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Role of Rigidity in the Fluid-Solid Transition
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We examine the fluid-solid transition for a hard-disk system. By counting the near neighbors in
the average configurations of a grand-canonical Monte Carlo simulation, this enables us to relate the
thermodynamical transition with the rigidity theory, since we find that the coordination number in the
fluid-solid transition is close to the coordination number predicted by a mean field rigidity theory, due
to dynamical jamming of particles, where the contact region between disks is the radial ring outside a
disk with a maximum allowed coordination number that is not bigger than six . Using these ideas, we
were able to produce a continuous glasslike transition when nucleation of rigidity is suppressed.
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sionality of the configurational space of the system (2N in
two dimensions and 3N in three dimensions). After this

translational order is quasi-long-ranged, with a density-
density correlation function that decays algebraically to
Although the fluid-solid transition has been studied for
many years, it is surprising that even for the simplest
systems, like the hard-disk (HD) and sphere models, there
are still many unsolved questions [1,2]. For example, it
has not yet been determined for the HD system whether
the freezing transition is a simple first-order phase
change, whether a single higher order transition is in-
volved [1], or whether hexatic domains appear before the
transition [3,4]. The simplicity of the HD and sphere
models provided the frame for the development of very
important theories, namely, the integral equations (like
the Ornstein-Zernike) and thermodynamical perturba-
tion theories [5,6], and also the earlier computer simula-
tions on fluids [7] and experimental models [8]. Because
of the importance of these simple systems to a wide
variety of related applications in the physical and bio-
logical sciences (like colloids and biological membranes
[9]) and to the development of new theories, many recent
studies have been making interesting progress [10].
However, there are some obscure aspects which have
not been solved to date, like the complete description of
a glass transition in this simple system [11] or the packing
of hard-disk and sphere models, for which even the con-
cept of a random close packed structure, considered as the
paradigm of amorphous models, has been put in doubt
very recently [12], and the concept of jammed state has
arisen [12]. A system is in a jammed state if all the
particles are jammed, in the sense that a sphere or disk
cannot be translated while their neighbor contact par-
ticles are kept fixed. In fact, a random packing is ill
defined [12], because there is always a certain degree of
order [13] that can be measured by an orientational order
parameter ( 6). In a different context, i.e., in the study of
the difficult problem of the glass transition, in 1979
Phillips [14] proposed that the glass formation was opti-
mized when the number of constraints, given by the
number of bonds and angles between them, was equal
to the number of freedom degrees given by the dimen-
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successful idea, Thorpe [15] refined the concept by show-
ing that if the number of constraints is lower than the
degrees of freedom, there are zero frequency vibrational
modes called floppy [15,16], and the resulting network is
underconstrained or floppy. A transition occurs when the
lattice becomes rigid, and at the corresponding chemical
composition, the glass is easy to form due to the configu-
rational limbo in which the system sits. The rigidity
transition (RT) occurs for a certain average coordina-
tion of the lattice, which is universal in the sense that it
depends only on the dimensionality of the system. Many
important features of this transition have been experi-
mentally observed for chalcogenide glasses [17,18]; how-
ever, it has been elusive to understand the effects of
rigidity in thermodynamics, and only very recently
were some advances made [19]. In this Letter, we show
that the RT plays a very important role in the freezing
transition, since our results suggest that both occur at the
same time, as seen from our computer simulations with
HD. Furthermore, here we show that the suppression of
rigidity nucleation in the sense of self-organization [20]
can inhibit crystallization and produce a glasslike tran-
sition, while overconstraints produce crystallization, as
was predicted by Phillips [14].

Using a standard Monte Carlo Metropolis algorithm
for a grand-canonical ensemble, we performed simula-
tions for a HD system with disk diameter �. In Fig. 1,
with circles we present the inverse of the numerical
density (��1) as a function of the reduced chemical
potential (��), where � � 1=kT. The results were ob-
tained from equilibrium and productive runs, each aver-
aged over 400 configurations, relaxed by 4� 105

iterations, where the acceptation rate was fixed to oscil-
late between 20%–30%, in a square box of size 20�. The
fluid-solid transition that we obtain is similar to that
found by many other authors [2,7]. The obtained solid
phase presents hexatic domains, although 2D crystals do
not possess long-range translational order [2]; rather, the
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FIG. 2. Radial distribution function (left scale) of the HD
system before and after the fluid-solid transition �� � 12; 13,
shown as thin solid and thin dashed lines, respectively. The
corresponding integral of g�r�; which gives the coordination
number for the same chemical potentials, is shown in darker
lines (right scale). The inset represents the contact region, as
described in the text.
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FIG. 1. Inverse of the numerical density versus chemical
potential for the HD without (with) annealing, represented
by the solid line with circles (dotted line with circles), and
by the exclusion of overconstrained configurations of 6 (5)
disks, denoted by crosses (dotted line).
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zero [21]. However, there is true long-range bond-orienta-
tional order in the crystal, while both translational and
orientational order are short ranged in the equilibrium
fluid. For comparison purposes, in Fig. 1 we also include
the obtained results after an annealing process of the
solid phase that allows one to obtain higher densities.

During the fluid-solid transition, the free volume is
reduced in such a way that disk diffusion becomes nearly
impossible in the solid phase. If the free volume is re-
duced to zero, we expect a jamming of the disks inside
hexagons formed by the contact of the six first neighbors,
and thus there are not possible movements. For a Monte
Carlo or molecular dynamics simulation, one has the
problem of how to define the number of disks that are
in contact with another, since statistically the probability
of having a perfect contact is zero. Usually, to define a
neighbor, the criterion is to look at a circular region with a
radius given by the minima between the first and second
peaks of the radial distribution function �g�r�� [2] (that
we show from our results in Fig. 2). However, is clear that
if, for example, in the fluid phase we have a disk sur-
rounded by a heptagon formed by seven disks (see inset of
Fig. 2), these disks are not able to jam the central one, and
thus the definition of the contact region cannot be the
same as the region of nearest neighbors. Because of these
considerations, it is natural to define the ‘‘contact’’ as
those disks that are in a region where the maximal
allowed coordination (Zmax) is six, i.e., the sector between
a circle of radius r � � defined by an hexagon of disks
and a heptagon with radius r � �=�2 sin�2
=14�� �
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1:152� which is formed by seven disks, where each disk
is in contact with two neighbors.

Our main result is related to the following fact. If we
obtain the average number of neighbors (hZi) by integrat-
ing g�r�, we get that hZi is close to 4, for r � 1:15� at the
fluid-solid transition, as shown in Fig. 2, where the in-
tegral of g�r� at the chemical potentials that are closer to
the transition are displayed. The surprise is that hZi � 4 is
the value predicted for a RT in a mean field when angular
forces are not present [15]. The value hZi � 4 comes from
the fact that in 2D there are 2N degrees of freedom, but
each time that a bond or contact is formed, a constriction
is imposed. In a mean field approximation, the RT is
obtained by observing that the jth site has Zj contacts,
each contact is shared by two sites, and thus the total
number of constraints is

P
j Zj=2. However, if a disk has

maximum coordination, the angles between contacts are
fixed due to geometrical hindrance, and extra constraints
appear [there are

P
0
j�Zmax � 1� angular contraints, where

the sum is carried over sites with Z � Zmax]. Taking into
account these two contributions, the proportion of floppy
modes (given by the difference between the number of
freedom degrees minus the number of constraints, nor-
malized to 2N) is

f � 1�
hZi
4

�
�Zmax � 1�

2
�Zmax

; (1)

where it was used that
P
j Zj=N is the average coordina-

tion number, and �Zmax
is the fraction of disks with maxi-

mal coordination. If this last fraction is very low, as is the
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case of the present system before the thermodynamical
transition, the RT occurs when f � 0, and thus hZi � 4.
The present result suggests that a RT occurs at the ther-
modynamical transition due to overconstraint of the sys-
tem, as is seen in Fig. 3, where the number of floppy
modes, obtained from the numerical data and Eq. (1),
crosses the line f � 0 at the thermodynamical transition.
Notice that after the transition, f is negative due to the
fact that the system is overconstrained, and Eq. (1) still
can be used if we define a new quantity, the hardness (h),
as h � �f where h now gives the fraction of overcon-
straints. We can understand the value hZi � 4 as a dynam-
ical jamming transition (dynamical because contacts are
within certain limits) or as a sort of cage effect [22,23],
since to jam or to put in a cage a disk, at least four disks
are needed. Notice that a disk can be jammed with only
three disks, however, there is only one configuration in
which this is possible, an equilateral triangle, and the
statistical weight of this possibility is nearly zero. With
four disks the situation is the inverse; there is only one
configuration which is not able to produce jamming.

To further discuss this point, in Fig. 4 we show the
evolution of hZi with respect to the chemical poten-
tial, now using the idea of defining the contact region
as � � r < 1:15�. As is clearly seen, there is a jump at
the fluid-solid transition and hZi cross the value 4 near the
transition.

Once the connection between rigidity and the thermo-
dynamical phase transition is revealed, one is led to ask if
it is possible to inhibit the thermodynamical transition by
avoiding the development of an overconstrained lattice.
This can be done if nucleation of rigidity is forbidden, in
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FIG. 3. Number of floppy modes calculated from Eq. (1),
using the same symbols described in Fig. 1.
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the same spirit of the self-organization of rigidity, as was
proposed very recently by Thorpe et al. [20], and exper-
imentally confirmed by the group of Boolchand [17,18].

This inhibition can be achieved by including in the
potential a term that depends on the number of neighbors
in the contact region. The potential is built in such a way
that a disk cannot move inside the contact region if the
number of disks already present in that region is five. In
that way, nucleation of six disks around a disk is not
permitted, since they give extra constraints that overcon-
strain the system. A similar biased simulation can be
done by avoiding five disks in the contact region. Notice
that a model with this kind of potential, but in the context
of lattice systems, has been considered [24] as a possible
source for a glass transition. In Fig. 1 we present the
results of avoiding constraints in the lattice by rejecting
configurations with six and five disks in the contact
region. As can be seen, the phase transition is avoided
and a transition that is glasslike occurs. This graph can be
compared with the corresponding evolutions of hZi as a
function of the chemical potential (Fig. 4), where the
rigidity transition is clearly avoided, since the line hZi �
4 is not crossed, and as a result, supercooling is pos-
sible. Furthermore, when the nucleation of rigidity is
avoided, all the systems fall in the line f�hZi� �
1� �hZi=4� (see Fig. 3), which, in fact, is the line defined
by self-organization of rigidity [20].

An interesting confirmation of the glassy nature of the
solid, is the distribution of volume in each of the Voronoi
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FIG. 4. (a) Average coordination versus chemical potential;
the neighbors were determined using the contact region cri-
teria. (b) Order parameter as a function of the chemical
potential calculated using Voronoi polygons to define the neigh-
bors. The symbol code is the same used in Fig. 1.
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FIG. 5. Voronoi volume distribution when the solid is already
formed (�� � 16); we can observe an increment of the total
Voronoi volume (solid lines) as we decrease the stress in the
system (arrow). The left, middle, and right curves correspond
to HD without rejecting any configuration, rejecting maximal
coordination 6, and rejecting maximal coordination 6 and 5,
respectively. The increase in the free volume is paid by the
corresponding increase in defects (5 and 7 sides Voronoi poly-
gons). For the case of the pure HD with annealing, no defects
are observed, while if we reject configurations of 6 disks (6 and
5 disks), the middle (right) set of curves is obtained.
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polygons �P�VV��, presented in Fig. 5. In the fluid to solid
phase transition, all the pentagons and heptagons that
were present in the fluid disappear at the transition, while
for the case of the inhibition of rigidity nucleation, there
are pentagons and heptagons that are frozen in. Notice
that there is a relation between the average volume and the
rigidity of the lattice, since for maximal rigidity the
volume is smaller, and the contrary is true for less ri-
gidity, as shown by the arrow in Fig. 5 (each of these
configurations is also indicated with arrows in the
corresponding plot of the floppy modes). The relation
between Voronoi volume and rigidity conduces to a dy-
namical jamming, which is reflected in the order pa-
rameter  6, shown in Fig. 4(b), defined as  6 �P
k

P
j exp�6i�kj�=NBonds where �kj is the angle between

two neighbors k and j, now obtained from the Voronoi
polygons, NBonds is the total number of bonds, and
the sum is carried over all pairs of disks. For the case
of the usual fluid-solid transition, we find the same results
reported in Ref. [2]. Notice that the maximum value is not
1 due to the size of fluctuations in 2D, as was said
previously.

In conclusion, we have found that there is an intimate
connection between rigidity and the fluid-solid transition
in a hard-disk system. By avoiding nucleation of rigidity,
in the sense of self-organization, we were able to produce
a glasslike transition.
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