written as H=H0
+H1, where H0 is the pure graphene Hamiltonian,16

H0 = E0�
i

�i��i� + �0�
�i,j�

�i��j� . �1�

E0 is the on-site energy of carbon and �0 is the carbon-
carbon resonance integral, as given in Ref. 16. H1 is the
Hamiltonian due to defects,

H1 = �E�
i

�i��i� + ��0�
�i,j�

�i��j� , �2�

where we define �E�EI−E0 and ��0��I−�0. Here, EI is
the on-site energy of the defects, and �I the transfer integral
between impurities. When �E�E0, the spectrum is divided
in two parts; one centered around E0 and the other at E0
+�E. The states in the subband around the carbon on-site
energy E0, which we call the C band, are strongly confined
on carbon atoms. Furthermore, in the limit �E�E0, it has
been shown that impurity atoms can be formally removed in
a tight-binding Hamiltonian,17 and thus, the C band can be
studied by using a Hamiltonian restricted to C sites only,

HCC = E0�
i�C

�i��i� + �0 �
i,j�C

�i��j� . �3�

This Hamiltonian describes an electron that can hop from
one site to its neighbors only if both are carbon atoms �C�.
Furthermore, the problem for the C subband is similar to a
lattice with vacancies17 and, thus, the results presented here
are also valid for such a case.

Now let us study the spectrum of HCC. We will work on a
renormalized Hamiltonian which takes advantage of the bi-
partite nature of the C lattice, once the I atoms are removed.
The bipartite character means that it can be separated in two
interpenetrating sublattices, A and B. We define two orthogo-
nal operators that project the wave functions into these sub-
lattices,

PA = �
i�A

�i��i� and PB = �
j�B

�j��j� . �4�

To simplify the renormalization process, we shift the energy
scale in such a way that E0 corresponds to zero energy.
Therefore, any eigenvector ��� of HCC can be written in
terms of these projectors,

HCC�PA + PB���� = E�PA + PB���� . �5�

Since HCC produces a hopping between the A and B sub-
lattices, we have
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HCCPA��� = EPB��� and HCCPB��� = EPA��� . �6�

From these equations, one can see that the spectrum is
symmetric around E=0 �which means symmetric around E0,
when E0 is not set to zero�, since if �PA+ PB���� is an eigen-
vector with eigenvalue E, �PA− PB���� is also an eigenvector
with eigenvalue −E. We can decouple the sublattices by fur-
ther applying HCC to Eqs. �6�,

HCC„HCC�Pi����… = HCC
2 �Pi���� = E2�Pi���� , �7�

where i=A ,B. Thus, the projection of an eigenvector in each
sublattice is a solution of the squared Hamiltonian. Observe
that the eigenvalues of HCC

2 are positive definite, and their
eigenstates are, at least, doubly degenerate. This spectrum
can be regarded as the folding of the original spectrum of
HCC around E=0, in such a way that the two band edges of
HCC are mapped into the highest eigenvalue of HCC

2 , while
the states at the center of the original band are now at the
minimum eigenvalue of the squared Hamiltonian. The im-
portant property of the renormalized Hamiltonian HCC

2 is that
the states at the bottom of the spectrum have an antibonding
nature �the phase difference between neighbors is maximal�,
and we can expect that the frustration of the wave function
can prevent the spectrum from reaching its minimum eigen-
value in a continuous form.18,19 This leads to localization
since the wave function tends to avoid regions of higher
frustration. The mobility edge appears when the energy cost
in localization is less than that of having amplitude in frus-
trated bonds. As we will show next, frustration augments
with disorder. To do this, we observe that the Hamiltonian
HCC

2 is equivalent to a renormalization of sites B in the lat-
tice, which leads to a triangular lattice with an effective in-
teraction, as shown in Fig. 1. The new lattice contains odd
rings, and when impurities are present, there are vacancies,
as indicated in Fig. 1�b�. The corresponding Schrödinger
equation derived from HCC

2 after returning to the original
energy scale, is

��E − E0�2 − Zi�0
2	ci�E� = �0

2 �
�j,i��A

cj�E� , �8�

where ci�E� is the amplitude of the wave function at site i for
an eigenenergy E. The notation �j , i��A means that the sum is
taken only for C atoms which are first neighbors in the new

triangular lattice, i.e., those atoms that were second neigh-
bors in the original hexagonal lattice. Finally, Zi is the coor-
dination number at site i. This number ranges from 0, when
a C atom is surrounded by impurities, to 3 when it is sur-
rounded by three C atoms. Then we perform a variational
procedure to estimate the ground state of Eq. �8�. After mul-
tiplying Eq. �8� by ci

*�E� and summing over i, we get

�E − E0�2 = �
i

Zi�0
2�ci�E��2 + �0

2�
i

�
�j,i��A

ci
*�E�cj�E� , �9�

The first contribution is an effective on-site energy, while the
second depends on the number of bonds and on the ampli-
tude and phase of the wave function. For example, in pure
carbon, Zi=3 and cj�E�=ei�j /
N, where � j is a phase and N
the number of atoms. The minimal eigenvalue is obtained
from Eq. �8� when the phase difference between sites is
2� /3. Thus, the ground state has nearly an antibonding na-
ture since for each bond we have ci

*�E�cj�E�+cj
*�E�ci�E�

=2 cos�2� /3� /
N=−1/
N. Then it follows that E=E0. As a
consequence, there is no gap for pure graphene, as expected.
The graphene case reveals an interesting fact; the zero gap is
due to the exact balance between the positive renormalized
on-site energy Zi and the antibonding contribution.

Now consider the case of a finite concentration x of im-
purities or vacancies. Since an impurity belongs to a given
bipartite sublattice, there are two effects. The first is a reduc-
tion in the coordination number, and the second is that some
bonds are deleted. The coordination effect can be estimated
as follows. We write the first term of Eq. �9� as an average
term plus a correlation of amplitude-coordination,

�
i

Zi�0
2�ci�E��2 = �Z��0

2 + V�0
2�

i

�Zi�ci
2�E� , �10�

where it was used that Zi can be written as an average �Z�
plus a fluctuation part �Zi. A similar procedure can be made
for �ci�E��2��c2�E��+�ci

2�E�. The average Z can be obtained
by observing that around a given carbon atom, there are four
possible configurations: it can be surrounded by one, two,
and three impurities, or it can be completely surrounded by
carbon atoms. For each configuration, there is a different
coordination number Z, since impurities act as vacancies. As
a result, Z has a binomial probability distribution P�Z�

FIG. 1. �Color online� Renormalization of the graphene lattice.
Atoms in the A sublattice are shown with a different color than
those in the B sublattice. The new lattice that appears after renor-
malizing B is represented with double bonds.

FIG. 2. �Color online� Renormalization of the lattice with de-
fects. The impurities are shown with dark color. There are two
cases: the impurities can fall in sublattice A or in B, as indicated in
the figure. In the first case, six bonds are deleted in the renormalized
sublattice, while only three bonds disapear in the other case.
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=CZ
3xZ�1−x�3−Z, where CZ

3 is a combinatorial factor. It fol-
lows that �Z� is the first moment of the binomial distribution:
�Z�=�Z=0

Z=3ZP�Z�=3�1−x�. Notice that the contribution of the
last term in Eq. �10� leads to the production of localized
states, since it is the correlation between amplitude and on-
site energy fluctuations. Thus, the system has a mobility edge
when this term lowers the energy compared with the energy
required for having an extended state with amplitude in frus-
trated bonds.

The other effect is the removal of bonds that changes the
second term of Eq. �9�. We can estimate this effect as fol-
lows. Impurities are isolated for low doping �x�1�, since the
probability of having two impurities as neighbors goes as x2.
Then we will consider that impurities are isolated. Two situ-
ations are possible. Either an impurity belongs to the renor-
malized sublattice, or it can remain as shown in Fig. 2. For
each impurity site that is renormalized, three bonds are lost.
In the other case, six bonds are lost for each impurity. Since
they are randomly distributed in sublattices A and B, the
concentration of impurities is x on each sublattice. As a re-
sult, the number of missing bonds is �6+3�xN, from a pre-
vious total of 3N. Using this count in Eq. �9�, and assuming
no on-site energy amplitude correlation in Eq. �10� for an
antibonding trial state, we obtain the approximate position of
the mobility edge �Ed�,

�Ed − E0�2 � 3�0
2�1 − x� − �0

2�3 − 9x� = 6�0
2x ,

which leads to a symmetric mobility edge separated an en-
ergy 	 from the center of the band,

	 � ± 
6x�0. �11�

As a check of these ideas, in Fig. 3, we present the normal-

ized logarithm of the inverse participation ratio,


�E� =
log IP�E�

log N
, �12�

where IP�E� is the inverse participation ratio, defined as
IP�E�=�i=1

N �ci�E��4, which is a well-known measure of local-
ization. For extended states, 
�E��−1, while it tends to be
bigger values when localization is present. Figure 3 shows a
comparison between a pure graphene case and the doped
cases, for a tight-binding simulation using an average of ten
lattices with N=5184 sites. It is worthwhile mentioning that
few degenerated states appear in the center of pure graphene.
They are a consequence of the local topology of the lattice,20

as also happens in other lattices.17,19 Figure 3 shows that the

�E� is, in general, bigger for the doped case, but at the
center of the spectrum, there is a clear rise in its value, indi-
cating a greater degree of localization. In Fig. 4, we compare
Eq. �11� with the numerical value of 	 obtained from the
localization plot, which shows good agreement with the pre-
dicted value.

The value of �0 is around16 0.9 eV or �0=20 kcal/mol.
For 1% doping, the size of the whole localized region is
around 2	�0.44 eV. Since light is absorbed when the band-
gap energy is in the limit of the visible spectrum 1.77 eV
�700 nm�, the localized region in doped graphene can be
considered as similar in size to the energy gap in narrow-
band-gap semiconductors.

In conclusion, we have shown that doped graphene pre-
sents a mobility edge at the center of the spectrum, and this
can be useful for many devices since the position of the edge
can be controlled by doping.
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FIG. 3. �Color online� Logarithm of the inverse participation
ratio as a function of the energy for pure graphene �line� compared
with the doped cases with x=0.01 �triangles� and x=0.02 �squares�
around the center of the spectrum of the carbon subband, for a
lattice with 5184 sites. Observe the rise at the center of the spec-
trum for the doped case. A band of degenerate states is also ob-
served for pure graphene. The zero corresponds to the Fermi energy.

FIG. 4. �Color online� Theoretical value of the mobility edge
predicted from Eq. �11�, indicated with a solid line, and the value
obtained from a direct diagonalization of the Hamiltonian �squares�.
The numerical results were obtained from an average of ten lattices
with N=5184 sites
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