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The eigenfunctions of nested wells with an incommensurate boundary geometry, in both the hydro-
dynamic shallow water regime and quantum cases, are systematically and exhaustively studied in this
Letter. The boundary arrangement of the nested wells consists of polygonal ones, square or hexagonal,
with a concentric immersed, similar but rotated, well or plateau. A rich taxonomy of wave patterns, such
as quasicrystalline states, their crystalline rational approximants, and some other exotic but well known
tilings, is found in these mimicked experiments. To the best of our knowledge, these hydrodynamic
rational approximants are presented here for the first time in a hydrodynamic-quantum framework. The
corresponding statistical nature of the energy level spacing distribution reflects this taxonomy by changing

the spectral types.
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One would believe that a quasiperiodic wave pattern that
has an orientational order without periodic translational
symmetry [1] must be associated with an external single
connected boundary. In such a case, classical analogues
which model features of quantum systems, and prove non-
trivial properties of these systems, have stirred interest. For
example, acoustic [2] and hydrodynamic quasicrystals [3]
were previously reported, and the existence of Bloch-like
states has recently been proved in such systems [4]. In all
of these results, there was an imposed global quasiperio-
dicity by either the boundary conditions or a dynamical
source, which makes the appearance of such patterns not so
unexpected. However, it is also possible to confine quasi-
crystalline hydrodynamic modes within an inner isolated
region of a bigger surface, as was done in Ref. [5]. In that
work, the experiment was realized under a linear regime,
and, thus, the fluid ‘““sees” a double concentric noncon-
nected boundary. Hence, it was essentially different from
other reported nonlinear quasicrystalline Faraday wave
patterns [6] where the pattern is not conditioned by the
shape of the boundary due to the nonlinearity of the
Faraday phenomenon. In the study of quasicrystalline
structures in bounded hydrodynamic flows [3—6], the tran-
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sition from order to chaos phenomena plays an important
role [7].

Since the quantum analogs of confined hydrodynamic
modes may be of relevance to design quantum confine-
ments exhibiting quasiperiodic electronic states, or their
rational approximants, here we systematically study the
eigenfunctions corresponding to nested wells under the
shallow water regime [8], i.e., in which the surface wave-
length is much larger than the liquid depth, and their
corresponding quantum analogues.

The nested wells of our study consist of a polygonal
external boundary, square or hexagonal, with a concentric
similar but incommensurately rotated well or plateau. In
the case of the squares, the rotation angle between both
domains is 45°, and, in the case of the hexagons, this angle
is 30°. The bottom of the vessel was covered with a shallow
liquid layer of depth /; and the inner well or plateau with a
depth h,. See Fig. 1 (bottom right).

In the hydrodynamic study, we use the equation
?n(r, 1) = V- [gh(r)Vn(r, )] [8], where 7 is the wave
amplitude, g is the acceleration due to gravity, and A(r) is
the depth field, being the corresponding Helmholtz stand-
ing wave equations (V> + 0?/c?)¥(r)=0, i=1,2,
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FIG. 1 (color online). Quantum octagonal quasicrystalline pat-
tern (top left) and its 4/3 rational approximant (top right) in a
double square nested well. For the quasicrystalline pattern, the
well depth ratio is 1.16 and the level energy, with respect to the
50 Hz ground state, is —0.349 174. For the rational approximant,
the well depth ratio is 1.1 and the level energy is —0.2246.
(Bottom left) Hydrodynamic octagonal quasicrystalline pattern;
the depth ratio is 0.9 and the frequency is 3.026 32 Hz. (Bottom
right) Diagram of the hydrodynamic experimental vibrating
setup; the edge lengths of the double square nested well are 80
and 35 cm.

where W(r) is the amplitude of the corresponding standing
wave, with the above mentioned adequate regions, 1
(outer) and 2 (inner), and c; are the phase velocities,
w/k; = (gh;)"/?,  is the angular frequency, and & is the
wave number, and w = c;k; are the corresponding linear
dispersion relations.

There is an analogy between the discretized Helmholtz
equation and a tight-binding Hamiltonian. Discretization
of the Helmholtz equation on a square lattice leads to

8hyn
aZ

(\Pm+l,n + \Pm*l,n + lI,m,nJrl + ‘Pm,nfl - 4\Pm,n)
= —wz‘I’m’n, (1)

where V¥, , and A, , are the amplitude of the stationary
wave and the liquid depth on site (m, n), respectively, and
a = L/N, where L is the length of the external polygon
and N is the discretization size (typically 201). The above
equation is an eigenvalue problem formally equivalent to a
quantum (tight-binding) Hamiltonian on a square lattice,
represented in an orthonormal basis of atomic orbitals
|$pn) (m=1,...,N and n=1,...,N) with energy
€nn = 4gh,, ,/a*, and a hopping integral between orbitals
on nearest-neighbor  sites 1, n—10 = Lupm+in
bnmn—1 = topmn+1 = 8hmn/a*. The equivalence is
completed if V¥, , are reinterpreted as the amplitude of

the atomic orbitals in the eigenfunctions of the quantum
Hamiltonian; i.e., |[®) =5, W, |d,..)-

In particular, the tight-binding Hamiltonian operator that
leads to Eq. (1), written in terms of the parameters and the
basis set given above, is

I:I = Zem,n|¢m,n><¢m,n| - Z tm,n;m’n’|¢m,n><¢m’,n'|r

(mn;m'n')
2

where () denotes that the sum is restricted to nearest
neighbors. Note that the electron mass dose not explicitly
show up in this Hamiltonian. Actually, it is implicit in the
hopping integral that, in turn, accounts for the electron
kinetic energy. Following the stated analogy and by using
linear dispersion relations, k; vs w, electron explicit kinetic
energies would be E; = #2k?/2m; = h?w?a®/2m;gh;, i =
1,2, where # is the reduced Planck constant and m; are
electron effective masses. Hydrodynamic and quantum
spectra with about 1.700 and 10.000 eigenvalues were,
respectively, explored for each depth ratio h,/h,.

We present here quasicrystalline wave patterns and their
lower rational approximants linked to the above mentioned
hydrodynamic-quantum analogy problem. In Fig. 1 (top),
we show a quantum octagonal quasicrystalline pattern and
one of its lower rational approximants. The first pattern is
obtained under quantum boundary conditions, i.e.,
Dirichlet conditions, and the second one, although it is
also a quantum pattern, is, however, obtained under hydro-
dynamic boundary conditions, i.e., Neumann conditions.
Figure 1 (top left) conspicuously bears resemblance to that
pioneer experimental octagonal pattern published early in
the very different nonlinear Faraday wave context [6]. A
quasicrystalline octagonal pattern is also obtained under
our present hydrodynamic framework ,and it is shown in
Fig. 1 (bottom left). Quasicrystalline patterns obtained
under different boundary conditions show only negligible
differences. These patterns cover only the inner region of
the vessel.

The quasicrystalline octagonal pattern is generated by
using linear combinations of two square lattice vector
bases, shifted between them by an angle of 2tan~!(2!/2 —
1). By changing 2!/2 for its respective rational approximant
numbers obtained from the continuous fraction expansion
2!/2 =[1;2], the approximant patterns are generated.
There are two associated successions. The main one:
1/1,3/2,7/5, ... and the associated one:
2/1,4/3,10/7,..., 2'/2 being the geometric mean of
each pair of terms. Corresponding patterns are identical
but appear 45° rotated in between. These wave vectors
were accurately obtained for each eigenfunction by means
of its corresponding pattern Fourier analysis.

In Fig. 2, we show the hydrodynamic 3/2 rational
approximant pattern and the 7/5 one with their correspond-
ing vibrational level distributions (VLD) D(7,). The VLD
is computationally obtained starting from the expression:
D(ny) = é fn:%(dl/Wn(r)l), where () is the area of the
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rational approximant unit cell. By replacing the k space by
the real space, the above mentioned VLD plays the same
role in the corresponding eigenfunction as the well known
density of states in the whole spectrum [9,10]. The intro-
duction of the VLD is justified by the fact that the vibration
field has only 1 degree of freedom, and it is equivalent to a
scalar phonon field. So, it is possible to state an exact
correspondence between a tight-binding Hamiltonian and
a vibrational one [9]. VLD can also exhibit van Hove
singularities which smooth out gradually as the quasicrys-
talline order increases [10]. The result of VLD correspond-
ing to the octagonal quasicrystalline patterns in Fig. 1 fits
the early one reported by Zaslavsky et al. [10], making
reliable the other results for rational approximants shown
here. For instance, clear van Hove singularities appear in
the VLD of the 3/2 rational approximant shown in Fig. 2
(bottom right).

In Fig. 3, we show an exotic pattern resembling the
[B-Mn structure (or o phase) which has been found coex-
isting as a crystalline approximant with the octagonal
quasicrystalline phase [11]. As Fourier analyzed in this
work, this pattern grows spontaneously in this mimicked
experiment with the same wave vectors of the 3/2 rational
approximant one but introducing the phase 2 arctan(1/2) in
a couple of nonorthogonal vectors of the corresponding 4D
basis. The phase shift transforms the VLD of the pattern, as
shown in Fig. 3 (right), making it similar to that of the well
known square lattice case and showing a clear van Hove
singularity for the level zero [9,10]. So, VLD is a powerful
mathematical tool to discriminate structures with similar
Fourier transforms but with different internal phases.

VLD
VLD

0.15 0.15

4 4 4

-2 0 2 -2 0 2
Wave Surface Levels Wave Surface Levels

FIG. 2 (color online). Hydrodynamic rational approximants of
the octagonal pattern: (top left) 3/2 and (top right) 7/5. In both
cases, the depth ratio is 0.9 and the frequencies for each case are
0.8376703 Hz (3/2 approximant) and 0.9505245 Hz (7/5
approximant). Below each pattern, the corresponding VLD is
shown.

By imposing quantum Dirichlet boundary conditions to
the hydrodynamic patterns obtained, keeping the same
physical conditions as those shown in Figs. 2 and 3, it is
observed that the pattern phases change. So, the Neumann
3/2 rational approximant transforms to a Dirichlet o
phase; the Neumann o phase transforms to a Dirichlet
4/3 rational approximant, and the Neumann 7/5 rational
approximant transforms to an experimental narrow domain
containing two Dirichlet patterns: a 10/7 rational approx-
imant and a 7/5 rational one with an internal phase shifting
of 2 arctan(2/5) in its basis vector set. So, any pattern can
be obtained under both, quantum or hydrodynamic, bound-
ary conditions.

In a similar scenario, Fig. 4 shows two patterns gener-
ated in a hexagonal nested well and their corresponding
level distributions. The quasicrystalline dodecagonal wave
pattern can also be generated using two ternary wave
vector sets shifted between them by an angle of 2tan™1(2 —
31/2). Their rational approximant patterns appear when
372 transforms to its corresponding rational approximant
numbers. These rational numbers are obtained starting
from the continuous fraction expansion 3'/2 = [1;1,2].
Figure 4 shows the 2 and 19/11 above mentioned rational
approximant wave patterns. The van Hove singularity of
the VLD of the first pattern, or triangular pattern, is well
known [9,10]. The spectral problem and the rich taxonomy
of eigenfunctions of this double-hexagonal experiment are
similar to those previously described for the double square
well.

As is well known [12], there is a relationship between
the geometry of the boundary, the eigenfunction nature,
and the statistical properties of the spectrum. An integrable
system, such as a polygonal billiard [13], has a statistical
distribution of energy spectral fluctuations [P(s), where s is
the distance between nearest energy levels], that fits the
Poisson distribution. In Fig. 5 (bottom left), we show that
this is the case for the P(s) of the system under the
symmetric configuration of the nested wells. Because of
the high symmetry of the problem, a lot of doubly degen-
erate states appear. If the symmetry of such a system is
broken, by slightly rotating and shifting the inner well, then

-2 0 2 4
Wave Surface Levels

FIG. 3 (color online). Hydrodynamic pattern corresponding to
the o phase obtained with a depth ratio of 1.1 at a frequency of
0.775317 8 Hz. Its corresponding VLD is shown at the right.
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FIG. 4 (color online). Hydrodynamic triangular pattern (left)
and the dodecagonal 19/11 rational approximant (right). The
edge lengths of the double-hexagonal nested well are 40 and
17.5 cm. The depth ratio and frequency for each case are 1.1,
0.8155099 Hz (triangular) and 0.9, 2.2416974 Hz (19/11
approximant). Below each pattern, the corresponding VLD is
shown.

all of the inherent degeneracies are removed, as was done
in a similar early study [14]. In such a case, the eigenfunc-
tions show ‘‘scarred” localized surface waves [15] as
shown in Fig. 5 (top), and P(s) becomes a semi-Poisson
distribution, as shown in Fig. 5 (bottom right).

FIG. 5 (color online). (Top) Scarred chaotic wave pattern
obtained when the degeneracies are removed by rotating and
shifting the inner well. The depth ratio is 0.77 and the eigenfre-
quency is 4.149 17 Hz. (Bottom right) The corresponding semi-
Poisson distribution of energy spectral fluctuations. (Bottom
left) The Poisson distribution of the nearest level spacing in
the whole level spectrum with degeneration due to the symmetry.
The solidline represents the theoretical distribution, and the bars
are experimental results.

We have shown that a geometrical arrangement of two
nested wells, each of them with polygonal symmetry, can
give a very rich and complex behavior even if a simple
linear differential equation, valid for hydrodynamics and
quantum mechanics, is used as a physical description.
Quasiperiodic, approximant, and periodic wave patterns
have been obtained in this work. The present approach
gave a new insight on how to generate certain rational
approximants in the density wave framework. The ob-
served spectral fluctuations are consistent with the ob-
tained wave patterns in both the symmetrical and chaotic
cases.
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