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Monte Carlo rejection as a tool for measuring the energy landscape scaling of simple fluids
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A simple modification of the Monte Carlo algortihm is proposed to explore the topography and the scaling
of the energy landscape. We apply this idea to a simple hard-core fluid. The results for different packing
fractions show a power law scaling of the landscape boundary, with a characteristic scale that separates the
values of the scaling exponents. Finally, it is shown how the topology determines the freezing point of the
system due to the increasing importance and complexity of the boundary.
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[. INTRODUCTION energy surface determines the possible evolution of the sys-
tem, and the contact with thermodynamics is made by using
A liguid cooled to temperatures near its freezing point carstatistical mechanicg2]. The great advantage of the land-
be conduced to a glassy state or to a crystal according to theeape formalism is that it can be used even without thermo-
speed of coolind1]. When the speed is high enough, the dynamical equilibrium. In such a case, ergodicity is broken
supercooled liquid undergoes a glass transition to a state thand the entropy is not a maximum anymore, as postulated in
is disordered, while a phase transition of the type fluid crysthe usual equilibrium statistical mechanics. The main ques-
tal is obtained if the system is kept in thermodynamical equilion to be answereq for this case, is to fi_gur_e out the fraction
librium at all steps of the cooling paft]. The understanding ©f allowed volume in phase space that is visited by the sys-
of the many different aspects of glass transition still remaind€M- ) o
as one of the most important problems in phy$@&k as for The usu_al picture o_f a phase or glass transition in such a
example, the explanation of the nonexponential relaxation O#anguage, is that at high temperatures the system does not
fluctuations[4] or why not all materials form glassg§]. eel the topology ofb(ry,...,ry) because the kinetic energy

Another very interesting property of glasses, related with thegogttgr?]uiioﬂnggP;Toatseusr'mﬁrﬁ?fhteempﬁéittuéﬁe'rs Iol\;v;:tia;,s tgs d
glass forming tendenc}f], is the behavior of the viscosity, Y 9 gy

therefore is forced to sample deep minima. For a slow cool-

which is usually referred as fragility. Different approachesing is slow, the system has time to find a path to the most

have been used to understand glass transition: models li ; ; ]
the Gibps—DiMarzio[?],. theories like the mode coupling, kftgg:g itgf[i" ?rr:eog?;.\%gg&%/’sti?lihlévggoﬂiéra;ggig |i2 ?]ir;ﬁ @
stochastic agglomeratiof—-1Q] or the use of computer onqugh. Many works that relates the statistics of an energy
simulations [7]. Another useful approach is the rigidity |andscape with the thermodynamical properties of the system
theory of Phillips[11] and Thorpe[12], which relates the have been madg2,20-23, and even some phenomenologi-
ratio between available degrees of freedom and the numbey| relations between rigidity and the energy landscape have
of constraint{13]. In previous works, we showed that even peen obtained24]. For a Lennard-Jones fluid, it has been
for simple systems like hard disk&4] and colloids[15], it determined that the network of minima is a static scale-free
seems that rigidity plays an important role even for the cas@etwork[25].
of a Simple phase transition, since it is clear that in order to However, up to now there are some important questions
form a solid, the system must develop certain rigidity. Somehat remain, for example, what is the topography of the land-
works on the relaxation properties of colloids, seem to conscape for a fragile liquid or how to obtain the viscodityg],
firm these idea$16]. diffusion [26] and rigidity from the landscapf24]. Also,
Parallel to all of these approaches, there is another formahithough is widely believed that the landscape is fundamen-
ism that has been very useful to visualize and understang| to understand many features of a liquid, still is not com-
what happens during a glass or usual phase transition. Thisietely clear how to use the landscape topology to predict a
formalism is the energy landscape appro@th,18, which  phase transitiof27]. Another interesting question is what is
many years ago was very successful in the field of spirhe nature of the texture of the landscape? In other words, is
glasseg19]. The main idea behind this approach, is that thethe topography a fractal? What's the fractal dimension of the
landscape is a surface generated by the potential energy pindscape? Although some of these questions seem to have
the system as a function of the molecular positifZisFor a  an academic interest only, is clear that the relaxation proper-
system withN molecules, the landscape is determined by thejes of a very complex fractal landscape are different from a
potential energy functiond(ry,...,ry), wherer; comprise  smooth landscapk28], where the system can easily explore
all relevant coordinates, like position and orientation. Sincahe phase space. In this article, we will explore some of these
the kinetic energyK) is a positive defined quantity, the sys- questions by looking at the scaling of the landscape.
tem evolves in such a way tha&=E-®(rq,...,ry) =0, The layout of this work is the following: in Sec. Il we
wherekE is the total energy. The topography of the landscapealiscuss how to use a modified Monte Carlo method to study
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the scaling. In Sec. Il we apply the method to a simple fluidcounting algorithm33] once the boundary points are deter-
of hard disks. Finally, in Sec. IV we give the conclusions. mined. In this box counting algorithm, a grid made from
cubes of linear sizé is applied to the configurational phase
space. Then the number of boxes that contains a boundary
state are counted. The counting is repeated at different
lengthsé. This ideal situation has the problem that we need
In this section we will develop a method to relate theto generate all the boundary states, and due to the size of the
Monte Carlo rejection ratio and the scaling of the landscapephase space, this task is almost impossible to do. A simpler
Before going into the details, it would be useful to explainapproach is to take advantage of the Monte Carlo importance
some others approaches to obtain information about the landampling to obtain information about the boundary.
scape topology. To simplify ideas, in this article we will use  In the Metropolis Monte Carlo methdd84,35, when a
as a model systenN hard disks or spheres of diametein  system is in a microstafe,, a movement to a new microstate
a given aredS) or volume (V). In such hard-core particle P is allowed if the difference in energiesE=E(P)—E(Py) is
system, the energy landscape is formed by walls of infinitenegative[where E(P) is the energy of the state]. If AE
height that divide the allowed and forbidden regions of the>0, a random number is compared wille. In the case of
configurational phase space.rifis the position of a disk or hard-core systems, a rejection occurs when a new proposed
spherei, the allowed region of the landscape is the set ofconfiguration is not allowed by the restrictiofi35], i.e.,
points where when there is an overlap between disks or spheres. When the
new proposed poinP is rejected, one can be sure that the
Iri - ri” =0, 1) boundary of the landscape has been crossed, i.e., the bound-
for all possible pairs andj. The number of such pait&yy) ary is between statd®, andP. Thus, the information about
is the number of combinations of objects taken in pairs: the boundary can be extracted from the acceptance ratio of
CN=N(N-1)/2. Each of theseC) equations is a non- the Monte Carlo method, although two modifications are

holonomic restriction to the system. A stdén phase space needed. In the usual Monte Carlo method, the trial move-

is in the boundary of the landscape, if at least one of thén€nt distance between two states is a continuous random
inequalities(1) is transformed into an holonomic restriction, variable[36]. This feature is not convenient because it does
not provide an approximate location for the boundary. A sec-

Ir=rul=0, (2)  ond fact to take into account, is that the probability of hitting
the pointP not only depends on the size of the boundary, but

for a pair of disks that we denote Hyand m. For each ; . o
equation of this type that is satisfied, two disks are in contact‘r;l.ISO in the transient probability of the procd3§] Po—P.

For a given packing fractiof), the number of such equa- o0 solve these problems, let us introduce a regular grid in the
tions(g ) is }Oust 9 ' q configurational part of the phase space. If the simulation is
H

performed in a box of linear length, there are M
(Z($)) =(L/8)PN points in the grid, wher® is the dimensionality
= TN’ (3 of the system. In such a grid, a random walk in phase space
is performed by choosing at random a diskand changing
where(Z(¢)) is the average coordination per particle in aone component at random taS+lf P is written in general-
given packing. We remark that this equation allows aized coordinatesj;, the trial movement is written as
straightforward manner to connect the energy landscape for-
malism with the rigidity theory, where the most important (03,02.G: -+~ Gon) = (A, G G-, G £ 8-, Gon) - (5)
parametef11] is (Z(¢)). This approach also provides a way for ther coordinate chosen at random with an uniform dis-
to construct inherent structures and the boundary of the landtibution.
scape just by considering a nonlinear optimization problem. The introduction of a random walk is convenient because
To get a packing, we can define an objective function as (1) the step size can be varied to look at the scaling @d
N when a movement is rejected, the state can be considered as
FP) =S I @) a bqundary point, since it is connected to the inj[erior o_f the
= Ml forbidden part of the phase space. In spite of this, the intro-
duction of a random walk has the inconvenience of not being
with Ry constraints|r;—r,/|=c. This objective function is able to sample the phase space with equal probabilities, i.e.,
defined in such a way that the particles are packed in a tight is not completely ergodic and does not fullfill detailed
way with respect to the origin. Surprisingly, this criteria is balance. In fact, even for the usual Monte Carlo method there
similar to the center of mass minimization that has beens some lack of ergodicity due to the existence of an finite-
observed very recently in experiments with colloj@9,30.  size underlying grid. The only difference between the simple
In principle, this problem can be solved using nonlinear pro+andom walk and the usual Monte Carlo method with jumps
gramming[31], and there is some similar work done into this of variable size is the higher interconnectivity of the grid in
line of researc32]. Here we will not follow this path. In- the former case, which mitigates but does not solve com-
stead, we investigate how the landscape boundary looks gletely the effects of the biased sampling. The main effect of
different scales in the configurational part of the phase spacéhis problem upon our calculations, is that the size of the
The most simple way to do this, consists in applying a box-boundary will be underestimated, and that some parts of the

II. MONTE CARLO REJECTION AND SCALING
OF THE LANDSCAPE
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landscape are not going to be visited. Thus the method works statek into a statet in the forbidden region of the land-
better before a transition, and in fact only provides a boundcape, which is given by the elements of the stochastic ma-
for the scaling exponents. Since the random walk does ndtix. Thus the probability of landing in a forbidden statés
fulfill detailed balance and ergodicity, one can ask if this

choice is unique. In fact, the box counting algorithm can be p(d) = (M
used with other methods of sampling the phase space, as for 2DN
example the hit and miss technique. However, its efficiencyﬁc r

) . . 1) n h f all ndar in h |
is usually much lower. A better way to improve upon this 5(9) denotes the set of all boundary points, the tota

) : ! robability of having rejections at a scafdwe denote this
method, is to use other sampling algorithms that generate tr%robability by pR(8)] is obtained by summing over all

boundary of the landscape in an efficient way, as for XY oundary statek
ample, collision prediction38]. y ’

Now let p(8) be the probability of statk in phase space F)
to be occupied by the system when a grid of scals cho- o= > (1 _%%kw)- (7)
sen. The random walk process can be viewed as a Markov ke Lp(d)
chain[37], where the probabilities of visiting each microstate Now we write z(8) as an average plus a fluctuation part,
are contained in a vector. The probabilities at each step arg(s)=(z(8))+Az(5), where
transformed according to a stochastic matrix that contains as

) P(9). (6)

elements the probability of transition among states, (2(8)) = ™ D 2(5), ®)
, BLO) ke £g(o)
p1(0) Si1 S - Siw P1(9) dMu(® is simoly th o ® ¢ bound _
(S ~ 5 and Mg IS simply the number of boundary points at a
R = S Sz Sau-1 Pe(4) ; scales. The same procedure can be made gdid), giving
Pr(8)=(pg(5)) +Ap,(5), where(pg()) is defined as
P () Sur - o Sum / \pu(9)
i i (ps(3)) = > ). 9
where the rows of the matrix are normalized to 1, @) Pe MB(5)kEcB(5) Py

are the probabilities after a step is made. In a hard-core sys-
tem, jumps only occur between allowed grid points that ardJsing these definitions, and that the sum of the fluctuations
first neighbors. An elemerfy, of this matrix is zero when is zero, Eq.7) is rewritten as

one of the states or t is in the forbidden part of the land- &)
scape.S; is also zero ifr or t are not first neighbors. The pR(o= > (1 -—)<pB(5)>
only elements different from zero a8 =1/z(4), if r andt ke £g(8) 2DN

are allowed neighbors, whem(é) is the coordination in AZ(8)Ap(S)
phase space of site(i.e., the number of allowed first neigh- - > (&>
bors oft) for a given scales. Points at the boundary of the keLp(d) 2DN

landscape are the ones wheyg) < 2DN since they are con- . :
RN . The term=Az(5)Ap(S f th lation be-
nected to points inside the forbidden part of the phase spac e term2Az()Ap(9) Is @ measure of the correlation be

A matrix of this tvoe has at least one eigenvector with eigen. een state and coordination fluctuations. Since the eigen-
yp 9 9€NYector with eigenvalue one corresponds to a bonding state in

value one, while the othe_rs have florms equal or less than Or}slebinary alloy, using a variational procedure with a trial func-
[9]. Thus, after successive applications of the matrix, th%ion or analyzing the spectral momefigg], it can be proved

stable configuration is given by the eigenvalue with norm - : : ;
one, from where it follows that the final probabilities satisfy that Apy(é) ~Az(8)/2DN. This term gives a correction of

order
[9] 2
1 a(9)
P1(9) Si1 S o S P1(9) DN Y AZ()Ap(S) =~ <_2DN) : (10
ke Lg(d)
P20 | | S1 Sz -0 Swr P2(5) R
- ... where () is the standard deviation of the phase space co-
ordination distributiorz(5). Thus it follows that
Pw(9) Sur -+ - Sum Pm(d) () )
(5
This matrix is similar to the Hamiltonian of a binary alloy in pR(s) + (ﬂ>
an hypercubic lattice, where the two self-energies are very Mg(8)(pg(d)) = ___\2DN/ (11)
different[39] (split band regimen It is easy to prove that the 1- (z(9)
final equilibrium vector coincides with the bonding state 2DN

(which corresponds with the maximal wavelength of the so- ] . ]

lution, and nearly zero phase difference betweensittthe ~ We notice thatMg(9)(pg(6)) is a bound for the size of the

binary alloy. whole boundary of the landscape. For example, when the
In a Monte Carlo step, the probability of having a rejec-sampling is uniform, Mg(8)(pg(8))=Mg(8)/M(4), since

tion is given by the probability of jumping into a boundary (pg(8))=1/M(8). The number of grid pointsVi(é) scales

point [p(8)], multiplied by the probability of jumping from as 6PN, and if the boundary has a scaling of the type
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Mg(8)~ 5 P8N, then we expect a scaling of E(L1) as

Mg(9)
—=— o (8lo)P, 12

M~ (09 (12
whereD;=(D-Dg)N is an effective fractal dimension due to
the different scalings of the boundary and volume of the
landscape. In general, states at the boundary are less visited,
thus we get the following inequality:

Mg(9)
M(8)

Mg(9)(Pe(9)) < (13)

As a result, we get a bound for this scaling exponent,

o+ (20

- 7o+ (5m) e 14

f=In (1_<z(5)>) n(dlo). (14
2DN

FIG. 1. Two disks in a rectangular box of lendtrand widtho.
Below the box, the corresponding configurational part of the phase
space is shown. The allowed part of the landscape is the area indi-
cated with the grey shadow. A grid of scalés indicated by dotted

The evaluation of this bound can be easily implemented in
side a Mont?e Carlo simulation; it only requires the rejection
pI’ObabI.hty '? (9), the ave.rag-e coorquﬂo«z(&)), and the lines. Boundary points are indicated by open circles. Closed circles

ﬂl_JCtuat'o_nso'(é)' T‘? do this, first we divide the phase space are states in the forbidden part of the phase space. Notice that in this
with a grid of spacings. Then we perform the Monte Carlo opiem, ergodicity is always broken, since the allowed parts of the

simulation, but if there is a rejection during a trial step, this|angscape are not connected.

means that the initial state is in the boundary of the land-

scape. To look at the coordination in phase space of this

state, a movement in each of tBd coordinates of the grid [
is performed, as in E(5), but for each coordinatg, taken

in sequence froomm=1 tor=DN. For each coordinate move-

MB(é)} _( 22 +12) )5
M@ |, \L@-20/L)) "

ment, the new state is tested in order to determine if its awhere the subscnp_t is used to indicate that the result depends
on the corresponding length of the box. This result can be

allowed or forbidden state. After this cycle in the coordi- . - S
nates, the number of accepted states is the coordination nurﬁe-lated with the probability of rejection of the Monte Carlo

ber z(5). The process continues until a new rejection ap_S|muIat|on as follows. If we suppose an uniform sampling,

pears, and at the end of the simulation, the average and tl’tlge probability of hitting a boundary point is given by the

standard deviation of the distribution af(5) are obtained. perlmeter-area ratio of the triangles. The' average coordma-
The same procedure is repeated for different scéles tion of _the boundary points can b_e obtalneq from a ohrect
. . : inspection of the drawings with different grids, that gives
Figure 1 illustrates the procedure for a very simple sys

tem. Consider two disks in a box of lendthand widthe. In <AZ(5)>= V.2+(3/2.) for o=<L. We can _neglegt the te_rm
such a case, the movement is one dimensionad; Endx, o(6)/4, since it is very small to be considerétis approxi-

are the coordinates of each disk, the configurational part giation was confirmed afterwards by the coordination statis-
the phase space can be represented as a plane. The shapHSgs 0Ptained from the Monte Carlo simulatiorUsing Eq.

the landscape is determined by the condition of nonoverla 11), the predicted rejection probability is

[X;—X,|=0 and the walls of the box. The allowed phase pR(8) =m(L)$,

space is made by two triangles, as shown in Fig. 1. Notice

that ergodicity is always broken since the two triangular re-Vherem(L) is defined as

gions are not connected. In Fig. 1, the grid is indicated as 5 1

dotted lines; the points at the bounddopen circles in Fig. m(L) = <§ - ﬁ)[MB((S)/M(B)]L-

1) are those connected to grid points that are outside the v

triangular regiongclosed circles The rejection is thus expected to be proportionalstoas

In this simple system, it is very instructive to compare theconfirmed in Fig. 2 by the numerical simulations using a
rejection ratio of the Monte Carlo method with the topology Monte Carlo method, where the rejections are plotted against
of the phase space, since the theoretical value fop for differentL. Using a least-square fitting, the slopes for
Mg(6)/M(6) for a given packing fractionp=2/L is easy to  each of the lines is shown in Fig. 3 using a log-log plot. The
find. The value ofMg(6)/M(d) in this case is given by the solid curve is the theoretical value of(L) and the squares
ratio between perimeter area of the triangle as a function céire the results of the simulation using the Monte Carlo simu-
the scale lation. These results are in very good agreement with the
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FIG. 2. Rejection ratio as a function of the scalémeasured in
units of o) for L=500 (squares 300 (circles, 150 (diamonds,
100 (triangles up, and 4r (triangles down

FIG. 4. ParameteMg(5){pg(d)) as a function of the scal& for
different packing fractions. From top to bottog=0.74 (squarek
¢$=0.71X), #=0.39 (triangles, #=0.23 (starg, ¢=0.12 (dia-
monds, ¢=0.08 (squarel and ¢=0.04 (filled circles. The lines

theoretical values, specially far<L, wherem(L) is well : . :
were obtained using a power law fit.

approximated by

8(2+\E) dimensional system composed of hard-disks at different
~ #(1 +20/L), packing fractionsp=Nmo?/4S, whereN=100 particles. The
thermodynamics of this system has been investigated by
som(L)~L™%, andD;=1 as expected for a smooth surface. many different groups during the past 50 yea8-42. De-
In the regiono=L, the difference between both results is spite the simplicity of the model, the nature of the phase
due to the fact that the average coordination number is ndransition from solid to fluid is still debatefdt3], as well as
anymore\s’§+(3/2), and a correction is needed in the ana-the nature of local ordef44] and its relation with some
lytical formula. Also, in this region the sampling is far from peaks in the radial distribution functidd5]. Here we will

uniform, since the grid is very small compared with the sizeonly investigate the landscape scaling. Figure 4 shows a log-
of the boundary. log plot of Mg(8){pg(d)) as a function ofs for different

packing fractions, as indicated in the figure caption. Figure 5
is a similar plot, but only for packing fractions near the freez-
Il. SCALING IN A SIMPLE LIQUID ing point (denoted by¢g). Both plots give evidence that
. . ) ) there is a power law scaling dflg(5)(pg(5)) with 8. This
In this section, we show the _results ob_talned using thEf)ower law behavior is clear near the freezing point or at low
method proposed in the previous section for a two'densities, where fits of the typ#®* are shown for the differ-
ent sets of datéonly fits with correlation coefficients bigger

m(L)

10’ ' than 99% are shownNotice that all the fits have a cutoff at
- 1.0 |
e
2 A
A
10° - -
o )
_ A /
- (2]
g = /
[=%
Vv
107" © /
Iy 3 m
= /I O
1 10 100 107 10™
L d/c

FIG. 3. Slopes of the fitting lines that appear in Fig. 2 as a FIG. 5. ParameteMg(5){pg(d)) close to freezing as a function
function of L. The solid line is the functiom(L). of 8, at $=0.74 (squaresand ¢=0.63 (circles.
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6=0.050, since there is a crossover in the power law behav- 10 T T T T T
ior, i.e., for a given packing fraction, two regions with dif-
ferent scaling exponents are observed, as seen in Fig. 5,
where a drop oMg(8){pg(d)) is observed around=0.05.

For low packing fractions, the exponents @+ 0.05 tend

to be smaller than in the regiaft>0.05. The fact that two 06 - i
exponents are observed means that below a certain length _
scale, the landscape has a different structure. For all the dif- A
ferent packing fractions, this behavior is nearly similar. We 04 + . g
can speculate that this change of regimen for the scaling at a EL

length scale is related with the different processes of relax- El

ation that have been observed in diverse simulations 02 r N .
[28,46,471 and experiment$16], since although a Monte

Carlo simulation does not provide the real dynamic of the -
system, is clear that a big length scajein phase space o0 0z 04 06 03 o
corresponds to long times in the evolution of the system, as ’ ' ' ¢}¢ ’ ’
also expected from the Adam-Gibbs relation between relax- 0

ation times and configurational entropy]. However, this FIG. 6. ExponentD; as a function of the ratio between the

speculation nee_ds to be investiga’Fed in m‘?fe detail. packing fraction and the packing fraction at freeziifg). The size
We also notice that for packing fractions &2b/¢o  of the squares is proportional to the maximal error, and the line is a
< 0.6, it seems that using one single scaling exponent is NQfisyal guide to the eye.

enough to fit the data, which is an indicative of a multifractal _ _
structure, although if we restrict the fitting for>0.2, again  in simple fluids. As a result, we showed a method to inves-
a good power law fit is obtained. tigate the boundary of the landscape that uses the Monte
In Fig. 6 we plot the scaling exponents obtained from theCarlo rejection ratio plus the average coordination of a state
data of Figs. 4 and 5 as a function of the packing fraction, foin Phase space. An example of how to apply the method has
the regions(0.20< &) where a clear scaling is obtained for P€en presented for a very simple model that consists of two
all the graphs. As shown in the figure, as the packing fractio isks that moves in one dimension. A similar procedure ap-

reaches the freezing poirid; goes to zero, and the landscape plied to a system of hard disks shows a clear power law

. aling of the ratio between the boundary and the volume of
boundary scales nearly as the \_/olume in phase space. Trﬁe landscape. A crossover in the scaling exponents has been
means that near the freezing point, the topology of the land

R ) observed for a given packing fraction. Near the freezing
scape restricts in a severe manner the available phase spa 8int. the boundary of the landscape scales as the volume in
Thus Fig. 6 provides clear evidence of how the topology of ;<o space, and as a result the system tend to stay in pock-
the landscape is r_espongible for the_ phase transition that'o ts of the phase space. We speculate that the crossover ob-
curs at the freezing point, and reinforces the speculatiogeped in the scaling is related with the different kinds of
about relaxation times, since it has been observed in expefjg|axation processes of the fluid. In future works, we will
ments with colloids that freezing occurs when long time re-fyrther explore this idea.

laxation is no longer availablgl6].

0.8 r -
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