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Abstract 

The Bethe lattice has been extensively used to study amorphous and glassy solids, due to the abundant and easily 
obtainable analytical results. However, not much attention has been paid to the unphysical and spurious features that make 
the calculations difficult to interpret. In this paper, some of the results extracted from Bethe lattice studies are critically 
reviewed and their most serious drawbacks are discussed, particularly the effects of an unphysical surface on local and long 
range correlations. A study of the localization of states in the Bethe lattice is also included. 

1. Introduction 

The most important difficulty when studying 
glasses, or amorphous solids in general, is the ab- 
sence of  long range translational symmetry. How- 
ever, as discussed by Frank L. Galeener [1], one 
usually finds local chemical order and some type of 
intermediate range order in these, otherwise, disor- 
dered solids. Covalent amorphous semiconductors 
and AX 2 glasses, for instance, present nearest neigh- 
bour fixed geometry and regular coordination. This 
fact makes the Bethe lattice an appropriate network 
to simulate these glassy structures, since, as we shall 
see below, it is possible to define a local unit (or 
effective site) preserving the local short range order, 
and construct an infinite random network without 
long range order. This method is sometimes more 
convenient than building disordered clusters with 
free ends or periodic boundary conditions, since it is 
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free from unwanted finite size effects and artificial 
periodicities, although care must be taken when in- 
terpreting the results due to the unphysical properties 
of the Bethe lattice. The main advantage of Bethe 
lattice models is that most results are obtained ana- 
lytically. 

In this paper we present a new discussion of the 
properties of the Bethe lattice and revise a series of 
Bethe lattice models for glasses made in collabora- 
tion with Galeener in the past ten years, and referred 
to in the following text. 

2. Properties of the Bethe lattice 

Suppose one is interested in calculating the mag- 
netic properties of  a large system, and one approxi- 
mates it by a small cluster. The difficulty in doing so 
is that the magnetization of the atoms in the surface 
of the cluster differs from those in the interior. One 
can impose periodic boundary conditions, but one is 
likely to obtain spurious results due to the artificial 
periodicity. The idea then is to attach to the surface 
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atoms some effective medium imposing the condi- 
tion that the magnetization of the surface should be 
equal to the atoms in the interior of the cluster. This 
is called the Bethe-Peierls approximation [2]. 

If one asks the question whether there is a net- 
work in which the Bethe-Peierls approximation is 
the exact result, the answer is the Bethe lattice [3]. If 
one studies the vibrations of a tetrahedron with five 
atoms and devises an imaginary impedance attached 
to the four surface atoms, imposing the condition 
that the amplitude of vibration for any atom in the 
cluster should be the same, one is talking about the 
'structural potential approximation' [4] which, not 
surprisingly, turns out to be the Bethe lattice again. 

Topologically, the Bethe lattice is the Cayley tree 
[3], which can be visualized as a simply connected 
network of identical units with constant coordination, 
Z, and without closed loops of paths. From this point 
of view, the Bethe lattice is a first approximation to 
any regular network, in which all connected dia- 
grams without closed loops are summed exactly. 
There are two important observ~itions: the first is that 
there is no long range order or periodicity in the 
Bethe lattice, and second is that there is only one 
path from one given site to another. 

The first observation has been used as a justifica- 
tion to simulate amorphous infinite networks and 
calculate electronic [5], vibrational [6] and magnetic 
[7] properties. The second is responsible for the 
drawbacks and non-physical features of the results. If 
there is only one way to transit from one place to 
another, one should expect that the network is very 
similar to the linear chain; in fact, some of the 
properties of the Bethe lattice are as for a one-di- 
mensional system, and a linear chain can be consid- 
ered as a Bethe lattice of coordination Z = 2. How- 
ever, as we see below, the linear chain is singular 
and different from the other Bethe lattices. If one 
chooses a given site in the Bethe lattice as being the 
center, the number of steps, n, to go to another site 
defines a shell shared by Z(Z  - l)  n- l sites. Then, as 
the lattice grows, the number of sites in the surface, 
or the last shell, grows exponentially. The total 
number of sites in a Bethe lattice with n shells is 
1 +  ~ l Z E , = 0 ( Z  - 1 ) ' =  [Z(Z  - 1)" - 2 ] / ( Z  - 2). 
Therefore, as the number of shells tends to infinity, 
the proportion of surface sites tends to ( Z -  2 ) / ( Z  
- 1 ) .  

Except for Z = 2, in the infinite Bethe lattice, the 
number of sites in the surface is not negligible, as it 
is in any other physical network. More than half of 
the sites belong to the surface and, as we see below, 
this unphysical fact is responsible for all the unde- 
sirable properties of the Bethe lattice. 

In order to illustrate the procedure to solve analyt- 
ically a problem in the Bethe lattice, let us take the 
simplest possible Hamiltonian 

9i '~= V~ li>(jl, (i)  
i,j 

where sites i and j are nearest neighbours. The 
equations of motion for the Green's function g = (E 
- H ) - '  are explicitly 

Egoo = 1 + Vgoi, (2) 

Ego, = Vgoo + ( Z - 1)Vgo2, 

Ego. = Vgo(._ ,) + ( Z - 1)Vgo(.+l), 

where g0, is the correlation between the central 
atom and any of the atoms in shell n. The usual way 
of solving this set of equations is by defining a 
transfer function go, = tgo(,-1), which is obtained 
by substituting it in the equations of motion and 
solving for a quadratic equation to give 

E+__[E2-4V2(Z-])] 1/2 
t = ( 3 )  

2 V ( Z -  1) 

and 

goo = ( E -  Z V t ) - '  (4) 

The reason for assuming that t does not depend 
on n is that one has neglected the surface atoms at 
shell N, which obey a different equation: 

Egos = Vgo(u-1)" (5) 
This neglect is wrong, because there are as many 
atoms in the surface as there are in the interior. 
There is an elegant and computationally efficient 
way of solving the system with a surface, which is 
considering the shell-dependent transfer functions 
g0. = T . g 0 ( . - l )  and using the Tschevicheff func- 
tions of the second kind U ( X / 2 ) ,  where X =  
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E/(VZV~ ~- 1) [8]. Eq. (5) shows that T N = 
1/(XZx/Z L-- 1 ) and iterating one finds 

r, = U s_ ,( x / z ) / ( U u (  X / 2 )  z ~ s - l ) .  

In this case the self-correlation function is written as 
g00 = [ E - ZVT 1 ]-  1. As the lattice tends to infinity, 

( Z -  1)  - 1 / 2  

l im T 1 = 
N ~  X -  [ l / X -  ( I / X - . . . ) ]  

X +  ( X  2 --  4 )  1/2 

= = t (6) 
2zCT S- 1 

which means that for a large enough Bethe lattice the 
effect of the surface on the self-correlation is very 
small. 

One could say that properties involving only the 
density of states, p(E),  are not strongly affected by 
the surface, since 

p ( E )  = - ( 1 / 7 r ) I m [ E - Z V t ] - '  (7) 

is the same for an infinite lattice with or without a 
surface, giving a band of width W =  4 V ¢ - Z - 1 ,  
according to Eq. (3). However, there is a subtle 
point: if one neglects the surface, one finds that 
perfectly coherent states (constant and equal ampli- 
tude in all sites) at E = +ZV exist out of the band, 
since they are eigenstates of Eq. (2), their weight 
being inversely proportional to the total number of 
atoms. If one takes into account the surface, + ZV is 
not an eigenstate; thus, the presence of an ever- 
growing surface prevents the existence of coherent 
states and the band shrinks. One may say that even 
the very local properties of the Bethe lattice are 
affected by the surface. 

The case is even worse when one attempts to 
calculate properties that depend on long range corre- 
lations, for instance, the infrared, Raman and inelas- 
tic neutron cross-sections [9] are related to the imagi- 
nary part of quantities like 

N 

E = E go, (8) 
N j = l  

which can be calculated in the Bethe lattice [10] 

E = (1 - Z V ( Z -  1 ) U g o u ) / ( E - Z V ) .  (9) 
N 

This equation shows that the result is entirely domi- 

nated by the surface for Z > 2 because of the very 
large factor ( Z -  1) u. Again, if one incorrectly ne- 
glects the surface (i.e., g0N = 0), there appears a 
8-function response at E = ZV, but if the surface is 
taken into account the weight of the 8 function is 
zero because goN(E = ZV)  = 1 / [ Z V ( Z -  1)u]. 

As a final point, let us say some words about the 
effects of the surface in the localization of states of 
the Bethe lattice. Let the amplitude of the wave 
function of a site in shell n be ~b,, and define a 
transfer matrix 

E 

T = ( Z -  1)V 

1 

( Z - l )  
0 

such that Tc ,_  1 = c,, where c, = (4),, th,_l). The 
eigenvalues of T are 

a_+= la l  e -+*~, 

where ]A[  = ( Z  - 1 ) - 1 / 2  and /3 = arctan 

¢4(Z - 1) - E 2 /E .  From here one defines the lo- 
calization distance, ~, through 

14~,1 = I A l " = e  - " /¢  

or ~ = 2 / ln(Z - 1). In the linear chain the states are 
extended (~ = ~) but in any other Bethe lattice the 
states are localized, explaining the 'discreteness' of 
the continuum discussed elsewhere [11]. The same 
result is obtained defining the localization distance 
as the inverse of the Lyapunov exponent calculated 
with the norm of the transfer matrix. One could say 
that the shrinking of the band is due to this localiza- 
tion of states, that prevents the existence of coherent 
states in the Bethe lattice. The energies of the states 
in the band can be written as E = 2V e -1/¢ cos /3 
and the energy gap, A, between the edge of the band 
and ZV is 

A / V =  (e l / e -  1) 2 > 1 / ~  2, (10) 

which can be understood in general if one considers 
that for long wavelengths E ~p2 ,  and ~p>_ 1, 
therefore E > 1 / ~  2. 

3. Bethe lattice models for glasses 

We first used the Bethe lattice to study electronic 
and vibrational excitations in amorphous silicon [12]. 
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Then, when I met Frank we started trying to model a 
random network of m x  4 units to study glasses as 
SiO2, GeO 2, GeS 2, BeF 2, etc. We obtained reason- 
able densities of vibrational states and, as Frank was 
an excellent experimenter, our aim was to compare 
the results of the theoretical model with Frank's 
infrared, Raman and neutron scattering experimental 
spectra. Consequently, we obtained analytical ex- 
pressions with Bethe lattice models to simulate and 
compare the measurements. The results were in gen- 
eral quite satisfactory [13], except for one feature 
that became Galeener's obsession: there were sharp 
peaks in the Raman spectra of some glasses, like 
SIO2, which were too narrow to be expected in a 
disordered structure [3]. Galeener postulated [14] that 
these features were the signature of regular interme- 
diate range order structures or local defects. Thus, 
we started using the cluster Bethe lattice method [15] 
to study local defects in a cluster, as broken bonds, 
wrong bonds, double bonds, and square rings [16], 
with the surface atoms linked to appropriate Bethe 
lattices. The results showed that, although some of 
the defects could produce peaks at the right frequen- 
cies, none were as sharp as in the experiment be- 
cause it was impossible to disconnect the defect from 
the rest of the lattice. This failure is important, 
because some people were assigning the sharp Ra- 
man peaks to local defects based on cluster calcula- 
tions, without taking into account that they should be 
connected to a network. 

The experimental evidence supported the idea that 
the shar p peaks were due to regular and almost 
planar threefold and fourfold rings of bonds [14]. We 
were able to show that threefold rings could be 
detached from the rest of the lattice at the Raman 
active mode if the ratio between central and angular 
forces was in a range of values, perfectly reasonable 
for the real materials. We reproduced the experimen- 
tal peaks for threefold [17] and fourfold rings [18] 
with our models. 

Galeener was also interested in vitreous boron 
oxide B203, which is supposed to contain large 
numbers of threefold planar rings [19]. Therefore, we 
built up a Bethe lattice of rings and obtained reason- 
able results for the density of vibrational states [20] 
and for the vibrational spectroscopies [21]. 

At this point it is worthwhile to mention that the 
expressions for the spectral responses have to be 

taken with care, as there are problems with 8-func- 
tion unphysical responses in the Bethe lattice. For 
instance, if one calculates the infrared response from 
a simple effective point charge e(n) model in amor- 
phous silicon, one obtains 

I= Y'~ e(n)e(m)g~(n,  m; w) 
n,m 

tll + ~ 
= e 2 g  1 + 4  1 - t i t  l - t ±  

where g is the displacement-displacement autocor- 
relation and tll and t a are the components of the 
transfer function parallel and perpendicular to the 
bond direction, respectively. It can be shown that 
this expression gives a 8 function at the maximum 
frequency, tOrnax , where there is no mode. 

The Raman scattering response from a bond po- 
larizability model can be obtained 

1 
R=g [ 2( 2ati)] tll + - + 

1 + 4  1 - t i t  3 1 - t ~  1 - - -~~  

where a = cos 3~o, and q~ is the dihedral angle. For 
random angles (a = 0), this expression gives a broad 
response highly peaked towards the optic modes, 
which is qualitatively correct, but for the staggered 
case (a = 1) the response is again a 8 function at 
tOma x. The neutron scattering response is more com- 
plicated to obtain [9], but the result also predicts a 8 
function response, which is unreasonable. 

All these problems are due to the significance of 
the enormous surface in the Bethe lattice, but they 
can be corrected if instead of t one uses qt (with 
q~e- l /¢< 1) in all the above expressions. This 
means that the coherence of the response is de- 
stroyed within a distance of the order of ~, due to 
the localization of the states. 

In the models for the vibrational responses for 
SiO 2 we used a bond polarizability model only in a 
local environment around the defect, based on the 
fact that in a disordered solid the coherent responses 
fade out fairly quickly. The results for the Raman 
response for SiO 2, GeO 2 and B 2 0  3 agree extremely 
well with the experimental results. Even a study of a 
disordered Bethe lattice with three-coordinated and 
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four-coordinated boron atoms in B20  3 to simulate 
Li-doped boron oxide gives satisfactory answers [22]. 

4. Conclusions 

The Bethe lattice has been very helpful to study 
glasses and amorphous solids. The theoretical results 
agree extremely well  with experimental  probes and 

allow one to test hypotheses about some structural 
and physical properties of  glasses. We have pre- 
sented some examples of the use of  these models, 
almost exclusively those made in collaboration with 

Frank, and we mentioned the main problem when 
interpreting the results. No attempt has been made to 
mention numerous works made by other people us- 
ing the Bethe lattice. 

We have discussed the unphysical features of  the 
Bethe lattice from a new point of view that relates all 
these features to the existence of an enormous sur- 
face. In practice, when modeling disordered solids 
one can avoid the surface by arguing that there is a 
decay in the long range correlations due precisely to 
disorder; therefore, one can calculate responses lo- 

cally and also deal with local defects with the Bethe 
lattice and be confident that the results are reason- 
able. 

One of  the authors (R.A.B.) wants to thank Frank 
not only for the amazing experience of  working with 
him for so many years, but also for the warm 
friendship that he always offered him. This work was 
financed partially by the European Economic Com- 
munity, contract CI1-CT90-0864 and by Universidad 
Nacional Aut6noma de M6xico, project D G A P A  
IN103493. 
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