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A simple modification of the Monte Carlo algortihm is proposed to explore the topography and the scaling
of the energy landscape. We apply this idea to a simple hard-core fluid. The results for different packing
fractions show a power law scaling of the landscape boundary, with a characteristic scale that separates the
values of the scaling exponents. Finally, it is shown how the topology determines the freezing point of the
system due to the increasing importance and complexity of the boundary.
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I. INTRODUCTION

A liquid cooled to temperatures near its freezing point can
be conduced to a glassy state or to a crystal according to the
speed of coolingf1g. When the speed is high enough, the
supercooled liquid undergoes a glass transition to a state that
is disordered, while a phase transition of the type fluid crys-
tal is obtained if the system is kept in thermodynamical equi-
librium at all steps of the cooling pathf2g. The understanding
of the many different aspects of glass transition still remains
as one of the most important problems in physicsf3g, as for
example, the explanation of the nonexponential relaxation of
fluctuationsf4g or why not all materials form glassesf5g.
Another very interesting property of glasses, related with the
glass forming tendencyf6g, is the behavior of the viscosity,
which is usually referred as fragility. Different approaches
have been used to understand glass transition: models like
the Gibbs-DiMarziof7g, theories like the mode coupling,
stochastic agglomerationf8–10g or the use of computer
simulations f7g. Another useful approach is the rigidity
theory of Phillips f11g and Thorpef12g, which relates the
ratio between available degrees of freedom and the number
of constraintsf13g. In previous works, we showed that even
for simple systems like hard disksf14g and colloidsf15g, it
seems that rigidity plays an important role even for the case
of a simple phase transition, since it is clear that in order to
form a solid, the system must develop certain rigidity. Some
works on the relaxation properties of colloids, seem to con-
firm these ideasf16g.

Parallel to all of these approaches, there is another formal-
ism that has been very useful to visualize and understand
what happens during a glass or usual phase transition. This
formalism is the energy landscape approachf17,18g, which
many years ago was very successful in the field of spin
glassesf19g. The main idea behind this approach, is that the
landscape is a surface generated by the potential energy of
the system as a function of the molecular positionsf2g. For a
system withN molecules, the landscape is determined by the
potential energy function,Fsr 1,… ,r Nd, where r i comprise
all relevant coordinates, like position and orientation. Since
the kinetic energysKd is a positive defined quantity, the sys-
tem evolves in such a way thatK=E−Fsr 1,… ,r Ndù0,
whereE is the total energy. The topography of the landscape

energy surface determines the possible evolution of the sys-
tem, and the contact with thermodynamics is made by using
statistical mechanicsf2g. The great advantage of the land-
scape formalism is that it can be used even without thermo-
dynamical equilibrium. In such a case, ergodicity is broken
and the entropy is not a maximum anymore, as postulated in
the usual equilibrium statistical mechanics. The main ques-
tion to be answered for this case, is to figure out the fraction
of allowed volume in phase space that is visited by the sys-
tem.

The usual picture of a phase or glass transition in such a
language, is that at high temperatures the system does not
feel the topology ofFsr 1,… ,r Nd because the kinetic energy
contribution dominates. As the temperature is lowered, the
system is unable to surmount the highest energy barriers and
therefore is forced to sample deep minima. For a slow cool-
ing is slow, the system has time to find a path to the most
stable state, an ordered crystal. It will be trapped in a meta-
stable state, the glassf17,18g, if the cooling speed is high
enough. Many works that relates the statistics of an energy
landscape with the thermodynamical properties of the system
have been madef2,20–23g, and even some phenomenologi-
cal relations between rigidity and the energy landscape have
been obtainedf24g. For a Lennard-Jones fluid, it has been
determined that the network of minima is a static scale-free
network f25g.

However, up to now there are some important questions
that remain, for example, what is the topography of the land-
scape for a fragile liquid or how to obtain the viscosityf18g,
diffusion f26g and rigidity from the landscapef24g. Also,
although is widely believed that the landscape is fundamen-
tal to understand many features of a liquid, still is not com-
pletely clear how to use the landscape topology to predict a
phase transitionf27g. Another interesting question is what is
the nature of the texture of the landscape? In other words, is
the topography a fractal? What’s the fractal dimension of the
landscape? Although some of these questions seem to have
an academic interest only, is clear that the relaxation proper-
ties of a very complex fractal landscape are different from a
smooth landscapef28g, where the system can easily explore
the phase space. In this article, we will explore some of these
questions by looking at the scaling of the landscape.

The layout of this work is the following: in Sec. II we
discuss how to use a modified Monte Carlo method to study
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the scaling. In Sec. III we apply the method to a simple fluid
of hard disks. Finally, in Sec. IV we give the conclusions.

II. MONTE CARLO REJECTION AND SCALING
OF THE LANDSCAPE

In this section we will develop a method to relate the
Monte Carlo rejection ratio and the scaling of the landscape.
Before going into the details, it would be useful to explain
some others approaches to obtain information about the land-
scape topology. To simplify ideas, in this article we will use
as a model system,N hard disks or spheres of diameters in
a given areasSd or volume sVd. In such hard-core particle
system, the energy landscape is formed by walls of infinite
height that divide the allowed and forbidden regions of the
configurational phase space. Ifr i is the position of a disk or
spherei, the allowed region of the landscape is the set of
points where

ir i − r ji ù s, s1d

for all possible pairsi and j . The number of such pairssRNHd
is the number of combinations ofN objects taken in pairs:
C2

N=NsN−1d /2. Each of theseC2
N equations is a non-

holonomic restriction to the system. A stateP in phase space
is in the boundary of the landscape, if at least one of the
inequalitiess1d is transformed into an holonomic restriction,

ir l − r mi = s, s2d

for a pair of disks that we denote byl and m. For each
equation of this type that is satisfied, two disks are in contact.
For a given packing fractionsfd, the number of such equa-
tions sRHd is just

RH =
kZsfdl

2
N, s3d

where kZsfdl is the average coordination per particle in a
given packing. We remark that this equation allows a
straightforward manner to connect the energy landscape for-
malism with the rigidity theory, where the most important
parameterf11g is kZsfdl. This approach also provides a way
to construct inherent structures and the boundary of the land-
scape just by considering a nonlinear optimization problem.
To get a packing, we can define an objective function as

FsPd = o
l=1

N

ir li, s4d

with RH constraintsir l −r mi=s. This objective function is
defined in such a way that the particles are packed in a tight
way with respect to the origin. Surprisingly, this criteria is
similar to the center of mass minimization that has been
observed very recently in experiments with colloidsf29,30g.
In principle, this problem can be solved using nonlinear pro-
grammingf31g, and there is some similar work done into this
line of researchf32g. Here we will not follow this path. In-
stead, we investigate how the landscape boundary looks at
different scales in the configurational part of the phase space.
The most simple way to do this, consists in applying a box-

counting algorithmf33g once the boundary points are deter-
mined. In this box counting algorithm, a grid made from
cubes of linear sized is applied to the configurational phase
space. Then the number of boxes that contains a boundary
state are counted. The counting is repeated at different
lengthsd. This ideal situation has the problem that we need
to generate all the boundary states, and due to the size of the
phase space, this task is almost impossible to do. A simpler
approach is to take advantage of the Monte Carlo importance
sampling to obtain information about the boundary.

In the Metropolis Monte Carlo methodf34,35g, when a
system is in a microstateP0, a movement to a new microstate
P is allowed if the difference in energiesDE=EsPd−EsP0d is
negativefwhere EsPd is the energy of the statePg. If DE
.0, a random number is compared withDE. In the case of
hard-core systems, a rejection occurs when a new proposed
configuration is not allowed by the restrictionsf35g, i.e.,
when there is an overlap between disks or spheres. When the
new proposed pointP is rejected, one can be sure that the
boundary of the landscape has been crossed, i.e., the bound-
ary is between statesP0 andP. Thus, the information about
the boundary can be extracted from the acceptance ratio of
the Monte Carlo method, although two modifications are
needed. In the usual Monte Carlo method, the trial move-
ment distance between two states is a continuous random
variablef36g. This feature is not convenient because it does
not provide an approximate location for the boundary. A sec-
ond fact to take into account, is that the probability of hitting
the pointP not only depends on the size of the boundary, but
also in the transient probability of the processf37g P0→P.
To solve these problems, let us introduce a regular grid in the
configurational part of the phase space. If the simulation is
performed in a box of linear lengthL, there are M
=sL /ddDN points in the grid, whereD is the dimensionality
of the system. In such a grid, a random walk in phase space
is performed by choosing at random a diskr i and changing
one component at random to ±d. If P is written in general-
ized coordinatesqj, the trial movement is written as

sq1,q2,q3,…,qDNd → sq1,q2,q3,…,qr ± d,…,qDNd, s5d

for the r coordinate chosen at random with an uniform dis-
tribution.

The introduction of a random walk is convenient because
s1d the step size can be varied to look at the scaling ands2d
when a movement is rejected, the state can be considered as
a boundary point, since it is connected to the interior of the
forbidden part of the phase space. In spite of this, the intro-
duction of a random walk has the inconvenience of not being
able to sample the phase space with equal probabilities, i.e.,
it is not completely ergodic and does not fullfill detailed
balance. In fact, even for the usual Monte Carlo method there
is some lack of ergodicity due to the existence of an finite-
size underlying grid. The only difference between the simple
random walk and the usual Monte Carlo method with jumps
of variable size is the higher interconnectivity of the grid in
the former case, which mitigates but does not solve com-
pletely the effects of the biased sampling. The main effect of
this problem upon our calculations, is that the size of the
boundary will be underestimated, and that some parts of the
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landscape are not going to be visited. Thus the method works
better before a transition, and in fact only provides a bound
for the scaling exponents. Since the random walk does not
fulfill detailed balance and ergodicity, one can ask if this
choice is unique. In fact, the box counting algorithm can be
used with other methods of sampling the phase space, as for
example the hit and miss technique. However, its efficiency
is usually much lower. A better way to improve upon this
method, is to use other sampling algorithms that generate the
boundary of the landscape in an efficient way, as for ex-
ample, collision predictionf38g.

Now let pksdd be the probability of statek in phase space
to be occupied by the system when a grid of scaled is cho-
sen. The random walk process can be viewed as a Markov
chainf37g, where the probabilities of visiting each microstate
are contained in a vector. The probabilities at each step are
transformed according to a stochastic matrix that contains as
elements the probability of transition among states,

1
p18sdd
p28sdd

…
pM8 sdd

2 =1
S11 S12 … S1M

S21 S22 … S2M−1

… … … …
SM1 … … SMM

21
p1sdd
p2sdd

…
pMsdd

2 ,

where the rows of the matrix are normalized to 1, andpk8sdd
are the probabilities after a step is made. In a hard-core sys-
tem, jumps only occur between allowed grid points that are
first neighbors. An elementSrt of this matrix is zero when
one of the statesr or t is in the forbidden part of the land-
scape.Srt is also zero ifr or t are not first neighbors. The
only elements different from zero areSrt =1/ztsdd, if r and t
are allowed neighbors, whereztsdd is the coordination in
phase space of sitet si.e., the number of allowed first neigh-
bors of td for a given scaled. Points at the boundary of the
landscape are the ones wherezrsdd,2DN since they are con-
nected to points inside the forbidden part of the phase space.
A matrix of this type has at least one eigenvector with eigen-
value one, while the others have norms equal or less than one
f9g. Thus, after successive applications of the matrix, the
stable configuration is given by the eigenvalue with norm
one, from where it follows that the final probabilities satisfy
f9g

1
p1sdd
p2sdd

…
pMsdd

2 =1
S11 S12 … S1M

S21 S22 … S2M−1

… … … …
SM1 … … SMM

21
p1sdd
p2sdd

…
pMsdd

2 .

This matrix is similar to the Hamiltonian of a binary alloy in
an hypercubic lattice, where the two self-energies are very
differentf39g ssplit band regimend. It is easy to prove that the
final equilibrium vector coincides with the bonding state
swhich corresponds with the maximal wavelength of the so-
lution, and nearly zero phase difference between sitesd of the
binary alloy.

In a Monte Carlo step, the probability of having a rejec-
tion is given by the probability of jumping into a boundary
point fpksddg, multiplied by the probability of jumping from

a statek into a statet in the forbidden region of the land-
scape, which is given by the elements of the stochastic ma-
trix. Thus the probability of landing in a forbidden statet is

ptsdd = S2DN − zksdd
2DN

Dpksdd. s6d

If LBsdd denotes the set of all boundary points, the total
probability of having rejections at a scaled fwe denote this
probability by pRsddg is obtained by summing over all
boundary statesk,

pRsdd ; o
kPLBsdd

S1 −
zksdd
2DN

Dpksdd. s7d

Now we write zksdd as an average plus a fluctuation part,
zksdd=kzksddl+Dzksdd, where

kzsddl =
1

MBsdd o
kPLBsdd

zksdd, s8d

and MBsdd is simply the number of boundary points at a
scaled. The same procedure can be made forpksdd, giving
pksdd=kpBsddl+Dpksdd, wherekpBsddl is defined as

kpBsddl =
1

MBsdd o
kPLBsdd

pksdd. s9d

Using these definitions, and that the sum of the fluctuations
is zero, Eq.s7d is rewritten as

pRsdd = o
kPLBsdd

S1 −
kzsddl
2DN

DkpBsddl

− o
kPLBsdd

SDzksddDpksdd
2DN

D .

The termoDzksddDpksdd is a measure of the correlation be-
tween state and coordination fluctuations. Since the eigen-
vector with eigenvalue one corresponds to a bonding state in
a binary alloy, using a variational procedure with a trial func-
tion or analyzing the spectral momentsf39g, it can be proved
that Dpksdd<Dzksdd /2DN. This term gives a correction of
order

1

2DN
o

kPLBsdd
DzksddDpksdd < S ŝsdd

2DN
D2

, s10d

whereŝsdd is the standard deviation of the phase space co-
ordination distributionzksdd. Thus it follows that

MBsddkpBsddl =1 pRsdd + S ŝsdd
2DN

D2

S1 −
kzsddl
2DN

D 2 . s11d

We notice thatMBsddkpBsddl is a bound for the size of the
whole boundary of the landscape. For example, when the
sampling is uniform, MBsddkpBsddl=MBsdd /Msdd, since
kpBsddl=1/Msdd. The number of grid pointsMsdd scales
as d−DN, and if the boundary has a scaling of the type
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MBsdd,d−DBN, then we expect a scaling of Eq.s11d as

MBsdd
Msdd

~ sd/sdDf , s12d

whereDf =sD−DBdN is an effective fractal dimension due to
the different scalings of the boundary and volume of the
landscape. In general, states at the boundary are less visited,
thus we get the following inequality:

MBsddkpBsddl ø
MBsdd
Msdd

. s13d

As a result, we get a bound for this scaling exponent,

Df ø ln1 pRsdd + S ŝsdd
2DN

D2

S1 −
kzsddl
2DN

D 2@ lnsd/sd. s14d

The evaluation of this bound can be easily implemented in-
side a Monte Carlo simulation; it only requires the rejection
probability pRsdd, the average coordinationkzsddl, and the
fluctuationsŝsdd. To do this, first we divide the phase space
with a grid of spacingd. Then we perform the Monte Carlo
simulation, but if there is a rejection during a trial step, this
means that the initial state is in the boundary of the land-
scape. To look at the coordination in phase space of this
state, a movement in each of theDN coordinates of the grid
is performed, as in Eq.s5d, but for each coordinateqr taken
in sequence fromr =1 to r =DN. For each coordinate move-
ment, the new state is tested in order to determine if its an
allowed or forbidden state. After this cycle in the coordi-
nates, the number of accepted states is the coordination num-
ber zksdd. The process continues until a new rejection ap-
pears, and at the end of the simulation, the average and the
standard deviation of the distribution ofzksdd are obtained.
The same procedure is repeated for different scalesd.

Figure 1 illustrates the procedure for a very simple sys-
tem. Consider two disks in a box of lengthL and widths. In
such a case, the movement is one dimensional. Ifx1 andx2
are the coordinates of each disk, the configurational part of
the phase space can be represented as a plane. The shape of
the landscape is determined by the condition of nonoverlap
ux1−x2uùs and the walls of the box. The allowed phase
space is made by two triangles, as shown in Fig. 1. Notice
that ergodicity is always broken since the two triangular re-
gions are not connected. In Fig. 1, the grid is indicated as
dotted lines; the points at the boundarysopen circles in Fig.
1d are those connected to grid points that are outside the
triangular regionssclosed circlesd.

In this simple system, it is very instructive to compare the
rejection ratio of the Monte Carlo method with the topology
of the phase space, since the theoretical value for
MBsdd /Msdd for a given packing fractionf=2/L is easy to
find. The value ofMBsdd /Msdd in this case is given by the
ratio between perimeter area of the triangle as a function of
the scale

FMBsdd
Msdd GL

= S 2s2 +Î2d
Ls1 − 2s/Ld

Dd,

where the subscript is used to indicate that the result depends
on the corresponding length of the box. This result can be
related with the probability of rejection of the Monte Carlo
simulation as follows. If we suppose an uniform sampling,
the probability of hitting a boundary point is given by the
perimeter-area ratio of the triangles. The average coordina-
tion of the boundary points can be obtained from a direct
inspection of the drawings with different grids, that gives
kzsddl.Î2+s3/2d for s!L. We can neglect the term
ŝsdd /4, since it is very small to be consideredsthis approxi-
mation was confirmed afterwards by the coordination statis-
tics obtained from the Monte Carlo simulationd. Using Eq.
s11d, the predicted rejection probability is

pRsdd = msLdd,

wheremsLd is defined as

msLd ; S5

8
−

1

2Î2
DfMBsdd/MsddgL.

The rejection is thus expected to be proportional tod, as
confirmed in Fig. 2 by the numerical simulations using a
Monte Carlo method, where the rejections are plotted against
d for different L. Using a least-square fitting, the slopes for
each of the lines is shown in Fig. 3 using a log-log plot. The
solid curve is the theoretical value ofmsLd and the squares
are the results of the simulation using the Monte Carlo simu-
lation. These results are in very good agreement with the

FIG. 1. Two disks in a rectangular box of lengthL and widths.
Below the box, the corresponding configurational part of the phase
space is shown. The allowed part of the landscape is the area indi-
cated with the grey shadow. A grid of scaled is indicated by dotted
lines. Boundary points are indicated by open circles. Closed circles
are states in the forbidden part of the phase space. Notice that in this
problem, ergodicity is always broken, since the allowed parts of the
landscape are not connected.
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theoretical values, specially fors!L, wheremsLd is well
approximated by

msLd <
8s2 +Î2d

L
s1 + 2s/Ld,

so msLd,L−1, andDf =1 as expected for a smooth surface.
In the regions<L, the difference between both results is
due to the fact that the average coordination number is not
anymoreÎ2+s3/2d, and a correction is needed in the ana-
lytical formula. Also, in this region the sampling is far from
uniform, since the grid is very small compared with the size
of the boundary.

III. SCALING IN A SIMPLE LIQUID

In this section, we show the results obtained using the
method proposed in the previous section for a two-

dimensional system composed of hard-disks at different
packing fractionsf=Nps2/4S, whereN=100 particles. The
thermodynamics of this system has been investigated by
many different groups during the past 50 yearsf40–42g. De-
spite the simplicity of the model, the nature of the phase
transition from solid to fluid is still debatedf43g, as well as
the nature of local orderf44g and its relation with some
peaks in the radial distribution functionf45g. Here we will
only investigate the landscape scaling. Figure 4 shows a log-
log plot of MBsddkpBsddl as a function ofd for different
packing fractions, as indicated in the figure caption. Figure 5
is a similar plot, but only for packing fractions near the freez-
ing point sdenoted byf0d. Both plots give evidence that
there is a power law scaling ofMBsddkpBsddl with d. This
power law behavior is clear near the freezing point or at low
densities, where fits of the typedDf are shown for the differ-
ent sets of datasonly fits with correlation coefficients bigger
than 99% are shownd. Notice that all the fits have a cutoff at

FIG. 2. Rejection ratio as a function of the scaled smeasured in
units of sd for L=50s ssquaresd, 30s scirclesd, 15s sdiamondsd,
10s striangles upd, and 4s striangles downd.

FIG. 3. Slopes of the fitting lines that appear in Fig. 2 as a
function of L. The solid line is the functionmsLd.

FIG. 4. ParameterMBsddkpBsddl as a function of the scaled, for
different packing fractions. From top to bottom,f=0.74 ssquaresd,
f=0.71s3d, f=0.39 strianglesd, f=0.23 sstarsd, f=0.12 sdia-
mondsd, f=0.08 ssquaresd, and f=0.04 sfilled circlesd. The lines
were obtained using a power law fit.

FIG. 5. ParameterMBsddkpBsddl close to freezing as a function
of d, at f=0.74 ssquaresd andf=0.63 scirclesd.
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d=0.05s, since there is a crossover in the power law behav-
ior, i.e., for a given packing fraction, two regions with dif-
ferent scaling exponents are observed, as seen in Fig. 5,
where a drop ofMBsddkpBsddl is observed aroundd=0.05s.
For low packing fractions, the exponents ford,0.05s tend
to be smaller than in the regiond.0.05s. The fact that two
exponents are observed means that below a certain length
scale, the landscape has a different structure. For all the dif-
ferent packing fractions, this behavior is nearly similar. We
can speculate that this change of regimen for the scaling at a
length scale is related with the different processes of relax-
ation that have been observed in diverse simulations
f28,46,47g and experimentsf16g, since although a Monte
Carlo simulation does not provide the real dynamic of the
system, is clear that a big length scaled in phase space
corresponds to long times in the evolution of the system, as
also expected from the Adam-Gibbs relation between relax-
ation times and configurational entropyf7g. However, this
speculation needs to be investigated in more detail.

We also notice that for packing fractions 0.2,f /f0
,0.6, it seems that using one single scaling exponent is not
enough to fit the data, which is an indicative of a multifractal
structure, although if we restrict the fitting ford.0.2, again
a good power law fit is obtained.

In Fig. 6 we plot the scaling exponents obtained from the
data of Figs. 4 and 5 as a function of the packing fraction, for
the regionss0.2s,dd where a clear scaling is obtained for
all the graphs. As shown in the figure, as the packing fraction
reaches the freezing point,Df goes to zero, and the landscape
boundary scales nearly as the volume in phase space. This
means that near the freezing point, the topology of the land-
scape restricts in a severe manner the available phase space.
Thus Fig. 6 provides clear evidence of how the topology of
the landscape is responsible for the phase transition that oc-
curs at the freezing point, and reinforces the speculation
about relaxation times, since it has been observed in experi-
ments with colloids that freezing occurs when long time re-
laxation is no longer availablef16g.

IV. CONCLUSIONS

In this article, we have discussed some aspects of how to
characterize the structure and texture of the energy landscape

in simple fluids. As a result, we showed a method to inves-
tigate the boundary of the landscape that uses the Monte
Carlo rejection ratio plus the average coordination of a state
in phase space. An example of how to apply the method has
been presented for a very simple model that consists of two
disks that moves in one dimension. A similar procedure ap-
plied to a system of hard disks shows a clear power law
scaling of the ratio between the boundary and the volume of
the landscape. A crossover in the scaling exponents has been
observed for a given packing fraction. Near the freezing
point, the boundary of the landscape scales as the volume in
phase space, and as a result the system tend to stay in pock-
ets of the phase space. We speculate that the crossover ob-
served in the scaling is related with the different kinds of
relaxation processes of the fluid. In future works, we will
further explore this idea.
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